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Abstract. In this paper, we represent an inexact inverse subspace iteration method for com-
puting a few eigenpairs of the generalized eigenvalue problem Az = ABz[Q. Ye and P. Zhang,
Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and
its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the
inverse subspace iteration is preserved.
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1. Introduction

We want to compute a few eigenpairs of the generalized eigenvalue problem Az =
ABz. (1) The eigenvalues sought may be those in the extreme part of the spectrum
or in the interior of the spectrum near certain given point. These types of problems
arise in many engineering and scientific applications. In such applications, the
matrices involved are often large and sparse. A brief description of some developed
method is given in

[2] . If the extreme eigenvalues are not well-separated or if the eigenvalues sought
are in the interior of the spectrum, a shift-and invert (or inverse) transformation
is combined with one of the eigenproblem solvers to speed up the convergence.
The use of the shift-and-invert transformation requires solving a linear system at
each iterative step. Solving the linear systems by a direct method such as the QR
factorization can be impractical or expensive if the dimension of the matrices is
large or the matrices are not explicitly available. Alternatively, iterative method
can be employed, which will be called the inner iteration while the original iter-
ative algorithm will be called the outer iteration. The inner iteration produces, a
situation that may arise in other applications as well. The question then is how the
accuracy in the inner iterations affects the convergence behavior (or convergence
speed) of the outer iteration as compared with the exact case. Related to this, a
challenging problem in implementations is how to efficiently choose an appropriate
stopping threshold for the inner iteration so that the convergence characteristic of
the outer iteration can be preserved. This is a problem that has been discussed
for several methods, such as inexact Krylov subspace method [6, 10, 17] inexact
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inverse iteration, [1, 4, 8, 12, 13], the rational Arnoldi algorithm [9, 11, 16], inex-
act Rayleigh Quotient-Type methods [3, 7, 14] and the Jacobi-Davidson method
[15]. While these works demonstrate that the innerouter iteration technique may
be an effective way for implementing some of these methods for solving the large
scale eigenvalue problem, the more efficient Krylov subspace projection methods
tend to require quite accurate matrix-vector products to preserve their convergence
characteristic.

2. Imexact inverse subspace iteration

We consider computing the p smallest eigenvalues of the generalized eigenvalue
problem Az = ABz by applying the standard subspace iteration to A~!'B, called
inverse subspace iteration. we state the standard algorithm as follows.

Algorithm 1 . Inverse subspace iteration for Az = ABx

(1) Input: Xo € C™*P with X§Xo = I,

2) For k=0,1,--- until convergence

) Yip1 = AT BXy;

) Yit1 = Xit1Rit1 (QR-factorization).
) End.

We try to use this algorithm when a problems where direct solution of A~! is
impractical or inefficient because A is too large or is not explicitly available. In these
cases, an iterative method can be used to solve the linear systems AYj;1 = BX,
called the inner iterations, while the subspace iteration itself is called the outer
iteration. At each step of outer iteration, to solve Yj,q for AY;,1 = BXj, the
previous iterate Y; can be used as an initial approximation. Then we solve

ADy = BXj, — AYy (1)
approximately, i.e. in this case we find Dy, such that
| Bk ll2=[l (BX) — AY)) — ADj [[2< e, (2)

where E} := (BXy — AY)) — ADy and k is some given threshold. From Dy, then
Yii1 =Yk + Dy

Now we try to analyze the convergence characteristic of the subspace iteration
under inexact solves.

Obviously, the amount of work required to solve (2) is proportional to || BX}, —
AY} || /e Our analysis later leads to the use of linearly decreasing k, let ¢, = ar®
for some positive a and r < 1. However, ¢ is decreasing, the amount of work does
not increase as BX — AY}, will be decreasing at the same rate as well. Thus, the
stopping threshold required for inner iterations is effectively a constant.

Algorithm 2. Inexact inverse subspace iteration for Ax = Bx

(1) Input: Xp € C™*P with XjXo = I; threshold parameter €; set Yy = 0;
) For k =0,1,... until convergence

) Zy = BX) — AYy;

) Solve ADy = Zj, such that Ey = Z — ADy, satisfies (3);
) Yip1 = Yi + Dy;

) Yir1 = Xgr1Rir1 (QR-factorization);

) Forj=1,...p

) [Ymax, max] = max(| X410 5)|);
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(9) Xk+1(:7j) = Sign({(k—i-l(imaxaj)) * Xk-i-l(:vj);
(10) Riy1(d,:) = sign(Xg41(imax, J)) * Rer1(J, )
(11) End.
(12) End.

For more details please refer to [4]

3. Convergence analysis

We discuss convergence of the subspace spanned by X for the inexact inverse
subspace algorithm. Let A1, Aa,---, A, be the eigenvalues of B~'A ordered such
that

O <[ A< <[ [<[ Apa [S - STAG < A <+ [ An |

and v1, ..., v, be the corresponding eigenvectors. Suppose that we want to compute
the p smallest eigenpairs in absolute value, i.e.,A1, A2, -+, Ap, Apg1,- -+, Ay -We are
following eigenvalues of p + 1 to ¢(with assumption ordered ) so we have made the
assumptions that p:=| A, | / | Apy1 [< 1, 0= N | / | Ag1 [< 1.

Throughout this work, we assume that B~'A is diagonalizable. Let V =
[V1, ...y vn], U = (BV)™H then

Ar O 0O
UHA=AUHB, AV = BVA where A= [ 0 Ay 0
0 0 Az
A - 0 Apt1 -+ 0 Ag+1 - 0
A=| o) he= 0 o=
0 - Ap 0 -+ N 0 - M\

let U = (Uy,Us,Us), V. = (Vi, Vi, V3), where U; € ™P, Uy € ™0+ U ¢
nx(n=(pta) yy € mxp Yy € nXta) vy g nx(n=(pta) then UM A = AU B, AV, =
BV;A;, Consider Algorithm 2 now. Define X]gi) = UiHBXk. Since UiHBVj = 0;51
and UZ-H AV = 6;;\; where 6;; is the Kronecker symbol, then

3
Xp =Y Vixy)
=1

1t X" is invertible, we define #, :=[| X (X1 |l and t =] XP(x V)1 ||,
Clearly, t; and t; is a measures of the approximation of the column space of X}
to the column space of V. Indeed, the following proposition relates t; and ¢ to
other measures of subspace approximation.

)

PROPOSITION 3.1 Assume that X,gl is invertible and t, and ty, is defined as above.

Then

- <IXCG) T Va =V (ke + ) 3)

and

sin Z(xg, 1) <[V [l2ll B 2 (5 + )
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where Z(Xy, V1) is the largest canonical angle between Xj, = R(Xy) and Vi =
R(V1), and R is defined by the QR-factorization Vi = WR of V.

Proof From X;; = ViX\" + 32X + 13X | we have
Xk(X,ff))‘l — Vi + VQX]S,Q)(X]E,D)_I + VQX}E;S)(XJE;U)_I
I Xk (X)) = Vi o= VaX 2 (X)) 4 v x P () |l

<[ Va [l XE X))V floll XX <] Va llz (b + t)

()

V=12

and
(2)(y(1)y-1
2 1)y 3 1)\ — XX
1P )+ X Og)  le = ) v ( o, ’zn)l) 2>
X (X )

(4) is proved.

Let X;- be such that (Xj, X;-) is an n x n orthogonal matrix. Then the sine of
the largest canonical angle between y; = R(Xy)and 1 = R(V}) is (see [5] for the
definition)

sin Z(x, v1) = || (Xi5) 7w ||z
= | (XHH(w - XX TR |
= | (xHTVxP XN TR + X P (XY TIRTY) |

<V N2l B Il (b + ter)-

It is clear that ¢; and t; are measures of the approximation of the column space
of X. We shall next discuss the convergence of t; and tx.

LEMMA 3.2 For Algorithm 2 || Ey, |l2<|| B~ ||3* then Yy has full column rank.
Proof From the algorithm, we have AYy11 = BX}y + Ej. Therefore

XIB'AY, 1 =1+ XAB'E,

Since
I XE" 2= 1
I X B By (o< B™ o] By [l2< 1
XHB71AY} 4 is invertible. Thus Yj41 has full column rank. [ ]

From now on, we shall assume that ¢, <|| B~' |5, so that all Y}, will have full
column rank and Algorithm 2 will be well defined.
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LEMMA 3.3 For Algorithm 2, if X}, is invertible, then
XN Vil (1 4+t + ¢
(XD o< V2 (1t +ti)
Proof Proof. Since X, has orthonormal columns, we have
X, =XV +vx? + v x P

from which it follows that (X ")~

since X}, have orthonormal columns, we have from property of orthonormal matrix
(if @ is a orthonormal matrix then for every x we have || Qz ||2=|| = [|2 ) let

)™ o=l XX 2
we have the following

1 X) ™ Jlo=] Vi+VaXi (X)) T4V X B (XY o<l Vi ll2 4tk 1| Vo ll2 +ta || Va |l2

SA+tp+te) | V2

LEMMA 3.4
Let rho =| Ap | / | Ap41 |[< 1 and assume that Xlil) and Xl£1+)1 are nonsingular. If
|V l2ll U ll2 (14 ti + tp)ex < 1, then

PV ol U fl2 (1 + 1t + twr)er
1= [V ll2l[ U fl2 (1 + th + tr )er

thp1 < p(ty +tpr) +

Proof From the algorithm we know that AY;i1 = BXy + E; and Y1 =
Xgy1Rpy1. Since Yy has full column rank, Ry is invertible. Then

AXp1 R R = BX R + By R
Multiplying U# on the equation above, we have
{ x\) = UM BX,

UHA=ANUIB

UFAXy1 = U BX,RGY + U ByRY

AU BXj = XVRY + U ERY
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where

U BXpyr = ATVXPREY + AT VU EGRLY

i ~1) (9 p(—1 1) A (i
X = AR - AT AY

AV = UHERCY Jet i =2

2 —1) o (2) p(—1 —1) A (2
X =8 VR AU AY

_ -1 2 _
KL KL = 5D REY + A4 i)

= (A5 VX R ()Y 4 AT AR (X)) Y
= AFVXP D) DA (X0 D) A) TR (X )Y
+ Ay VAP ()Y

— ATIXP (XY EDANATH((X) D) REY (X )Y

A ()
and now in the (4) let i =1

1 —1 —1 1
X0, = ACVXOREY 1 A Ap)

1 1 1
ACDXDRED — x ) ADAD
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)0 = AFVXP (X)) DA (Y, — ATVAD) ()Y

2 1
@ (x® o

k+1( k+1
+ ASYAR (X))

= ASVXP (X)) VA XY (X)) Y

— ASTVXP (X)) EVAATYAL (X)) + ATV AP (Xyr) Y
= A5 XD (X)) AL — A5 XD (X)) VAR (X))

+ ASYAP (X))

= ASVXP (X)) DAy

— () AP () )AL - AT AR)
and now let in the (5)

= ATYXP((0) M)A = (A5 XD (X)) D ALY

AT AR A XD R + AT AP)

since Ag) = Ul EkR,(;ll) and

(G = TR - ATTA) T = (A R A

k+1

1 -1 1 1y—1\—
= (VR T+ AR (X)) T

= Rk+1(X;(cl))71(I + AS)RkH(XS))”)”Al

Then we further simplify the expression X ,E,i_)l (X 1221)_1 to
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X(2) (X( ) )—1 —_ A2—1X]g2)(X]il))—1A1

k+1

nglX]E,)( ()) IA()( 153—21) JrA 1A()( 12421)_1
= A Py - AP (x) ol B (X))

_ 1) \—
+A21U EkRk+1( 1g-21) !

— A XM A — (A X (D) O - A U EG R (X))

_ _ 1 1 —
(X = AR AT AN T = (AT X URCE + AT U By Ry L) T
= (AT R M+ U B (x D) !

= Re 1 (X)) HT + UF B(x()) ")) 1A,y

1&?1()(15;421)(_1) = A§1X1§2) (Xlgl))_lAl

- () ol - A U B T+ O B T T
Taking 2-norm of the above equation at both sides and using the condition
[V AU fla (T +t + te)er < 1, (6)

we obtain the following upper bound of ;4 1:
2 1
I X2 XD < AZ fall X2 (XD lal] A 2
— (I AZ Y 2l X2 XY ol UF

_ 1)\ — 1\ —
— 1A 2l UF 1) 1 B [l (X 2l (7 4+ UF Bp(X )™)Y all A [l2

— 11 A5 [fall A ot
+ (I AZY (2t || UF |l2
_ 1)\ — vy —
1A ol U 1l2) | Ex llall (XED) 7 ()l (2 4+ UF ER(XED) ™)1 [lal] Ax [l2
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3 1 _ _
B (xW)ED = | AFY o]l Ay [l e
+ (| AS* N2t 1 U |2
— 1)\ — Dy —1\—
+ 1A ol U 112) | e llall (XE0) U o)l (7 + UF B (X)) D71 1ol Ax |2
tern < plte+ ) + (1 AS 1ot (| AS [z + 1| A5 Y 2t || A5 [l2)

< | U Jlall B ll2ll (X)) Nl At Jloll (7 + UF ER(XE)) 171 |2

LU lloll Ex ll2ll (XS Jlall At
1= || Ex |2l (X)) =1 [l2]| U [l2

<plty+tw) + (L+te + i) | AT |2

Using lemma (3.3), we know that X,gl) <l v |l2 (1 + tg + tgr). From this and (3) ,
the final bound for ;41 is derived. ]

LEMMA 3.5
Assume that Xq is such that X(()l) 1s invertible. If

(1 — p)2to
| V20l U [l2 (1 + 2t0)(p + 2to)

ekée::|

for all k, then ty < tg.
Proof We prove ty, < tg , tgr < to by induction. Supposing X Igl) is nonsingular and

(1)

ty < to, t < to is true for some k, k', we show that Xk+

tr11 < 2tg. First note that from ¢ < €, we have

| is nonsingular and

14 p)2t
H 14 HQH U H? (1 + 1k +tk’)€k g” Vv ||2H U H2 (1 + 1o ‘f‘tky)ﬁ — (p_}—[;)too <1

We discuss in two cases:
o Casel

X ,&_)1 is nonsingular. Then by lemma (3.4), we have
pUV 2l U [l2 (1 +ty + tir) e

tg1 < p(te + ) +
S ) LT L (T 6 o)

pllV 2l U l2 (14 2t9)%e
L=V {2l U [l2 (1 + 2t0)e

< p2to +

p(1 + 2tg) LsL)2t p(1+2t0) (1-p)2to

p+2to _pt2y
ET P2to + —rar, —or, 10t

p+2t p+2tg

< p2to +

(14 2to)(1 — p)2to
p(1+ 2tp)

< p2to+ 2 = 2ty
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o Case II

X ,g _31 is singular. Then let

- 1 0
Uk+1 = Ykt1 + OVIRp1 + pVa <0> Ryy1+6V3 <1> Ry
where Y11 = Xp4+1Ri+1 and d,u > 0 are two parameters. Then we have
- 1 0
Ayii1 = Aypar + 0AVI Ry 1 + pAVs <0> Ry 1 +0V3 <1> Ry 1
Ayiy1 = BXy + Ex + 0AVI Riq1 + pAVa ( > Riy1+60V3 ( ) Ry

Ey + 0AViRpyq + AV ( ) Ryy1 + 0V ( ) Ryi1 = Ej,

Ayyi = BXy, + Ey,

Since || By ||2< €k, we have || Ey, [|2< € for sufficiently small § and . Let Y41 =

Xk+1Rk+1 be the QR-factorization and let Xk+1 VlX((kll) + VgX,ng)1 + Vg,X,ng)1

Then Xk+1 satisfies the same condition that Xj,1 does and the bound on #x4

(2)( (1)

applies to tx 1 :=|| Xk+1 X, /1)t 2 as well. It follows from

Virr = VX Ryt + Vo X2 Ryt + VX Ry (7)

~ 1 0
Yir1 =Yg + ViR + 1V (0> Ryy1 +0V3Ry <1>
1 1 0
= (Yk+1Rk+1 +oVi 4+ Vs <0> +0Vs <1>)Rk+1

1 0
= VX + VaX )+ 6Vi 4 uVa <0> + 0V <1 > )Rict1

1 2 1 3 0
= (X, + 0D +Va(XE) + <0>> +Va(X), +0 <1>>>]Rk+1 (8)
now let this relation (7) is equal to (8) that
1 1 ~(—1
X}£+)1 = (Xngr)l + 5I)Rk+1Rl(c+1)

0 o
Xlgi)l = (Xlgr)1 +u <O>)Rk+lRl(c+l) Xngr)l (X(S)l +0 <1>)Rk+1Rl(c+ll)

So X ,&)1 is nonsingular for sufficiently small § > 0. Then, by case I, we have

frn =) X2 (XN o<t
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T v ® @ (-1
frn =1 X7 (X )Y o< o

for all sufficiently small 6 > 0 and p < 0 and 6 < 0. However
XEL D = 2 R BEY (XL + 00V R RS
:(X,51>1+u<;>><x,ggl+m< D
=X 400D+ () (KL 61 D)

is unbounded as § — 0, because if X,g_)l(X(l)1 + 61)~! is unbounded, then #;, 1 is
unbounded by setting p = 0; and if X,g_gl(Xlii)l + 0I)~! is bounded, then # is

unbounded by setting p > 0. Therefore X, (1 )1 is nonsingular and hence t;1 < 2t
XIE:+)1(X1§£21)( D= (ng+)1 +9< ))Rk+11:?;(€+11)(X;§1+)1 +5I)(71)Rk+131(€;11)
=uﬁﬁ96)<%+wﬂ>
=ity on ™o (1) @t +on

is unbounded as ¢ — 0, because if X,gi_)l(X]&)l +6I)~! is unbounded, then # is
unbounded by setting 6 = 0; and if X,gi)l(Xlg_)l + 0I)~! is bounded, then #;, 1 is

unbounded by setting 8 > 0. Therefore X ,&_)1 is nonsingular and hence t;4+1 < 2t
proof is completed. [ ]

We now prove our main result on convergence of t; and t;.. We are interested in
the case that ¢ is a linearly decreasing sequence.

THEOREM 3.6 Assume that Xq is such that XO_1 is tnvertible. Let ¢, = a*yk with
v <1 and

(1 — p)2to
[V ll2ll U {2 (1 + 2t0)(p + 2t0)

a <

Then we have

k vE=p*
t < 2Pkto+ac . YFE P
2p%to + ackp Yy=p

where
c=[ V2l U ll2 (1 +2to)(p + 2to)

Proof Since

(1 —p)2to
€k X
ES TV IRITU 2 (+ 2t0)(p + 2t0)
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we have t;, < tp by Lemma (3.5). Then,

(1 —p)2to
|V ll2ll U ll2 (1 + 2to)(p + 2to)

Ek\

so we have t < tg

IV Il U llz (1t 4 tr)er IV 2l U llz (1 +2t0)e < G520 <1

It follows from Lemma (3.4) that tx11 < p(tg + trr) + crex

p IV 2l U ll2 (1+ t, + ti) e
I=[[ V2] U [l2 (1 +tg + tp)ex

tht1 < p(ti +te) +
tk+1 p(tk + tkr) + ackfy

tr < p(ty + tr) + acg_17* !

k __ k
< PPty + acl—P
v—p

now if p = v we have t, < p*2ty + ackp®~1.

tht1 < (tk + tk/) + cre€k

pUV LI U ll2 (b +2)*  _ pll VIl U ll2 (1+ 2t0)°

— , = (1—p)2to
1=V ll2ll U ll2 (tx + tr )er R =T

Cl —

<P |V 2]l U Jl2 (1 + 2t0)? < PUV 2l U ll2 (1 + 2t0)2(p + 2to)

p+€2+t23t:)pto s p(1 4 2tp)?

SV RIU [l (1 +2t0)(p + 2t0) = ¢

Therefore, tyy1 < p(tg + t) + acy®. Solving this inequality, we obtain the bound
for t |

The conclusion of the above theorem is that the subspace spanned by X, R(X}),
converges to the spectral subspace R(V}) linearly at the rate of max{p,~}. The
condition on a is to ensure convergence and is clearly not a necessary condition.
An interesting fact is that there is no gain in convergence rate if we choose v < p,
some shall focus on the case v > p. The following corollary gives a more precise
bound for the constant C and hence for t; and t; at the convergence stage.

COROLLARY 3.7
Let 1 > ~v > p and €, = a*. Suppose that a is chosen such that t, — 0 and
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tyy — 0. Then
. 123 -1
hmsupaTk <p(y=p) IV 2l U ll2

and

. trr, _
lim sup ot <ply=p) IV 2l U |2

Proof Apply the main theorem to t; starting from k = kg, we have

k—k k—k
v o —p o

ty < 2pF Moty + ay* ey,

where

= LAV RN Ul (1 + t, + t, )
T l=p [V l2l U fl2 (T 4tk + g )en,

o =P IV 12l U fl2 (1 + b + trry)?

= ~pl Vil U s
E TV [l Ul Gttty ~ PNV T

2(1 — pk())tko

IV ll2ll U 2 (14 2tk ) (p + 2tk,) < .

Dividing ay* and taking k — oo first and then kg — oo in the inequality, we
obtain the bound.

! k—ko¢ k—kg_ k—k
# <h ayk . ’(yv—po)avp’*‘*kg ar*ocy,
k—ko¢ k—ko _ yk—k (b
< 2t A
andso p<vy<1
k’ot
lim (Z)k(2—thy — ¢
k—o0 7y a
and
ko k—ko 1— (g)k—k:o)
lim (B)(p kO) + lim 2 y~(k=ko) e,
k—o0 7y a k—00 v =p)
and

. 1-0 _
=0+ lim ——(p[| V' [l2[| U [[2) = p(v — p) IV 2l U [l
—00 Y = p

) tg, -
11rnsupa—7,C <ply=p) " IV 2l U |l2
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Apply the main theorem to tj, starting from k' = ko, we have

4.

’

<pr=p) IV 2l U 2

lim sup —
ary

Conclusions

We have presented an inexact inverse subspace iteration for computing a few small-
est eigenpairs of the generalized eigenvalue problem Ax = Bx. By properly scaling
the block vectors, we ensure convergence of columns in the iterative blocks, which
allows using approximation from one step as an initial approximation for the next
step.we analyzed convergence of the subspace to the spectral space sought.
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