Linear and Topological Algebra
Vol. 01, No. 01, Summer 2012, 41- 44

Commutativity degree of $\mathbb{Z}_{p} \backslash \mathbb{Z}_{p^{n}}$

M. Maghasedia,*
${ }^{a}$ Islamic Azad University,Karaj Branch, Iran.

Abstract. For a finite group G the commutativity degree denote by $d(G)$ and defind:

$$
d(G)=\frac{|\{(x, y) \mid x, y \in G, x y=y x\}|}{|G|^{2}} .
$$

In [2] authors found commutativity degree for some groups,in this paper we find commutativity degree for a class of groups that have high nilpontencies.

Keywords: Presentation of groups,Finite groups,commutativity degree

1. Introduction

For a finite group G the commutativity degree

$$
d(G)=\frac{|\{(x, y) \mid x, y \in G, x y=y x\}|}{|G|^{2}} .
$$

is defined and studied by several authors (see for example $[2,3,7]$).
When $d(G) \geqslant \frac{1}{2}$, it is proved by P.Lescot in 1995 that G is abelain ,or $\frac{G}{Z(G)}$ is elementary abelian with $|G|=2$,or G is isoclinic with S_{3} and $d(G)=1$.

Throughout this paper n is positive integer and p is odd prime number.
We consider the wreath product $\left.G_{n}=\mathbb{Z}_{p}\right\rangle \mathbb{Z}_{p^{n}}$ where ,the standard wreath product $G \imath H$ of the finite groups G and H is defined to be semidirect product of G by direct product B of $|G|$ copies of H.

In [1] it is proved that G_{n} has efficient presentation as follows:

$$
G_{n}=\left\langle x, y \mid y^{p}=x^{p^{n}}=1 \quad, \quad\left[x, x^{y^{i}}\right]=1, \quad 1 \leqslant i \leqslant \frac{p-1}{2}\right\rangle
$$

[^0]Main theorems in this paper are:

Theorem 1.1

$$
d\left(G_{n}\right)=\frac{p^{(p-1) n}+\left(p^{2}-1\right)}{p^{(p-1) n+2}}
$$

Theorem 1.2

$$
\lim _{n \rightarrow \infty} d\left(G_{n}\right)=\frac{1}{p^{2}}
$$

Theorem 1.3

$$
\frac{1}{p^{2}}<d\left(G_{n}\right)<\frac{1}{p}
$$

2. Proofs

We need some lemmas for proving Theorems 1.1, 1.2 and 1.3.
Lemma 2.1 In group G_{n} every element z has an unique presentations as follows:

$$
z=y^{\alpha}(x)^{\beta_{0}}\left(x^{y}\right)^{\beta_{1}}\left(x^{y^{2}}\right)^{\beta_{2}} \ldots\left(x^{y^{p-1}}\right)^{\beta_{p-1}}
$$

where $\alpha \in\{0,1,2, \ldots, p-1\}$ and $\beta_{i} \in\left\{0,1,2, \ldots, p^{n}-1\right\} \quad(0 \leqslant i \leqslant p-1)$.
Proof By presentation of G_{n}, it is clearly.
LEMMA 2.2 Let $z_{1}, z_{2} \in G_{n}$ and $z_{1}=y^{\alpha_{1}}(x)^{\beta_{0}}\left(x^{y}\right)^{\beta_{1}}\left(x^{y^{2}}\right)^{\beta_{2}} \ldots\left(x^{y^{p-1}}\right)^{\beta_{p-1}}$ and $z_{2}=$ $y^{\alpha_{2}}(x)^{\gamma_{0}}\left(x^{y}\right)^{\gamma_{1}}\left(x^{y^{2}}\right)^{\gamma_{2}} \ldots\left(x^{y^{p-1}}\right)^{\gamma_{p-1}}$. Then $z_{1} z_{2}=z_{2} z_{1}$ if and only if:

$$
\beta_{i}+\gamma_{\alpha_{2}+i} \equiv \beta_{\alpha_{2}+i}+\gamma_{\alpha_{2}-\alpha_{1}+i} \quad\left(\bmod p^{n}\right) \quad,(i=0,1,2, \ldots, p-1)
$$

where indices are reduced module of p.
Proof We have:
$z_{2} z_{1}=$

$$
y^{\alpha_{1}+\alpha_{2}}\left(x^{y^{\alpha_{1}}}\right)^{\gamma_{0}}\left(x^{y^{\alpha_{1}+1}}\right)^{\gamma_{1}} \ldots\left(x^{y^{\alpha_{1}+p-1}}\right)^{\gamma_{p-1}}(x)^{\beta_{0}}\left(x^{y}\right)^{\beta_{1}}\left(x^{y^{2}}\right)^{\beta_{2}} \ldots\left(x^{y^{p-1}}\right)^{\beta_{p-1}}
$$

and
$z_{1} z_{2}=$

$$
y^{\alpha_{1}+\alpha_{2}}\left(x^{y^{\alpha_{2}}}\right)^{\beta_{0}}\left(x^{y^{\alpha_{2}+1}}\right)^{\beta_{1}} \ldots\left(x^{y^{\alpha_{2}+p-1}}\right)^{\beta_{p-1}}(x)^{\gamma_{0}}\left(x^{y}\right)^{\gamma_{1}}\left(x^{y^{2}}\right)^{\gamma_{2}} \ldots\left(x^{y^{p-1}}\right)^{\gamma_{p-1}} .
$$

By lemma 2.1 every element in G_{n} has unique presentation ,so we have:

$$
\left\{\begin{array}{l}
\beta_{0}+\gamma_{\alpha_{2}} \equiv \beta_{\alpha_{2}}+\gamma_{\alpha_{2}-\alpha_{1}}\left(\bmod p^{n}\right) \\
\beta_{1}+\gamma_{\alpha_{2}+1} \equiv \beta_{\alpha_{2}+1}+\gamma_{\alpha_{2}-\alpha_{1}+1} \quad\left(\bmod p^{n}\right) \\
\vdots \\
\quad \vdots \\
\beta_{p-1}+\gamma_{\alpha_{2}+p-1} \equiv \beta_{\alpha_{2}+p-1}+\gamma_{\alpha_{2}-\alpha_{1}+p-1} \quad\left(\bmod p^{n}\right)
\end{array}\right.
$$

Then we have:

$$
\beta_{i}+\gamma_{\alpha_{2}+i} \equiv \beta_{\alpha_{2}+i}+\gamma_{\alpha_{2}-\alpha_{1}+i} \quad\left(\bmod p^{n}\right) \quad,(i=0,1,2, \ldots, p-1) .
$$

Remark:On set $G_{n} \times G_{n}$, we consider:

$$
\zeta\left(G_{n}\right)=\left\{\left(z_{1}, z_{2}\right) \mid z_{1}, z_{2} \in G_{n}, z_{1} z_{2}=z_{2} z_{1}\right\} .
$$

Lemma 2.3

$$
\left|\zeta\left(G_{n}\right)\right|=p^{(p+1) n}\left(p^{(p-1) n}+p^{2}-1\right)
$$

Proof Let $z \in G_{n}$ and $z=y^{\alpha}(x)^{\beta_{0}}\left(x^{y}\right)^{\beta_{1}}\left(x^{y^{2}}\right)^{\beta_{2}} \ldots\left(x^{y^{p-1}}\right)^{\beta_{p-1}}$.
We consider $\psi(z)=\alpha$. Now let

$$
\zeta_{\alpha_{1}, \alpha_{2}}\left(G_{n}\right)=\left\{\left(z_{1}, z_{2}\right) \mid z_{1}, z_{2} \in G_{n}, z_{1} z_{2}=z_{2} z_{1}, \psi\left(z_{1}\right)=\alpha_{1}, \psi\left(z_{2}\right)=\alpha_{2}\right\} .
$$

So we have:

$$
\bigcup_{\alpha_{1}=0}^{p-1} \bigcup_{\alpha_{2}=0}^{p-1} \zeta_{\alpha_{1}, \alpha_{2}}\left(G_{n}\right)=\zeta\left(G_{n}\right) .
$$

More over:

$$
\left|\zeta\left(G_{n}\right)\right|=\sum_{\alpha_{1}=0}^{p-1} \sum_{\alpha_{2}=0}^{p-1}\left|\zeta_{\alpha_{1}, \alpha_{2}}\left(G_{n}\right)\right| .
$$

Now we have two cases.
Case I: $\alpha_{1}=0, \alpha_{2}=0$
let $z_{1}=x^{\beta_{0}}\left(x^{y}\right)^{\beta_{1}}\left(x^{y^{2}}\right)^{\beta_{2}} \ldots\left(x^{y^{p-1}}\right)^{\beta_{p-1}}$ and $z_{2}=x^{\gamma_{0}}\left(x^{y}\right)^{\gamma_{1}}\left(x^{y^{2}}\right)^{\gamma_{2}} \ldots\left(x^{y^{p-1}}\right)^{\gamma_{p-1}}$ where $\beta_{i}, \gamma_{j} \in\left\{0,1, \ldots, p^{n}-1\right\} \quad$ and $\quad 0 \leqslant i, j \leqslant p-1$.
Since $z_{1} z_{2}=z_{2} z_{1}$ then:

$$
\left|\zeta_{0,0}\left(G_{n}\right)\right|=\underbrace{p^{n} \times p^{n} \times \cdots \times p^{n}}_{2 p}=p^{2 p n} .
$$

Case II: $\quad \alpha_{1} \neq 0$ or $\alpha_{2} \neq 0$,
let $z_{1}=y^{\alpha_{1}}(x)^{\beta_{0}}\left(x^{y}\right)^{\beta_{1}}\left(x^{y^{2}}\right)^{\beta_{2}} \ldots\left(x^{y^{p-1}}\right)^{\beta_{p-1}} \quad$ and $\quad z_{2} \quad=$ $y^{\alpha_{2}}(x)^{\gamma_{0}}\left(x^{y}\right)^{\gamma_{1}}\left(x^{y^{2}}\right)^{\gamma_{2}} \ldots\left(x^{y^{p-1}}\right)^{\gamma_{p-1}}$.If $z_{1} z_{2}=z_{2} z_{1}$ by lemma 2.2 we have:

$$
\begin{equation*}
\beta_{i}+\gamma_{\alpha_{2}+i} \equiv \beta_{\alpha_{2}+i}+\gamma_{\alpha_{2}-\alpha_{1}+i}\left(\bmod p^{n}\right) \quad,(i=0,1,2, \ldots, p-1) \tag{*}
\end{equation*}
$$

where indices are reduced module of p.
Now we can choose $\beta_{0}, \beta_{1}, \ldots, \beta_{p-1}, \gamma_{0}$ and find $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p-1}$ uniquely by ($*$), then

$$
\left|\zeta_{\alpha_{1}, \alpha_{2}}\left(G_{n}\right)\right|=\underbrace{p^{n} \times p^{n} \times \ldots \times p^{n}}_{p+1}=p^{n(p+1)} .
$$

Finally we have
$\left|\zeta\left(G_{n}\right)\right|=\sum_{\alpha_{1}=0}^{p-1} \sum_{\alpha_{2}=0}^{p-1}\left|\zeta_{\alpha_{1}, \alpha_{2}}\left(G_{n}\right)\right|=p^{2 n p}+\left(p^{2}-1\right) p^{n(p+1)}=p^{(p+1) n}\left(p^{(p-1) n}+p^{2}-1\right)$.

Proof theorems 1.1,1.2 and 1.3:

For 1.1 since $d\left(G_{n}\right)=\frac{\left|\zeta\left(G_{n}\right)\right|}{\left|G_{n}\right|^{2}}$ so by lemma 2.3 we find $d\left(G_{n}\right)=\frac{p^{(p-1) n}+\left(p^{2}-1\right)}{p^{(p-1) n+2}}$.
For 1.2 and 1.3 we have $d\left(G_{n}\right)=\frac{1}{p^{2}}+\frac{p^{2}-1}{p^{(p-1) n+2}} \quad$, so

$$
\lim _{n \rightarrow \infty} d\left(G_{n}\right)=\frac{1}{p^{2}}
$$

and $d\left(G_{n}\right)>\frac{1}{p^{2}} . \quad d\left(G_{n}\right)<\frac{1}{p}$ is simple.

References

[1] K. Ahmadidelir, H. Doostie, M. Maghasedi, Fiboncci legth of efficiently presented metabelian p-group , Mathematical Sciences, (5:1) (2011), 87-100.
[2] H. Doostie, M. Maghasedi, Certain classes of groups with commutativity degree $d(G)<\frac{1}{2}$, Ars combinatorial, 89 (2008) ,263-270 .
[3] W. H. Gustafson, What is probility that two group elements commute?, Amer. Math. Monthly, 80 (1973), 1031-1034.
[4] M. R. Jones, Muliplcators of p-groups, Math. Z., 127 (1972), 165-166.
[5] M. R. Jones, Some inequalities for the muliplcator of finite group, Math. Soc. 39 (1973), 450-456.
[6] P. Lescot, Isoclinism classes and commutativity degrees of finite groups,J. Algebra, $\mathbf{1 7 7}$ (1995), 847869.
[7] M. R. R. Moghaddam ,A. R. Salemkar and K. chiti n-isoclinism classes and n-nilpotency degree of finite groups, Algebra colloquium, (12:2) (2005), 255-261.

[^0]: *Corresponding author. Email: maghasedi@kiau.ac.ir

