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Abstract.In this paper by using some conditions, we show that the weak amenability of
(2n)-th dual of a Banach algebra A for some n > 1 implies the weak amenability of A.
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1. Introduction and Preliminaries

Let X be a normed space and X be the topological dual space of X; the value
of f € X" at x € X is denoted by (f,z). We set (X')’ = X" and so on, and
we regard X as a subspace of X by natural mapping ¢ : X — X (z > T)
where (Z, f) = (f,2)(f € X'). We denot the n—th dual of X by X, The weak
topology on X is denoted by w = o(X,X") and weak*-topology on X is dented
by w* = (X', X).

New let X,Y and Z be normed spaces and let f : X x Y — Z be a continuous
bilinear map. Arens in [1] offers two extensions f*** and f***! of f from X x Y
to Z" as following:

f*:Z xX—Y
(1) * / _ / ’ ’
(f*(z,a),y) =(z', fz,y)) (xeX,yeY, s eZ).
@) YY" xZ — X
(> 2)z)y =" *(z.2) @eX,zeZ,y eY).
X' xy' — 27"
(3) Kk K 1" 1" 7 _ " Kk 1" !’ ’ ’ 1" 1" 1" 1
(f*(2y),2)=(z", f*y,2)) (reZ,a" eX ,y eY)
The mapping f*** is the unique extension of f such that " — f**(z",y") from
X" into Z" is w* — w*—continuous for every y € Y.
Let now f': Y x X — Z be the transpose of f defined by f!(y,z) = f(x,y) for
x € X and y € Y. We can extend f! as above to f*** and then we have the

mapping [P . X' x Y — Z". If f** = f* then f is called Arens reqular.
The mapping 3 — fr**(2”,y") from Y into Z" is w* — w*—continuous for
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every & € X . Arens regularity of f is equivalent to the following
lim lim <Z,, f (s, yi)> = lim lim <2/, f (s, yi)> ;
i 7 7

whenever both limits exist for all bounded nets (z;) and (y;) in X and Y, respec-
tively and for evrey 2’ € Z'.

Throughout this paper A is a Banach algebra. This algebra is called Arens reqular
if its multiplication as a bilinear map 7 : Ax A — A(w(a,b) = ab) is Arens regular.
We shall frequently use Goldstine’s theorem: for each a” € A”, there is a net (a;)
in A such that ¢” = w* —lima;. Now let ¢ = w* —lima; and b = w* — liml;} be

% 7 J

elements of A”. The first and second Arens products on A" are denoted by symbols
[J and ¢ respectively and defined by

1"

a//Db// — ﬂ_***(a ’b//) , a//<>b// — Wt***t(a//, b//)‘
It is easy to show that
a'Ob = w* —limw* —limab; , o Ob" =w* — limw* — lim a;b;.
% J J A

On the other hand we can define above Arens products in stages as following. Let

abc A feA and F,Ge A".

(1) Define f.a in A" by (f.a,b) = (f,ab),
and a.f in A" by (a.f,b) = (f,ba).

(2) Define F.f in A" by (F.f,a) = (F, f.a),
and f.F in A" by (f.F,a) = (F,a.f).

(3) Define FOG in A” by (FOG, f) = (F,G.f),
and FOG in A” by (FOG, f) = (G, f.F).

Then (A”,0) and (A", Q) are Banach algebras, see [1, 5] for further details.
Now let E be a Banach A—bimodule, then E  is a Banach A—bimodule under
actions

(a.f,x) = (f,za), (f.a,z) = (f,az) (a€ Az €E,feE), (1)
and E is a Banach A" —bimodule under actions

FA=w"—limw" —limaz; , AF=w"—limw" —limz;a (2)
1 J ] (2

where F' = w* —lima; and A = w* — lim Z; such that (a;) C A and (z;) C E are
7 J
bounded nets.

For a Banach A-bimodule F, the continuous linear map D : A — F is called
derivation if D(ab) = a.D(b) + D(a).b,(a,b € A). For x € E the derivation
dz + A = E by 6,(a) = a.x — z.a is called inner derivation. The Banach alge-
bra A is called amenable if every derivation D : A — E’ is inner, for each Banach
A-bimodule E, [7]. If every derivation D : A — A’ is inner, A is called weakly
amenable, see also [2, 4] for details.

THEOREM 1.1 Let A be a Banach algebra and E be a Banach A-bimodule and
D : A — FE is a continuous derivation, then D" : A" — E" is a continuous

derivation[5, Theorem 2.7.17].

Remark 1 A”-bimodule structures on E” in above theorem are as in formula (2).
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In [8] it was shown that if A is complete Arens regular and every derivation
D : A — A’ be weakly compact, then weak amenability of A" for some (n > 1)
implies weak amenability of A. In this paper we always use the first Arens product
O on Banach algebra A®™(n > 1). In section 2 we shall frequently use formulas
(1) and (2) and we investigate following actions

I\

> two A”-module actions on A®) = (A")" and A®) = (A")',
> two A®-module actions on A®) = ((4)")" and A®) = ((4")"Y’,
> two A®) —module actions on A = (((4")")")" and on AT = (((A")")"),

and we will extend our results to two different A2 —module actions on A(Zn+1)

by induction. In each case we find conditions to make these two different actions
equal. In a similar work in [6] two different A” —module actions on A®®) = (A")" and
AB) = (A" have been studied. Finally in section 3 we investigate the innerness
of second, fourth... and (2n)—th dual of a derivation D : A — A’. By using some
conditions we will show that weak amenability of A?™) for some (n > 1) implies
weak amenability of A.

2. A" _module actions on A(2n+1)

We shall frequentey use formulas (1) and (2) to construct two different
A7) _module actions on A = (((A)")---)" and A@**D = ((A")---)")".

(2n)

Remark 1 There are many other A" —module actions on A"+ that we don’t

need to mention.

I\

First for n= 1 we consider two A”-module actions on A®) = (A")" and
A® = (A" . Let a® = w* —lima,, € A®) and o = w* — lién ag, b’ =w* — liml/);

in which (a,) and (ag), (b;) are bounded nets in A" and A respectively. For left
A”-module action on A®) = (A")" as second dual of A" we can write

(a".a® ") = lién lim(b", ag.a,) (by formula (2))

= hén hén hgn<aa, bi.ag),

and for left A”-module action on A®) = (A")" as dual of A” we can write

(a".a® ") = (a®,b"0a") (by formula (1))
= lim(b'Oa”, a,,) (4)

= lim lim lién<a:1, bi.ag).

This shows that two left A”-module actions on A®) = (A4")" and A®) = (A")" are

not equal. Similarly for right A”-module action on A®) = (4")" we have

a®.a”,b") = limlim b”,a/ .a by formula (2
5 a4g

= lim lim lim(a,,, ag.bi),
(6% (2



58 M. Ettefagh and S. Houdfar/ JLTA, 01 - 02 (2012) 55-63.

and for right A”-module action coincide on A®) = (4"’

(a®.a",b") = (a®,a"00") (by formula (1))
= lim(a"0b", a,,)

(6)

= li('in lién lizm<aa, ag.b;).

This shows that two right A”-module actions on A®) = (4”)" and A®) = (4")"
are equal.

PROPOSITION 2.1 Let A be a Banach algebra with following conditions

(1) A is Arens regular,
(i7) the map Ax A" — A" ((a,a’) — a.a’) is Arens regular.

Then two A”-module actions on A®) = (A")" and A®) = (A")" coincide.

Proof 1t is enaugh to prove that left module actions in (3) and (4) coincide. We
begin with equation (3)

(a".a® ") = lién ligl<b,,, ag-ay)
= lim lién(b”, ag.a,) (by (ii))
= lim lién lign<ag.a/a, bi)
= liorén lién lilim<a,w bi.ag) (by formula (1))
= lim lim ligl(a'a, bi.ag) (by (1))

[e] (2

this proves the equality of (3) and (4). [ |

Now for n = 2 we consider two A —module actions on A®) = ((4")")" and

AG) = (A" Let a® = w* — limay) € A® and o® = w* — lién;g, b =
w* — liml;\;' in A® where (a&?’) ) and (a,,), (b; ) are bounded nets in A®®) and A",

respectively. For left AY) —module action on A®) = ((4)")" we have

(a®.a®) pH)y = lién lim(b(Y, a//;.a((l?’)> (by formula (2))

" " 7
= lién lim lim(aﬁ.ag’), b; ) @
and for left A®) —module action on A®) = ((4")")" we have
(a®.a®) p®)y = (a®) pHOa®) (by formula (1))
= lim<b(4)Da(4), (I(Oé3)> (8)
= limlim ligl(u&g) by Da/@ .
For right A®) —module action on A®) = ((4')")" we have
(a®.a® p*) = lim lién<b(4), ag).ag) (by formula (2))
¢ 1" 1" (9)

T 3
= horén hén hgn(a((x ).a/g, b; ),
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and for right A®-module action on A®) = ((4")"’

(a®.a® p®y = (a®) oD Op*) (by formula (1))
= lim(aWp®, a3)) (10)

= lim lim lim(a?, ang;/ ).
a B i

We need the equality of two A”-module actions on A®) = (A")" and A®) = (4")"
to prove the equality of above A®W_module actions on A®), so we need the following
lemma whose proof is streightforward.

LEMMA 2.2 Let A be a Banach algebra with following conditions

(i) A" is Arens regular,
(ii) the map A" x A" — A" ((a”,a(3)) — a”.a(?’)) is Arens regular.

Then the conditions of Proposition 2.1 hold.

PROPOSITION 2.3 Let A be a Banach algebra with conditions

. "o
(i) A" is Arens regular,
nr 1’

(ii) the map A" x A" — A ((a”,a(?’)) — a”.a(?’)) is Arens regular.
Then two AW -module actions on A®) = (A" and A®) = ((A")")" coincide.

Proof By Lemma 2.2 the conditions of Proposition 2.1 hold, so two A”-module
actions on A®) = (4")" and A®) = (4")" are equal. We begin with equality (7)

a'®))

o

’

(a®.a®) pD) = lién 1131(1)(4), a/;
= lim lién<b(4), ag al®) (by (ii) of Lemma 2.2)

= lim lién lim(ag.al?, b;)

= lig[n lién lizm<a(3) bl~/Dag> (by Proposition 2.1)

a )7

= lim lim lién<a(3), I)/'/Da@7 (by (i) of Lemma 2.2)

« 3
o K3

this proves the equality of (7) and (8). For equality of right-module actions, we
continue equality 9

(a®.a® pb) = lién lién lign(a((f).ag, b; )

= lim lién lim(a®, angg) (by Proposition 2.1)
(e (2
and this proves the equality of (9) and (10). [ ]
Now suppose that n = 3, we consider two A® —module actions on A =

(((A)))" and AD = ((A))). Let @ = w* — lima € AD and

a® = w* — liéna(;),b(@ = w" — lilmbz(zl) e A where (CLS))) and (a(ﬁ4)),(b(4))

7

are bounded nets in A®) and A@W, respectively. For left A(®) —module action on
A = (((A)")")" we can write

(a(9).a( p0)y = lién lim lim(a(;).a((f), b§4)>, (11)

« (2
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and for left A(®) —module action on AT = (((A")")")" we can write

(@® .o, p©) = lim lim lim{a{ o, 6 0al). (12)

For right A(®) —module action on A™ = (((A)")")” we can write

@ﬁ?)aw)Jﬂ®>::1%P1%plgn< “)ag),b“)> (13)

and for right A(®) —module action on A = (((A")")")" we can write

(a.a(®),b0) = lim lin lim o, ol oY) (14)

We need the equality of two A”-module actions on A®) = ((4")")" and A®) =
((AY")" to prove the equality of above A(®)-module actions on A7), so we need
the following Lemma that is similar to Lemma 2.2.

LEMMA 2.4 Let A be a Banach algebra with following conditions

(i) AW is Arens regular,
(ii) the map AW x A®) - AG) ((a(4), a®) — a(4).a(5)) is Arens regular.

Then the conditions of Proposition 2.3 hold.
PROPOSITION 2.5 Let A be a Banach algebra with conditions

(i) AW is Arens regular,
(i1) the map AW x A®G) — AG) ((a®,a®)) — a®.a®)) is Arens regular.

Then two A —module actions on AT = ((A")")") and AT = ((A)")")" co-
incide.

Proof By Lemma 2.4 the conditions of Proposition 2.3 hold, so two A®)-module
actions on A®) = ((4")")" and A®) = ((A")")" are equal. We begin with equality
(11)

(a(®).a(™) b)) = lién li£n<b(6), agl) ald)
= li;n lién<b(6), a(ﬁ4).aa5)> (by (ii) of Lemma 2.4)
= hén h[r?n h{n<a(ﬁ4) al?, b£4)>
= lién lién li?1<ag5), b§4)Daé4)> (by Proposition 2.3)
= limlim hén<ag5>, b0a)), (by (i) of Lemma 2.4)

this prove the equality of (11) and (12). For equality of right-module actions, we
continue equality (13)

(aM.a(®) p0)) = limlim lim(a(5).a(4), b(4)>

: B %
a B
= hm hén lim(a), 24)[!61(4)) (by Proposition 2.3)
and this proves the equality of (13) and (14). [ |

Now by induction process we have the following extended result.
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PROPOSITION 2.6 Let A be a Banach algebra with following conditions for some
n>1

(i) A%"=2 is Arens regular,
(i1) the map AC"=2) x AR 5 AC"=1) ((q, f) — a.f) is Arens regular.

Then two A" —module actions on AP+ — ((((A”)“)...)“)' and AG@HD —
((((A/)N) S )N)N coincide.

3. Main results

In this section we consider the transposes D”, D™ ... D% of a continuous der-
vation D : A — A'. We know by Theorem 1.1 that the following maps will be
continuous derivations

1"

D" A" — AB) = (A"
DI - A® = (4")" — AB) = ((A)")
DO 5 A = (7)) — AT = (Y)Y

D+ ACH) = (((A")') )" — ACTD = (((4)'))+-"

PROPOSITION 3.1 Let A be a Banach algebra with hypothesis of Proposition 2.1.
If the second transpose D" of continuous derivation D : A — A’ is inner, then D
18 inner.

Proof Let D : A — A be a dervation, then by Theorem 1.1 and Proposition 2.1,
D" : A" — AB) = (A)" = (A") is also a derivation. Since D" is inner, there
exists a” € A” such that D" (a") = a”.a®® —a®.a", (a® € A®). Let ' = 1*(a®),
where ¢ : A — A" is the natural map. Then for each a,b € A we can write

(D(a),b) = (D"(@),b)
= <a,a(3) — a(3).a, )
= ( (3),/b\D/d — ZL\DA> ( by Proposition 2.1 )

(@®,b.a — a.b)

(a®, 1(b.a — a.b))

= (1*(a®)), b.a — a.b)

= (a',b.a — a.b)

= (a.a’ —ad .a,b),

’ / . .
hence D(a) = a.a — a .a and so D is inner. [ |

PROPOSITION 3.2 Let A be a Banach algebra with hypothesis of Proposition 2.3.
If the fourth transpose D™ of continuous derivation D : A — A’ is inner, then D
18 1nner.

Proof Let D : A — A’ be a dervation, then by Theorem 1.1 and Proposition 2.3,
DWW ((A")") — (((A))") = (((A")")) is also a derivation. Since D is inner,
there exists a(? € AW such that D® (a®) = a®.a®) —a® .0 (a® € A®)). Let
a =u1*o L***(a(5)), where ¢ : A — A" is the natural map. Then for each a,b € A

we can write
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(D(a),8) = (D" (@),b)

—(D'@),5)

= (DW(@),b)
@ a® —a® 3 /l;>

= <a(5),3D§ - ED@ ( by Proposition 2.3 )
= (a®® b0a — alb)

= (a®,,**(b0a — b))
(1**(a®)), b.a — a.b)

= (" (a®), 1(b.a — a.b))

= (1* 0 '**(a®)), b.a — a.b)

= (a',b.a — a.b)

= (a.a' —a .a,b),

hence D(a) = a.a’' — a'.a and so D is inner. [ |

PROPOSITION 3.3 Let A be a Banach algebra with hypothesis of Proposition 2.5.
If the sizth transpose D) of continuous derivation D : A — A’ is inner, then D
18 inner.

Proof Let D : A — A’ be a dervation, then by Theorem 1.1 and Proposition 2.3,
DO = A6 = (A" — ((A))) = (AN = AT is also a derivation.
Since D© is inner, there exists a(® € A such that D©®)(a(®)) = 40 .o —
a.a (o e AD). Let a" = * o ¥ 0 ****(a(7)), where 1 : A — A" is the
natural map. Then for each a,b € A we can write

(D(a),b) = (D" (@),b)

~

?

e
SIERCHAASH
3
RS
M) S

Q
3
S
L]
)
|
ISHIN)
Ol
=

( by Proposition 2.5 )

»

(

(

(

(

(

= (a7, b7 — an
= (a7, L****(bDa — an))
(

(

(

=

(

= (a.

<~

L*****( (7)), **(b[!a _ a[ﬁ)\»
2 o (00 b.a — a.b)
% 0 1 (1) 1 (b.a — a.b))
F o v 0 (q(7) b.a — a.b)
a, b a—a. b>

hence D(a) = a.a’' — a'.a and so D is inner. [ |

Using the similar reasoning as in the proof of previous lemmas we have the following
proposition.

PROPOSITION 3.4 Let A be a Banach algebra with hypothesis of Pmposztzon 2.6.
If the (2n)—th transpose D) of continuous derivation D : A — A’ is inner, then
D is inner.
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PROPOSITION 3.5 Let A be a Banach algebra with hypothesis of Proposition 2.1.
If A" is weakly amenable, then A is weakly amenable.

Proof Suppose that D : A — A be a continuous derivation. Then
D" A" A®B) = (A")" is a continuous derivation by Theorem 1.1. But two
A" —module actions on A®) = (4)" and A®) = (A")" are equal by Proposition
2.1, hence D" : A" AB) = (A") is also a continuous derivation in which
A®B) = (A")" is considered as dual of A”. Since A" is weakly amenable, then D" is
inner. Therefore D is inner by Proposition 3.1. This completes the proof. [ |

Using the same reasoning as in the proofs of previous propositions we have next
results, so we omit the details in proofs.

PROPOSITION 3.6 Let A be a Banach algebra with hypothesis of Proposition 2.3.
If AW s weakly amenable, then A is weakly amenable.

Proof This is a consequence of Proposition 3.2. [ |

PROPOSITION 3.7 Let A be a Banach algebra with hypothesis of Proposition 2.5.
If A©) s weakly amenable, then A is weakly amenable.

Proof This is a consequence of Proposition 3.3. [ |
Finally by Propositions 2.6 and 3.4 we have the following extended result.

PROPOSITION 3.8 Let A be a Banach algebra with hypothesis of Proposition 2.6.
If AP s weakly amenable, then A is weakly amenable.

Acknowledgements: The authors would like to thank the referee for carefully
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