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Abstract. In this paper, we represent an inexact inverse subspace iteration method for com-
puting a few eigenpairs of the generalized eigenvalue problem Ax = λBx[Q. Ye and P. Zhang,
Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and
its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the
inverse subspace iteration is preserved.
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1. Introduction

We want to compute a few eigenpairs of the generalized eigenvalue problem Ax =
λBx. (1) The eigenvalues sought may be those in the extreme part of the spectrum
or in the interior of the spectrum near certain given point. These types of problems
arise in many engineering and scientific applications. In such applications, the
matrices involved are often large and sparse. A brief description of some developed
method is given in
[2] . If the extreme eigenvalues are not well-separated or if the eigenvalues sought

are in the interior of the spectrum, a shift-and invert (or inverse) transformation
is combined with one of the eigenproblem solvers to speed up the convergence.
The use of the shift-and-invert transformation requires solving a linear system at
each iterative step. Solving the linear systems by a direct method such as the QR
factorization can be impractical or expensive if the dimension of the matrices is
large or the matrices are not explicitly available. Alternatively, iterative method
can be employed, which will be called the inner iteration while the original iter-
ative algorithm will be called the outer iteration. The inner iteration produces, a
situation that may arise in other applications as well. The question then is how the
accuracy in the inner iterations affects the convergence behavior (or convergence
speed) of the outer iteration as compared with the exact case. Related to this, a
challenging problem in implementations is how to efficiently choose an appropriate
stopping threshold for the inner iteration so that the convergence characteristic of
the outer iteration can be preserved. This is a problem that has been discussed
for several methods, such as inexact Krylov subspace method [6, 10, 17] inexact
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inverse iteration, [1, 4, 8, 12, 13], the rational Arnoldi algorithm [9, 11, 16], inex-
act Rayleigh Quotient-Type methods [3, 7, 14] and the Jacobi-Davidson method
[15]. While these works demonstrate that the innerouter iteration technique may
be an effective way for implementing some of these methods for solving the large
scale eigenvalue problem, the more efficient Krylov subspace projection methods
tend to require quite accurate matrix-vector products to preserve their convergence
characteristic.

2. Inexact inverse subspace iteration

We consider computing the p smallest eigenvalues of the generalized eigenvalue
problem Ax = λBx by applying the standard subspace iteration to A−1B, called
inverse subspace iteration. we state the standard algorithm as follows.
Algorithm 1 . Inverse subspace iteration for Ax = λBx

(1) Input: X0 ∈ Cn×p with X∗
0X0 = I;

(2) For k = 0, 1, · · · until convergence
(3) Yk+1 = A−1BXk;
(4) Yk+1 = Xk+1Rk+1 (QR-factorization).
(5) End.

We try to use this algorithm when a problems where direct solution of A−1 is
impractical or inefficient because A is too large or is not explicitly available. In these
cases, an iterative method can be used to solve the linear systems AYk+1 = BXk,
called the inner iterations, while the subspace iteration itself is called the outer
iteration. At each step of outer iteration, to solve Yk+1 for AYk+1 = BXk, the
previous iterate Yk can be used as an initial approximation. Then we solve

ADk = BXk −AYk (1)

approximately, i.e. in this case we find Dk such that

∥ Ek ∥2=∥ (BXk −AYk)−ADk ∥2< ϵk, (2)

where Ek := (BXk − AYk) − ADk and k is some given threshold. From Dk, then
Yk+1 = Yk +Dk.
Now we try to analyze the convergence characteristic of the subspace iteration

under inexact solves.
Obviously, the amount of work required to solve (2) is proportional to ∥ BXk −

AYk ∥ /ϵk. Our analysis later leads to the use of linearly decreasing k, let ϵk = ark

for some positive a and r < 1. However, ϵk is decreasing, the amount of work does
not increase as BXk − AYk will be decreasing at the same rate as well. Thus, the
stopping threshold required for inner iterations is effectively a constant.
Algorithm 2. Inexact inverse subspace iteration for Ax = Bx

(1) Input: X0 ∈ Cn×p with X∗
0X0 = I; threshold parameter ϵk; set Y0 = 0;

(2) For k = 0, 1, ... until convergence
(3) Zk = BXk −AYk;
(4) Solve ADk = Zk such that Ek = Zk −ADk satisfies (3);
(5) Yk+1 = Yk +Dk;
(6) Yk+1 = X̄k+1R̄k+1 (QR-factorization);
(7) For j = 1, ..., p
(8) [ymax, imax] = max(|X̄k+1(:, j)|);
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(9) Xk+1(:, j) = sign(X̄k+1(imax, j)) ∗Xk+1(:, j);
(10) Rk+1(j, :) = sign(X̄k+1(imax, j)) ∗Rk+1(j, :).
(11) End.
(12) End.

For more details please refer to [4]

3. Convergence analysis

We discuss convergence of the subspace spanned by Xk for the inexact inverse
subspace algorithm. Let λ1, λ2, · · · , λn be the eigenvalues of B−1A ordered such
that

0 <| λ1 |⩽ · · · ⩽| λp |<| λp+1 |⩽ · · · ⩽| λq |<| λq+1 |⩽ · · · | λn |

and v1, ..., vn be the corresponding eigenvectors. Suppose that we want to compute
the p smallest eigenpairs in absolute value, i.e.,λ1, λ2, · · · , λp, λp+1, · · · , λq .We are
following eigenvalues of p+1 to q(with assumption ordered ) so we have made the
assumptions that ρ :=| λp | / | λp+1 |< 1, ρ́ :=| λq | / | λq+1 |< 1.
Throughout this work, we assume that B−1A is diagonalizable. Let V =

[v1, ..., vn], U = (BV )−H ,then

UHA = ΛUHB, AV = BV Λ where Λ =

Λ1 0 0
0 Λ2 0
0 0 Λ3


Λ1 =

λ1 · · · 0
...

. . .
...

0 · · · λp

 , Λ2 =

λp+1 · · · 0
...

. . .
...

0 · · · λq

 , Λ1 =

λq+1 · · · 0
...

. . .
...

0 · · · λn


let U = (U1, U2, U3), V = (V1, V2, V3), where U1 ∈ n×p, U2 ∈ n×(p+q), U3 ∈

n×(n−(p+q), V1 ∈ n×p, V2 ∈ n×(p+q) V3 ∈ n×(n−(p+q), then UH
i A = ΛiU

H
i B, AVi =

BViΛi, Consider Algorithm 2 now. Define X
(i)
k = UH

i BXk. Since UH
i BVj = δijI

and UH
i AVj = δijΛi where δij is the Kronecker symbol, then

Xk =

3∑
i=1

ViX
(i)
k

If X
(1)
k is invertible, we define tk :=∥ X

(2)
k (X

(1)
k )−1 ∥2 and tk′ :=∥ X

(3)
k (X

(1)
k )−1 ∥2

Clearly, tk and tk′ is a measures of the approximation of the column space of Xk

to the column space of V1. Indeed, the following proposition relates tk and tk′ to
other measures of subspace approximation.

Proposition 3.1 Assume that X
(1)
k is invertible and tk and tk′ is defined as above.

Then (
tk
tk′

)
∥ V −1 ∥2

⩽∥ Xk(X
(1)
k )−1 − V1 ∥2⩽∥ V ∥2 (tk + tk′) (3)

and

sin∠(χk, ν1) ⩽∥ V ∥2∥ R−1 ∥2 (tk + tk′)
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where ∠(Xk, V1) is the largest canonical angle between Xk = R(Xk) and V1 =
R(V1), and R is defined by the QR-factorization V1 = WR of V1.

Proof From Xk = V1X
(1)
k + V2X

(2)
k + V3X

(3) , we have

Xk(X
(1)
k )−1 = V1 + V2X

(2)
k (X

(1)
k )−1 + V2X

(3)
k (X

(1)
k )−1

∥ Xk(X
(1)
k )−1 − V1 ∥2=∥ V2X

(2)
k (X

(1)
k )−1 + V3X

(3)
k (X

(1)
k )−1 ∥2

⩽∥ V2 ∥2∥ X
(2)
k (X

(1)
k )−1+ ∥ V3 ∥2∥ X

(3)
k (X

(1)
k )−1 ∥2⩽∥ V2 ∥2 (tk + tk′)

and

∥ V2X
(2)
k (X

(1)
k )−1 + V3X

(3)
k (X

(1)
k )−1 ∥2 =∥ V

(
X

(2)
k (X

(1)
k )−1

X
(3)
k (X

(1)
k )−1

)
∥2⩾

(
tk
tk′

)
∥ V −1 ∥2

(4) is proved.
Let X⊥

k be such that (Xk, X
⊥
k ) is an n× n orthogonal matrix. Then the sine of

the largest canonical angle between χk = R(Xk)and ν1 = R(V1) is (see [5] for the
definition)

sin∠(χk, ν1) = ∥ (X⊥
k )Hw ∥2

= ∥ (X⊥
k )H(w −Xk(X

(1)
k )−1R−1) ∥2

= ∥ (X⊥
k )H(V2X

(2)
k (X

(1)
k )−1R−1 + V3X

(3)
k (X

(1)
k )−1R−1) ∥2

⩽ ∥ V ∥2∥ R−1 ∥2 (tk + tk′).

■

It is clear that tk and tk′ are measures of the approximation of the column space
of Xk. We shall next discuss the convergence of tk and tk′ .

Lemma 3.2 For Algorithm 2 ∥ Ek ∥2<∥ B−1 ∥−1
2 then Yk+1 has full column rank.

Proof From the algorithm, we have AYk+1 = BXk + Ek. Therefore

XH
k B−1AYk+1 = I +XH

k B−1Ek

Since

∥ XH
k ∥2= 1

∥ XH
k B−1Ek ∥2⩽∥ B−1 ∥2∥ Ek ∥2< 1

XH
k B−1AYk+1 is invertible. Thus Yk+1 has full column rank. ■

From now on, we shall assume that ϵk ⩽∥ B−1 ∥−1
2 , so that all Yk will have full

column rank and Algorithm 2 will be well defined.
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Lemma 3.3 For Algorithm 2, if Xk is invertible, then

∥ (X
(1)
k )−1 ∥2⩽∥ V ∥2 (1 + tk + tk′)

Proof Proof. Since Xk has orthonormal columns, we have

Xk = V1X
(1)
k + V2X

(2)
k + V3X

(3)
k

from which it follows that (X
(1)
k )−1

Xk(X
(1)
k )−1 = V1 + V2X

(2)
k (X

(1)
k )−1 + V3X

(3)
k (X

(1)
k )−1

since Xk have orthonormal columns, we have from property of orthonormal matrix
(if Q is a orthonormal matrix then for every x we have ∥ Qx ∥2=∥ x ∥2 ) let

∥ (X
(1)
k )−1 ∥2=∥ Xk(X

(1)
k )−1 ∥2

we have the following

∥ (X
(1)
k )−1 ∥2=∥ V1+V2Xk(X

(1)
k )−1+V3X

(3)
k (X

(1)
k )−1 ∥2⩽∥ V1 ∥2 +tk ∥ V2 ∥2 +tk′ ∥ V3 ∥2

⩽ (1 + tk + tk′) ∥ V ∥2

■

Lemma 3.4
Let rho =| λp | / | λp+1 |< 1 and assume that X

(1)
k and X

(1)
k+1 are nonsingular. If

∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk < 1, then

tk+1 ⩽ ρ(tk + tk′) +
ρ ∥ V ∥2∥ U ∥2 (1 + tk + tk′)2ϵk
1− ∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk

Proof From the algorithm we know that AYk+1 = BXk + Ek and Yk+1 =
Xk+1Rk+1. Since Yk+1 has full column rank, Rk+1 is invertible. Then

AXk+1Rk+1R
(−1)
k+1 = BXkR

(−1)
k+1 + EkR

(−1)
k+1

Multiplying UH
i on the equation above, we have{

X
(i)
k = UH

i BXk

UH
i A = ∆iU

H
i B

UH
i AXk+1 = UH

i BXkR
(−1)
k+1 + UH

i EkR
(−1)
k+1

ΛiU
H
i BXk+1 = X

(i)
k R

(−1)
k+1 + UH

i EiR
(−1)
k+1
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where

UH
i BXk+1 = Λ

(−1)
i X

(i)
k R

(−1)
k+1 + Λ

(−1)
i UH

i EkR
(−1)
k+1

X
(i)
k+1 = Λ

(−1)
i X

(i)
k R

(−1)
k+1 + Λ

(−1)
i ∆

(i)
k (4)

∆
(i)
k = UH

i EkR
(−1)
k+1 . let i = 2

X
(2)
k+1 = Λ

(−1)
2 X

(2)
k R

(−1)
k+1 + Λ

(−1)
2 ∆

(2)
k

X
(2)
k+1(X

(1)
k+1)

(−1) = (Λ
(−1)
2 X

(2)
k R

(−1)
k+1 + Λ

(−1)
2 ∆

(2)
k )(Xk+1)

(−1)

= (Λ
(−1)
2 X

(2)
k R

(−1)
k+1 )(Xk+1)

(−1) + Λ
(−1)
2 ∆

(2)
k (Xk+1)

(−1)

= Λ
(−1)
2 X

(2)
k (X

(1)
k )(−1)Λ1)(((Xk)

(1))Λ1)
−1R

(−1)
k+1 (Xk+1)

(−1)

+ Λ
(−1)
2 ∆

(2)
k (Xk+1)

(−1)

= Λ
(−1)
2 X

(2)
k (X

(1)
k )(−1)Λ1)Λ

−1
1 ((Xk)

(1))−1R
(−1)
k+1 (Xk+1)

(−1)

+ Λ
(−1)
2 ∆

(2)
k (Xk+1)

(−1)

and now in the (4) let i = 1

X
(1)
k+1 = Λ

(−1)
1 X

(1)
k R

(−1)
k+1 + Λ

(−1)
1 ∆

(1)
k (5)

Λ
(−1)
1 X

(1)
k R

(−1)
k+1 = X

(1)
k+1 − Λ

(−1)
1 ∆

(1)
k
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X
(2)
k+1(X

(1)
k+1)

(−1) = Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)Λ1(X
(1)
k+1 − Λ

(−1)
1 ∆

(1)
k )(Xk+1)

(−1)

+ Λ
(−1)
2 ∆

(2)
k (Xk+1)

(−1)

= Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)Λ1X
(1)
k+1(Xk+1)

(−1)

− Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)Λ1Λ
(−1)
1 ∆

(1)
k (Xk+1)

(−1) + Λ
(−1)
2 ∆

(2)
k (Xk+1)

(−1)

= Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)Λ1 − Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)∆
(1)
k )(Xk+1)

(−1)

+ Λ
(−1)
2 ∆

(2)
k (Xk+1)

(−1)

= Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)Λ1

− (Xk+1)
(−1)(Λ

(−1)
2 X

(2)
k ((Xk)

(1))(−1)∆
(1)
k − Λ

(−1)
2 ∆

(2)
k )

and now let in the (5)

= Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)Λ1 − (Λ
(−1)
2 X

(2)
k ((Xk)

(1))(−1)∆
(1)
k

− Λ
(−1)
2 ∆

(2)
k )(Λ

(−1)
1 X

(1)
k R

(−1)
k+1 + Λ

(−1)
1 ∆

(1)
k )−1

since ∆
(i)
k = UH

i EkR
(−1)
k+1 and

(X
(1)
k+1)

−1 = (Λ
(−1)
1 X

(1)
k R

(−1)
k+1 + Λ

(−1)
1 ∆

(1)
k )−1 = (Λ

(−1)
1 (X

(1)
k R

(−1)
k+1 +∆

(1)
k ))−1

= (X
(1)
k R

(−1)
k+1 (I +∆

(1)
k Rk+1(X

(1)
k )−1)−1Λ1

= Rk+1(X
(1)
k )−1(I +∆

(1)
k Rk+1(X

(1)
k )−1)−1Λ1

Then we further simplify the expression X
(2)
k+1(X

(1)
k+1)

−1 to
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X
(2)
k+1(X

(1)
k+1)

−1 = Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1

− Λ−1
2 X

(2)
k (X

(1)
k )−1∆

(1)
k (X

(1)
k+1)

−1 + Λ−1
2 ∆

(2)
k (X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1 − Λ−1

2 X
(2)
k (X

(1)
k )−1UH

1 EkR
−1
k+1(X

(1)
k+1)

−1

+ Λ−1
2 UH

2 EkR
−1
k+1(X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1 − (Λ−1

2 X
(2)
k (X

(1)
k )−1UH

1 − Λ−1
2 UH

2 )EkR
−1
k+1(X

(1)
k+1)

−1

(X
(1)
k+1)

−1 = (Λ−1
1 X

(1)
k R−1

k+1 + Λ−1
1 ∆

(1)
k )−1 = (Λ−1

1 X
(1)
k R−1

k+1 + Λ−1
1 UH

1 EkR
−1
k+1)

−1

= (Λ−1
1 (X

(1)
k )R−1

k+1)
−1(I + UH

1 Ek(X
(1)
k )−1)−1

= Rk+1(X
(1)
k )−1(I + UH

1 Ek(X
(1)
k )−1)−1Λ1

X
(2)
k+1(X

(1)
k+1)

(−1) = Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1

− (Λ−1
2 X

(2)
k (X

(1)
k )−1UH

1 − Λ−1
2 UH

2 )Ek(X
(1)
k )−1(I + UH

1 Ek(X
(1)
k )−1)−1Λ1

Taking 2-norm of the above equation at both sides and using the condition

∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk < 1, (6)

we obtain the following upper bound of tk+1:

∥ X
(2)
k+1(X

(1)
k+1)

(−1) ∥ ⩽ ∥ Λ−1
2 ∥2∥ X

(2)
k (X

(1)
k )−1 ∥2∥ Λ1 ∥2

− (∥ Λ−1
2 ∥2∥ X

(2)
k (X

(1)
k )−1 ∥2∥ UH

1 ∥2

− ∥ Λ−1
2 ∥2∥ UH

2 ∥2) ∥ Ek ∥2∥ (X
(1)
k )−1 ∥2∥ (I + UH

1 Ek(X
(1)
k )−1)−1 ∥2∥ Λ1 ∥2

= ∥ Λ−1
2 ∥2∥ Λ1 ∥2 tk

+ (∥ Λ−1
2 ∥2 tk ∥ UH

1 ∥2

+ ∥ Λ−1
2 ∥2∥ UH

2 ∥2) ∥ Ek ∥2∥ (X
(1)
k )−1 ∥2∥ (I + UH

1 Ek(X
(1)
k )−1)−1 ∥2∥ Λ1 ∥2
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X
(3)
k+1(X

(1)
k+1)

(−1) = ∥ Λ−1
2 ∥2∥ Λ1 ∥2 tk′

+ (∥ Λ−1
2 ∥2 tk′ ∥ UH

1 ∥2

+ ∥ Λ−1
2 ∥2∥ UH

2 ∥2) ∥ Ek ∥2∥ (X
(1)
k )−1 ∥2∥ (I + UH

1 Ek(X
(1)
k )−1)−1 ∥2∥ Λ1 ∥2

tk+1 ⩽ ρ(tk + tk′) + ((∥ Λ−1
2 ∥2 tk+ ∥ Λ−1

2 ∥2 + ∥ Λ−1
2 ∥2 tk′+ ∥ Λ−1

2 ∥2)

× ∥ U ∥2∥ Ek ∥2∥ (X
(1)
k )−1 ∥2∥ Λ1 ∥2∥ (I + UH

1 Ek(X
(1)
k )−1)−1 ∥2

⩽ ρ(tk + tk′) + (1 + tk + tk′) ∥ Λ−1
1 ∥2

∥ U ∥2∥ Ek ∥2∥ (X
(1)
k )−1 ∥2∥ Λ1 ∥2

1− ∥ Ek ∥2∥ (X
(1)
k )−1 ∥2∥ U ∥2

Using lemma (3.3), we know that X
(1)
k ⩽∥ v ∥2 (1 + tk + tk′). From this and (3) ,

the final bound for tk+1 is derived. ■

Lemma 3.5
Assume that X0 is such that X

(1)
0 is invertible. If

ϵk ⩽ ϵ :=
(1− ρ)2t0

∥ V ∥2∥ U ∥2 (1 + 2t0)(ρ+ 2t0)

for all k, then tk ⩽ t0.

Proof We prove tk ⩽ t0 , tk′ ⩽ t0 by induction. Supposing X
(1)
k is nonsingular and

tk ⩽ t0 , tk′ ⩽ t0 is true for some k, k′, we show that X
(1)
k+1 is nonsingular and

tk+1 ⩽ 2t0. First note that from ϵk ⩽ ϵ, we have

∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk ⩽∥ V ∥2∥ U ∥2 (1 + t0 + tk′)ϵ =
(1 + ρ)2t0
ρ+ 2t0

< 1

We discuss in two cases:

• Case I

X
(1)
k+1 is nonsingular. Then by lemma (3.4), we have

tk+1 ⩽ ρ(tk + tk′) +
ρ ∥ V ∥2∥ U ∥2 (1 + tk + tk′)2ϵk
1− ∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk

⩽ ρ2t0 +
ρ ∥ V ∥2∥ U ∥2 (1 + 2t0)

2ϵ

1− ∥ V ∥2∥ U ∥2 (1 + 2t0)ϵ

⩽ ρ2t0 +
ρ(1 + 2t0)

(1−ρ)2t0
ρ+2t0

1− (1−ρ)2t0
ρ+2t0

⩽ ρ2t0 +

ρ(1+2t0)(1−ρ)2t0
ρ+2t0

ρ+2t0−2t0+ρ2t0
ρ+2t0

⩽ ρ2t0 +
ρ(1 + 2t0)(1− ρ)2t0

ρ(1 + 2t0)
= 2t0,
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• Case II

X
(1)
k+1 is singular. Then let

ỹk+1 = yk+1 + δV1Rk+1 + µV2

(
1
0

)
Rk+1 + θV3

(
0
1

)
Rk+1

where Yk+1 = Xk+1Rk+1 and δ,µ > 0 are two parameters. Then we have

A ˜yk+1 = Ayk+1 + δAV1Rk+1 + µAV2

(
1
0

)
Rk+1 + θV3

(
0
1

)
Rk+1

A ˜yk+1 = BXk + Ek + δAV1Rk+1 + µAV2

(
1
0

)
Rk+1 + θV3

(
0
1

)
Rk+1

Ek + δAV1Rk+1 + µAV2

(
1
0

)
Rk+1 + θV3

(
0
1

)
Rk+1 = Ẽk

A ˜yk+1 = BXk + Ẽk

Since ∥ Ek ∥2⩽ ϵk, we have ∥ Ẽk ∥2⩽ ϵk for sufficiently small δ and µ. Let Ỹk+1 =

X̃k+1R̃k+1 be the QR-factorization and let X̃k+1 = V1X̃
(1)
(k+1) + V2X̃

(2)
k+1 + V3X̃

(3)
k+1.

Then X̃k+1 satisfies the same condition that Xk+1 does and the bound on tk+1

applies to t̃k+1 :=∥ X̃
(2)
k+1(X̃

(1)
k+1)

−1 ∥2 as well. It follows from

Ỹk+1 = V1X
(1)
k+1R̃k+1 + V2X̃

(2)
k+1R̃k+1 + V3X̃

(3)
k+1R̃k+1 (7)

Ỹk+1 = Yk+1 + δV1Rk+1 + µV2

(
1
0

)
Rk+1 + θV3Rk+1

(
0
1

)
= (Yk+1R

−1
k+1 + δV1 + µV2

(
1
0

)
+ θV3

(
0
1

)
)Rk+1

= (V1X
(1)
k+1 + V2X

(2)
k+1 + δV1 + µV2

(
1
0

)
+ θV3

(
0
1

)
)Rk+1

= [V1(X
(1)
k+1 + δI) + V2(X

(2)
k+1 + µ

(
1
0

)
) + V3(X

(3)
k+1 + θ

(
0
1

)
))]Rk+1 (8)

now let this relation (7) is equal to (8) that

X
(1)
k+1 = (X

(1)
k+1 + δI)Rk+1R̃

(−1)
k+1

X
(2)
k+1 = (X

(2)
k+1 + µ

(
1
0

)
)Rk+1R̃

(−1)
k+1 X

(3)
k+1 = (X

(3)
k+1 + θ

(
0
1

)
)Rk+1R̃

(−1)
k+1

So X
(1)
k+1 is nonsingular for sufficiently small δ > 0. Then, by case I, we have

t̃k+1 =∥ X̃
(2)
k+1(X̃

(1)
k+1)

(−1) ∥2⩽ t0
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t̃k+1 =∥ X̃
(3)
k+1(X̃

(1)
k+1)

(−1) ∥2⩽ t0

for all sufficiently small δ > 0 and µ ⩽ 0 and θ ⩽ 0. However

X̃
(2)
k+1(X̃

(1)
k+1)

(−1) = (X
(2)
k+1 + µ

(
1
0

)
)Rk+1R̃

(−1)
k+1 (X

(1)
k+1 + δI)(−1)R̃k+1R

(−1)
k+1

= (X
(2)
k+1 + µ

(
1
0

)
)(X

(1)
k+1 + δI)(−1)

= X
(2)
k+1(X

(1)
k+1 + δI)(−1) + µ

(
1
0

)
((X

(1)
k+1 + δI)(−1))

is unbounded as δ → 0, because if X
(2)
k+1(X

(1)
k+1 + δI)−1 is unbounded, then t̃k+1 is

unbounded by setting µ = 0; and if X
(2)
k+1(X

(1)
k+1 + δI)−1 is bounded, then t̃k+1 is

unbounded by setting µ > 0. Therefore X
(1)
k+1 is nonsingular and hence tk+1 ⩽ 2t0

X̃
(3)
k+1(X̃

(1)
k+1)

(−1) = (X
(3)
k+1 + θ

(
1
0

)
)Rk+1R̃

(−1)
k+1 (X

(1)
k+1 + δI)(−1)R̃k+1R

(−1)
k+1

= (X
(3)
k+1 + θ

(
0
1

)
)(X

(1)
k+1 + δI)(−1)

= X
(3)
k+1(X

(1)
k+1 + δI)(−1) + θ

(
0
1

)
((X

(1)
k+1 + δI)(−1))

is unbounded as δ → 0, because if X
(3)
k+1(X

(1)
k+1 + δI)−1 is unbounded, then t̃k+1 is

unbounded by setting θ = 0; and if X
(3)
k+1(X

(1)
k+1 + δI)−1 is bounded, then t̃k+1 is

unbounded by setting θ > 0. Therefore X
(1)
k+1 is nonsingular and hence tk+1 ⩽ 2t0

proof is completed. ■

We now prove our main result on convergence of tk and tk′ . We are interested in
the case that ϵk is a linearly decreasing sequence.

Theorem 3.6 Assume that X0 is such that X−1
0 is invertible. Let ϵk = aγk with

γ < 1 and

a ⩽ (1− ρ)2t0
∥ V ∥2∥ U ∥2 (1 + 2t0)(ρ+ 2t0)

Then we have

tk ⩽
{
2ρkt0 + acγ

k−ρk

γ−ρ γ ̸= ρ

2ρkt0 + ackρk−1 γ = ρ

where

c =∥ V ∥2∥ U ∥2 (1 + 2t0)(ρ+ 2t0)

Proof Since

ϵk ⩽ (1− ρ)2t0
∥ V ∥2∥ U ∥2 (1 + 2t0)(ρ+ 2t0)



102 M. Amirfakhrian and F. Mohammad/ JLTA, 01 - 02 (2012) 91-104.

we have tk ⩽ t0 by Lemma (3.5). Then,

ϵk ⩽ (1− ρ)2t0
∥ V ∥2∥ U ∥2 (1 + 2t0)(ρ+ 2t0)

so we have tk ⩽ t0

∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk ⩽∥ V ∥2∥ U ∥2 (1 + 2t0)ϵ ⩽ (1−ρ)2t0
(ρ+2t0)

< 1

It follows from Lemma (3.4) that tk+1 ⩽ ρ(tk + tk′) + ckϵk

tk+1 ⩽ ρ(tk + tk′) +
ρ ∥ V ∥2∥ U ∥2 (1 + tk + tk′)2ϵk
1− ∥ V ∥2∥ U ∥2 (1 + tk + tk′)ϵk

tk+1 ⩽ ρ(tk + tk′) + ackγ
k

tk ⩽ ρ(tk + tk′) + ack−1γ
k−1

...

tk ⩽ ρk2t0 + ac
γk − ρk

γ − ρ

now if ρ = γ we have tk ⩽ ρk2t0 + ackρk−1.

tk+1 ⩽ ρ(tk + tk′) + ckϵk

ck =
ρ ∥ V ∥2∥ U ∥2 (tk + tḱ)

2

1− ∥ V ∥2∥ U ∥2 (tk + tk′)ϵk
⩽ ρ ∥ V ∥2∥ U ∥2 (1 + 2t0)

2

1− (1−ρ)2t0
(ρ+2t0)

⩽ ρ ∥ V ∥2∥ U ∥2 (1 + 2t0)
2

ρ+t0−t0+ρt0
(ρ+2t0)

⩽ ρ ∥ V ∥2∥ U ∥2 (1 + 2t0)
2(ρ+ 2t0)

ρ(1 + 2t0)2

⩽ ∥ V ∥2∥ U ∥2 (1 + 2t0)(ρ+ 2t0) = c

Therefore, tk+1 ⩽ ρ(tk + tk′) + acγk. Solving this inequality, we obtain the bound
for tk ■

The conclusion of the above theorem is that the subspace spanned by Xk, R(Xk),
converges to the spectral subspace R(V1) linearly at the rate of max{ρ, γ}. The
condition on a is to ensure convergence and is clearly not a necessary condition.
An interesting fact is that there is no gain in convergence rate if we choose γ < ρ,
some shall focus on the case γ > ρ. The following corollary gives a more precise
bound for the constant C and hence for tk and tk′ at the convergence stage.

Corollary 3.7
Let 1 > γ > ρ and ϵk = ak. Suppose that a is chosen such that tk −→ 0 and
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tk′ −→ 0. Then

lim sup
tk
aγk

⩽ ρ(γ − ρ)−1 ∥ V ∥2∥ U ∥2

and

lim sup
tk′

0

aγk
⩽ ρ(γ − ρ)−1 ∥ V ∥2∥ U ∥2

Proof Apply the main theorem to tk starting from k = k0, we have

tk ⩽ 2ρk−k0tk0
+

γk−k0 − ρk−k0

γ − ρ
aγk0ck0

where

ck0
=

ρ ∥ V ∥2∥ U ∥2 (1 + tk0
+ tk′

0
)2

1− ρ ∥ V ∥2∥ U ∥2 (1 + tk0
+ tk′

0
)ϵk0

ck0
=

ρ ∥ V ∥2∥ U ∥2 (1 + tk0
+ tk′

0
)2

1− ρ ∥ V ∥2∥ U ∥2 (1 + tk0
+ tk′

0
)ϵk0

∼ ρ ∥ V ∥2∥ U ∥2

∥ V ∥2∥ U ∥2 (1 + 2tk0
)(ρ+ 2tk0

) ⩽ 2(1− ρk0
)tk0

ϵk0

Dividing aγk and taking k −→ ∞ first and then k0 −→ ∞ in the inequality, we
obtain the bound.

tk
aγk ⩽ ρk−k0 tk0

aγk + γk−k0−ρk−k0

(γ−ρ)aγk−k0
aγk0ck0

tk
aγk ⩽ ρk−k0 tk0

aγk + γk−k0−ρk−k0

(γ−ρ) γ−(k−k0)ck0

and so ρ < γ < 1

lim
k→∞

(
ρ

γ
)k(

ρ−k0tk0

a
) = 0

and

lim
k→∞

(
ρ

γ
)(
ρ−k0tk0

a
) + lim

k→∞

γk−k0(1− ( ργ )
k−k0)

(γ − ρ)
γ−(k−k0)ck0

and

= 0 + lim
k→∞

1− 0

γ − ρ
(ρ ∥ V ∥2∥ U ∥2) = ρ(γ − ρ)−1 ∥ V ∥2∥ U ∥2

lim sup
tk
aγk

⩽ ρ(γ − ρ)−1 ∥ V ∥2∥ U ∥2
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Apply the main theorem to tk′
0
starting from k′ = k0, we have

lim sup
tk′

aγk
⩽ ρ(γ − ρ)−1 ∥ V ∥2∥ U ∥2

■

4. Conclusions

We have presented an inexact inverse subspace iteration for computing a few small-
est eigenpairs of the generalized eigenvalue problem Ax = Bx. By properly scaling
the block vectors, we ensure convergence of columns in the iterative blocks, which
allows using approximation from one step as an initial approximation for the next
step.we analyzed convergence of the subspace to the spectral space sought.
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