Linear and Topological Algebra
$\begin{array}{llll}\mathrm{L} & \mathbf{T} & \mathbf{A}\end{array}$
Vol. 01, No. 02, 2012, 105-109

Recognition of the group $G_{2}(5)$ by the prime graph

P. Nosratpour ${ }^{\mathrm{a}, *}$ and M. R. Darafsheh ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of mathematics, ILam Branch, Islamic Azad university, Ilam, Iran;
${ }^{\mathrm{b}}$ School of Mathematics, statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

Abstract

Let G be a finite group. The prime graph of G is a graph $\Gamma(G)$ with vertex set $\pi(G)$, the set of all prime divisors of $|G|$, and two distinct vertices p and q are adjacent by an edge if G has an element of order $p q$. In this paper we prove that if $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$, then G has a normal subgroup N such that $\pi(N) \subseteq\{2,3,5\}$ and $G / N \cong G_{2}(5)$.

Keywords: prime graph, recognition, linear group

1. Introduction

Let G be a finite group. The spectrum $\omega(G)$ of G is the set of orders of elements in G, where each possible order element occurs once in $\omega(G)$ regardless of how many elements of that order G has. This set is closed and partially ordered by divisibility, hence it is uniquely determined by its maximal elements. The set of maximal elements of $\omega(G)$ is denoted by $\mu(G)$. The number of isomorphic classes of finite groups H such that $\omega(G)=\omega(H)$ is denoted by $h(G)$. If $h(G)=k \geqslant 1$ is finite then the group G is called a k-recognizable group by spectrum. If $h(G)$ is not finite, G is called non-recognizable. A 1-recognizable group is usually called a recognizable group. The recognizability of finite groups by spectrum was first considered by W.J.Shi et.al. in [16]. A list of finite simple groups which are known to be or not to be recognizable by spectrum is given in [11].

For $n \in N$, let $\pi(n)$ denote the set of all the prime divisors of n , and for a finite group G let us set $\pi(G)=\pi(|G|)$. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order $p q$. It is clear that a knowledge of $w(G)$ determines $\Gamma(G)$ completely but not vise-versa in general. Given a finite group G, the number of non-isomorphic classes of finite groups H with $\Gamma(G)=\Gamma(H)$ is denoted by $h_{\Gamma}(G)$. If $h_{\Gamma}(G)=1$, then G is said to be recognizable by prime graph. If $h_{\Gamma}(G)=k<\infty$, then G is called k-recognizable by prime graph, in case $h_{\Gamma}(G)=\infty$ the group G is called non-recognizable by prime graph. Obviously a group recognizable by spectra need not to be recognizable by prime graph, for example A_{5} is recognizable by spectra but $\Gamma\left(A_{5}\right)=\Gamma\left(A_{6}\right)$.

[^0]The number of connected components of $\Gamma(G)$ is denoted by $s(G)$. As a consequence of the classification of the finite simple groups it is proved in [19] and [9], that for any finite simple group G we have $s(G) \leqslant 6$. Let $\pi_{i}=\pi_{i}(G), 1 \leqslant i \leqslant s$, be the connected components of G. For a group of even order we let $2 \in \pi_{1}$. Recognizability of groups by prime graph was first studied in [5] where some sporadic simple groups were characterized by prime graph. As another concept we say that a non-abelian simple group G is quasi-recognizable by graph if every finite group whose prime graph is $\Gamma(G)$ has a unique non-abelian composition factor isomorphic to G.

It is proved in [20] that the simple groups $G_{2}(7)$ and ${ }^{2} G_{2}(q), q=3^{2 m+1}>3$, are recognizable by prime graph, where both groups have disconnected prime graphs. A series of interesting results concerning recognition of finite simple groups were obtained by B.Khosravi et.al. In particular they have stablished quasi-recognizability of the group $L_{10}(2)$ by graph and the recognizability of $L_{16}(2)$ by graph in [7] and [8], where both groups have connected prime graphs.

Next we introduce useful notation. Let p be a prime number. The set of all nonabelian finite simple groups G such that $p \in \pi(G) \subseteq\{2,3,5, \ldots, p\}$ is denoted by \mathfrak{S}_{p}. It is clear that the set of all non-abelian finite simple groups is the disjoint union of the finite sets \mathfrak{S}_{p} for all primes p. The sets \mathfrak{S}_{p}, where p is a prime less than 1000 is given in [21].

2. Preliminary results

Let G be a finite group with disconnected prime graph. The structure of G is given in [19] which is stated as a lemma here. Let G be a finite group with disconnected prime graph. Then G satisfies one of the following conditions:
$s(G)=2, G=K C$ is a Frobenius group with kernel K and complement C, and the two connected components of G are $\Gamma(K)$ and $\Gamma(C)$. Moreover K is nilpotent, and here $\Gamma(K)$ is a complete graph.
$s(G)=2$ and G is a 2-Frobeuius group, i.e. , $G=A B C$ where $A, A B \unlhd G, B \unlhd B C$, and $A B, B C$ are Frobenius groups.
There exists a non-abelian simple group P such that $P \leqslant \bar{G}=G / N \leqslant \operatorname{Aut}(P)$ for some nilpotent normal $\pi_{1}(G)$-subgroup N of G and \bar{G} / P is a $\pi_{1}(G)$-group. Moreover, $\Gamma(P)$ is disconnected and $s(P) \geqslant s(G)$. If a group G satisfies condition(c) of the above lemma we may write $P=B / N, B \leqslant G$, and $\bar{G} / P=G / B=A$, hence in terms of group extensions $G=N \cdot P \cdot A$, where N is a nilpotent normal $\pi_{1}(G)$-subgroup of G and A is a $\pi_{1}(G)$-group.

The above structure lemma was extended to groups with connected prime graphs satisfying certain conditions [17]. Denote by $t(G)$ the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$ and $t(2, G)$ the maximal number of primes in $\pi(G)$ nonadjacent to 2 . Let G be a finite group satisfying the following conditions: There exist three pairwise distinct primes in $\pi(G)$ nonadjacent in $\Gamma(G)$, i.e. , $t(G) \geqslant$ 3.

There exists an odd prime in $\pi(G)$ nonadjacent in $\Gamma(G)$ to 2 , i.e. , $t(2, G) \geqslant 2$. Then, there is a finite non-abelian simple group S such that $S \leqslant \bar{G}=G / K \leqslant \operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G. Furthermore $t(S) \geqslant t(G)-1$ and one of the following statements holds:
(1) $S \cong A_{7}$ or $L_{2}(q)$ for some odd q, and $t(S)=t(2, G)=3$.
(2) For every prime $p \in \pi(G)$ nonadjacent to 2 in $\Gamma(G)$ a Sylow p-subgroups of G is isomorphic to a Sylow p-subgroup of S. In particular $t(2, S) \geqslant t(2, G)$.

In the following we list some properties of the Frobenius group where some of its proof can be found in [15]. Let G be a Frobenius group with kernel K and complement H, then:
K is nilpotent and $|H| \mid(|K|-1)$.
The connected components of G are $\Gamma(K)$ and $\Gamma(H)$. $|\mu(K)|=1$ and $\Gamma(K)$ is a complete graph.
If $|H|$ is even, then K is abelian.
Every subgroup of H of order $p q, p$ and q not necessary distinct primes, is cyclic. In particular if H is abelian, then it would be cyclic.
If H is non-solvable, then there is a normal subgroup H_{0} of H such that [$H: H_{0}$] $\leqslant 2$ and $H_{0} \cong S L_{2}(5) \times Z$, where every Sylow subgroup of Z is cyclic and $|Z|$ is prime to 2,3 and 5 . A Frobenius group with cyclic kernel of order m and cyclic complement of order n is denoted by $m: n$.

The following result is also used in this paper whose proof is included in [3]. Every 2-Frobenius group is solvable. [6] Let G be a finite solvable group all of whose elements are of prime power order, then the order of G is divisible by at most two distinct primes. [12] Let G be a finite group, $K \unlhd G$, and let G / K be a Frobenius group with kernel F and cyclic complement C. If $(|F|,|K|)=1$ and F dose not lie in $\left(K \cdot C_{G}(K)\right) / K$, then $r \cdot|C| \in w(G)$ for some prime divisor r of $|K|$. [18]
If there exists a primitive prime divisor r of $q^{n}-1$, then $L_{n}(q)$ has a Frobenius subgroup with kernel of order r and cyclic complement of order n.
$L_{n}(q)$ contains a Frobenius subgroup with kernel of order q^{n-1} and cyclic complement of order $\left(q^{n-1}-1\right) /(n, q-1)$. Using [1], we can find $\mu\left(G_{2}(5)\right)=$ $\{20,21,24,25,30,31\}$. Therefore, the prime graph of $G_{2}(5)$ is as a follows.

Figure 1: The prime graph of $G_{2}(5)$
Our main results are the following: If G is a finite group such that $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$, then G has a normal subgroup N such that $\pi(N) \subseteq\{2,3,5\}$ and $G / N \cong G_{2}(5)$.

3. Proof of the theorem

We assume G is a group with $\Gamma(G)=\Gamma\left(G_{2}(5)\right)$. By Figure 1, we have $s(G)=2$, hence, G has disconnected prime graph and we can use Lemma 2.1 here: G is non-solvable.
If G is solvable, then consider a $\{5,7,31\}$-Hall subgroup of G and call it H. By Figure 1, H dose not contain elements of order $5 \cdot 7,7 \cdot 31,5 \cdot 31$, and since it is solvable, by [5] we deduce $|t(H)| \leqslant 2$, a contradiction.
G is neither a Frobenius nor a 2 -Frobenius group.
By (a) and Lemma 2.4, G is not a 2 -Frobenius group. If G is a Frobenius group, then by lemma 2.1, $G=K C$ with Frobenius kernel K and Frobenius complement C with connected components $\Gamma(K)$ and $\Gamma(C)$. Obviously $\Gamma(K)$ is a graph with vertex $\{31\}$ and $\Gamma(C)$ with vertex set $\{2,3,5,7\}$. Since G is non-solvable, by Lemma 2.3(a) C must be non-solvable. Therefore, by Lemma 2.3(f) C has a
subgroup isomorphic to H_{0} and $\left[C: H_{0}\right] \leqslant 2$, where $H_{0} \cong S L_{2}(5) \times Z$ with Z cyclic of order prime to $2,3,5$. But $\mu\left(S L_{2}(5)\right)=\{4,6,10\}$ from which we can observe that H_{0} has no element of order 15. This implies that C has no element of order 15 , contradicting Figure 1.
(a) and (b) imply that case (c) of Lemma 2.1 holds for G. Hence, there is a nonabelian simple group P such that $P \leqslant \bar{G}=G / N \leqslant A u t(P)$ where N is a nilpotent normal $\pi_{1}(G)$-subgroup of G and G / P is a $\pi_{1}(G)$-group and $s(P) \geqslant 2$. We have $\pi_{1}(G)=\{2,3,5,7\}$ and $\pi(G)=\{2,3,5,7,31\}$. Therefore, P is a simple group with $\pi(P) \subseteq\{2,3,5,7,31\}$, i.e. , $P \in \mathfrak{S}_{p}$ where p is a prime number satisfying $p \leqslant 31, p \neq 11,13,17,19,23,29$. Using [21] we list the possibilities for P in Table I.

Table I: Simple groups in $\mathfrak{S}_{p}, p \leqslant 31, p \neq 11,13,17,19,23,29$.

P	$\|P\|$	\mid out $(P) \mid$
A_{5}	$2^{2} \cdot 3 \cdot 5$	2
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	4
$S_{4}(3)$	$2^{6} \cdot 3^{4} \cdot 5$	2
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2

P	$\|P\|$	\mid out $(P) \mid$
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3
$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2
$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	4

P	$\|P\|$	\mid out $(P) \mid$			
$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	6			
$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	12			
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2			
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2			
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2			
A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2			
$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	8			
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2	$O_{8}^{+}(2)$	$\left.2^{9} \cdot 3^{4} \cdot 5 \cdot 7\right)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$
$L_{3}(5)$	$2^{5} \cdot 3 \cdot 5 \cdot 31$	6			
$L_{2}\left(5^{3}\right)$	$2^{5} \cdot 3 \cdot 5^{3} \cdot 31$	2			
$G_{2}(5)$	$2^{6} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 31$	2			
$L_{5}(2)$	$2^{10} \cdot 3^{2} \cdot 7 \cdot 31$	6			
$L_{6} \cdot 5 \cdot 7 \cdot 31$	1				
$L_{6}(2)$	$2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31$	2			

$\{31\} \subseteq \pi(P)$
By Table I, \mid Out $(P) \mid$ is a number of the form $2^{\alpha} \cdot 3^{\beta}$, therefore, if $G / N=P \cdot S$ where $S \leqslant \operatorname{Out}(P)$, then $|P|_{p}=|G / N|_{p} /|S|_{p}$ for all $p \in \pi(G)$, where n_{p} denotes the p-part of the integer $n \in N$. Hence, $|N|_{p}=\frac{|G|_{p}}{|P|_{p} .|S|_{p}}$, from which the claim follows because $\pi(N) \subseteq\{2,3,5,7\}$.

Therefore only the following possibilities arise for $P: L_{2}(31), L_{5}(2), L_{6}(2), L_{3}(5)$, $L_{2}\left(5^{3}\right)$ and $G_{2}(5)$.
$P \cong G_{2}(5)$
By [4], we have $\mu\left(L_{5}(2)\right)=\{8,12,14,15,21,31\}$ and $\mu\left(L_{6}(2)\right)=$ $\{8,12,28,30,31,63\}$. Therefore, if $P \cong L_{5}(2)$ or $L_{6}(2)$, then, we have $2 \sim 7$ in $\Gamma(G)$, is a contradiction.

By [10], we have $\mu\left(L_{2}\left(5^{3}\right)\right)=\{5,62,63\}$. Therefore, if $P \cong L_{2}\left(5^{3}\right)$, then, we have $2 \sim 31$ in $\Gamma(G)$, a contradiction.

By [1], we have $\mu\left(L_{2}(31)\right)=\{15,16,31\}$. Therefore, if $P \cong L_{2}(31)$, then, $7 \in$ $\pi(N)$. By Lemma 2.7, P has a Frobenius subgroup $31: 15$, then, by Lemma 2.6, G has an element of order $5 \cdot 7$, a contradiction.

By [1], we have $\mu\left(L_{3}(5)\right)=\{20,24,31\}$. Therefore, if $P \cong L_{3}(5)$, then, $7 \in \pi(N)$. By Lemma 2.7, P has a Frobenius subgroup $25: 24$, then, by Lemma 2.6, G has an element of order $2 \cdot 7$, a contradiction. Therefore $P \cong G_{2}(5)$.
$G / N \cong G_{2}(5)$
So far we proved that $P \leqslant G / N \leqslant A u t(P)$ where $P \cong G_{2}(5)$. But $\operatorname{Aut}\left(G_{2}(5)\right)=$ $G_{2}(5)$, therefore, $G / N \cong G_{2}(5)$. $\pi(N) \subseteq\{2,3,5\}$
We Know that N is a nilpotent normal $\{2,3,5,7\}$-subgroup of G. Regarding Figure 1 we obtain:
If $2,5| | N \mid$, then $\pi(N) \subseteq\{2,3,5\}$
If $3||N|$, then $\pi(N) \subseteq\{2,3,5,7\}$
If $7||N|$, then $\pi(N) \subseteq\{3,7\}$
Now we observe that the group $G_{2}(5)$ contains Frobenius subgroup $31: 5$. We may assume N is elementary abelian p-group for $p \in\{2,3,5,7\}$. Now if $7||N|$, then by Lemma $2.6, G$ has an element of order $5 \cdot 7$, a contradiction. Therefore, $\pi(N) \subseteq\{2,3,5\}$.

References

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
[2] M. R. Darafsheh, Order of elements in the groups related to the general linear groups, Finite Fields Appl., 11, 738-747(2005).
[3] M. R. Darafsheh, Pure characterization of the projective special linear groups, Italian Journal of Pure and Applied Mathematics, No.23, 229-244(2008).
[4] M. R. Darafsheh and Y. Farjami, Calculating the set of elements in the finite linear groups, Journal of Discrete Mathematical Sciences, Vol.10, No.5, 637-653(2007).
[5] M. Hagie, The prime graph of a sporadic simple group, Comm.Alg., vol.31, No.9, 4405-4424(2003).
[6] G. Higman, Finite groups in which every element has prime power order, J.Landan Math. Soc., 32, 335-342(1957).
[7] B. Khosravi, Quasirecognition by prime graph of $L_{10}(2)$, Siberian Math.J., Vol.50, No.2, 355359(2009).
[8] Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi, A characterization of the finite simple group $L_{16}(2)$ by its prime graph, Manuscripta Math., 126, 49-58(2008).
[9] A. S. Kondratiev, On prime graph components for finite simple groups, Math.Sb., 180, No.6, 787797(1989).
[10] M. S. Lusido and A.R.Moghaddamfar, Groups with complete prime graph connected components, Journal of Group theory, 31, 373-384(2004).
[11] V. D. Mazurov, M.C.Xu and H.P.Cao, Recognition of finite simple groups $L_{3}\left(2^{m}\right)$ and $U_{3}\left(2^{m}\right)$ by their element orders, Algebra Logika, 39, No.5, 567-585(2000).
[12] V. D. Mazurov, Recognition of finite simple groups $S_{4}(q)$ by their element orders, Algebra and Logic, Vol.41, No.2, 93-110(2002).
[13] V. D. Mazurov and G.Y.Chen, Recognisability of finite simple groups $L_{4}\left(2^{m}\right)$ and $U_{4}\left(2^{m}\right)$ by spectrum, Algebra and Logic, Vol.47, No.1, 49-55(2008).
[14] V. D. Mazurov, Characterization of finite groups by sets of element orders, Algebra and Logic, 36, No.1, 23-32(1997).
[15] D. S. Passman, Permutation groups, W.A.Benjamin Inc., New York, (1968).
[16] W. J. Shi and W.Z.Yang, A new characterization of A_{5} and the finite groups in which every nonidentity element has prime order, J.Southwest China Teachers College(1984), 9-36(in chinese).
[17] A. V. Vasilev, On connection between the structure of a finite group and the properties of its prime graph, Siberian Math.J., 46, No.3, 396-404(2005).
[18] A. V. Vasilev and M.A.Grechkoseeva, On recognition by spectrum of finite simple linear groups over fields of characteristic 2, Siberian Math.J., Vol.46, No.4, 593-600(2005).
[19] J. S. Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487-513(1981).
[20] A. V. Zavarnitsine, Recognition of finite groups by the prime graph, Algebra and Logic, Vol.45, No.4,(2006).
[21] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, arXiv: 0810.0568v1(2008).

[^0]: *Corresponding author. Email: P.Nosratpour@ilam-iau.ac.ir

