New fixed and periodic point results on cone metric spaces

H. Rahimi ${ }^{\mathrm{a}}$ and Gh. Soleimani Rad ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, PO. Code 13185-768, Iran.

Abstract

In this paper, several fixed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.

Keywords: Cone metric space; Fixed point; Property P; Property Q; Normal cone.

1. Introduction

In 1922, Banach proved his famous fixed point theorem [3]. Afterward, other people consider some various definitions of contractive mappings and proved several fixed point theorems in $[4,7,10,11,13,15]$ and the references contained therein. In 2007, Huang and Zhang [8] introduced cone metric space and proved some fixed point theorems. Afterward, several fixed and common fixed point results on cone metric spaces proved in $[1,14,16,17]$ and the references contained therein.

Recently, Morales and Rajes [12] introduced T-Kannan and T-Chatterjea contractive mappings in cone metric space and proved some fixed point theorems. Then, Filipović et al. [5] defined T-Hardy-Rogers contraction in cone metric space and proved some fixed and periodic point theorems. In this work, we prove several fixed and periodic point theorems for T-contraction of two maps on normal cone metric spaces. Our results extend various comparable results of Filipović et al. [5], and Morales and Rajes [12].

2. preliminaries

Let us start by defining some important definitions.
Definition 2.1 (See [6, 8]). Let E be a real Banach space and P a subset of E. Then P is called a cone if and only if
(a) P is closed, non-empty and $P \neq\{0\}$;
(b) $a, b \in R, a, b \geqslant 0, x, y \in P$ imply that $a x+b y \in P$;
(c) if $x \in P$ and $-x \in P$, then $x=0$.

[^0]Given a cone $P \subset E$, we define a partial ordering \leqslant with respect to P by $x \leqslant y \Longleftrightarrow y-x \in P$.
We shall write $x<y$ if $x \leqslant y$ and $x \neq y$. Also, we write $x \ll y$ if and only if $y-x \in \operatorname{int} P$ (where $\operatorname{int} P$ is interior of P). If $\operatorname{int} P \neq \emptyset$, the cone P is called solid. The cone P is named normal if there is a number $K>0$ such that for all $x, y \in E$,

$$
\begin{equation*}
0 \leqslant x \leqslant y \Longrightarrow\|x\| \leqslant K\|y\| . \tag{1}
\end{equation*}
$$

The least positive number satisfying the above is called the normal constant of P.
Example 2.2 (See [14]). Let $E=C_{\mathbf{R}}[0,1]$ with the supremum norm and $P=\{f \in$ $E: f \geqslant 0\}$. Then P is a normal cone with normal constant $K=1$.

Definition 2.3 (See [8]). Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow E$ satisfies
(d1) $0 \leqslant d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
(d2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
$(d 3) d(x, z) \leqslant d(x, y)+d(y, z)$ for all $x, y, z \in X$.
Then, d is called a cone metric on X and (X, d) is called a cone metric space.
Example 2.4 (See [8]). Let $E=R^{2}, P=\{(x, y) \in E \mid x, y \geqslant 0\} \subset R^{2}, X=R$ and $d: X \times X \rightarrow E$ such that $d(x, y)=(|x-y|, \alpha|x-y|)$, where $\alpha \geqslant 0$ is a constant. Then (X, d) is a cone metric space.

Definition 2.5 (See [5]). Let (X, d) be a cone metric space, $\left\{x_{n}\right\}$ a sequence in X and $x \in X$. Then
(i) $\left\{x_{n}\right\}$ converges to x if for every $c \in E$ with $0 \ll c$ there exist $n_{0} \in \mathbf{N}$ such that $d\left(x_{n}, x\right) \ll c$ for all $n>n_{0}$.
(ii) $\left\{x_{n}\right\}$ is called a Cauchy sequence if for every $c \in E$ with $0 \ll c$ there exist $n_{0} \in \mathbf{N}$ such that $d\left(x_{n}, x_{m}\right) \ll c$ for all $m, n>n_{0}$.

Also, a cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X. In the sequel, we always suppose that E is a real Banach space, P is a normal cone in E, and \leqslant is partial ordering with respect to P.

Definition 2.6 (See [5]). Let (X, d) be a cone metric space, P a solid cone and $S: X \rightarrow X$. Then
(i) S is said to be sequentially convergent if we have for every sequence $\left(x_{n}\right)$, if $S\left(x_{n}\right)$ is convergent, then $\left(x_{n}\right)$ also is convergent.
(ii) S is said to be subsequentially convergent if we have for every sequence $\left(x_{n}\right)$ that $S\left(x_{n}\right)$ is convergent, implies $\left(x_{n}\right)$ has a convergent subsequence.
(iii) S is said to be continuous, if $\lim _{n \rightarrow \infty} x_{n}=x$ implies that $\lim _{n \rightarrow \infty} S\left(x_{n}\right)=$ $S(x)$, for all $\left(x_{n}\right)$ in X.

Definition 2.7 (See [5]). Let (X, d) be a cone metric space and $T, f: X \rightarrow X$ two mappings. A mapping f is said to be a T-Hardy-Rogers contraction, if there exist $\alpha_{i} \geqslant 0, i=1, \cdots, 5$ with $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}<1$ such that for all $x, y \in X$,

$$
\begin{align*}
d(T f x, T f y) \leqslant & \alpha_{1} d(T x, T y)+\alpha_{2} d(T x, T f x)+\alpha_{3} d(T y, T f y)+\alpha_{4} d(T x, T f y) \\
& +\alpha_{5} d(T y, T f x) \tag{2}
\end{align*}
$$

In previous definition, suppose that $\alpha_{1}=\alpha_{4}=\alpha_{5}=0$ and $\alpha_{2}=\alpha_{3} \neq 0$ (resp. $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$ and $\alpha_{4}=\alpha_{5} \neq 0$). Then we obtain T-Kannan (resp. TChatterjea) contraction from [12].

3. Fixed point results

Theorem 3.1 Suppose that (X, d) be a complete cone metric space, P be a normal cone with normal constant K, and $T: X \rightarrow X$ be a continuous and one to one mapping. Moreover, let f and g be two maps of X satisfying

$$
\begin{align*}
d(T f x, T g y) \leqslant & \alpha_{1} d(T x, T y)+\alpha_{2}[d(T x, T f x)+d(T y, T g y)] \\
& +\alpha_{3}[d(T x, T g y)+d(T y, T f x)] \tag{3}
\end{align*}
$$

for all $x, y \in X$, where

$$
\begin{equation*}
\alpha_{i} \geqslant 0 \quad \text { for } \quad i=1,2,3 \quad \text { and } \quad \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}<1 . \tag{4}
\end{equation*}
$$

That is, f and g be a T-contraction. Then
(1) There exist $u_{x} \in X$ such that $\lim _{n \rightarrow \infty} T f x_{2 n}=\lim _{n \rightarrow \infty} T g x_{2 n+1}=u_{x}$.
(2) If T is subsequentially convergent, then $\left\{f x_{2 n}\right\}$ and $\left\{g x_{2 n+1}\right\}$ have a convergent subsequence.
(3) There exist a unique $v_{x} \in X$ such that $f v_{x}=g v_{x}=v_{x}$, that is, f and g have a unique common fixed point.
(4) If T is sequentially convergent, then iterate sequences $\left\{f x_{2 n}\right\}$ and $\left\{g x_{2 n+1}\right\}$ converge to v_{x}.

Proof Suppose x_{0} is an arbitrary point of X, and define $\left\{x_{n}\right\}$ by
$x_{1}=f x_{0}, x_{2}=g x_{1}, \cdots, x_{2 n+1}=f x_{2 n}, x_{2 n+2}=g x_{2 n+1}$ for $n=$ $0,1,2, \ldots$.
First, we prove that $\left\{T x_{n}\right\}$ is a Cauchy sequence.

$$
\begin{aligned}
d\left(T x_{2 n+1}, T x_{2 n+2}\right)= & d\left(T f x_{2 n}, T g x_{2 n+1}\right) \\
\leqslant & \alpha_{1} d\left(T x_{2 n}, T x_{2 n+1}\right) \\
& +\alpha_{2}\left[d\left(T x_{2 n}, T f x_{2 n}\right)+d\left(T x_{2 n+1}, T g x_{2 n+1}\right)\right] \\
& +\alpha_{3}\left[d\left(T x_{2 n}, T g x_{2 n+1}\right)+d\left(T x_{2 n+1}, T f x_{2 n}\right)\right] \\
= & \alpha_{1} d\left(T x_{2 n}, T x_{2 n+1}\right) \\
& +\alpha_{2}\left[d\left(T x_{2 n}, T x_{2 n+1}\right)+d\left(T x_{2 n+1}, T x_{2 n+2}\right)\right] \\
& +\alpha_{3}\left[d\left(T x_{2 n}, T x_{2 n+2}\right)+d\left(T x_{2 n+1}, T x_{2 n+1}\right)\right] \\
\leqslant & \left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) d\left(T x_{2 n}, T x_{2 n+1}\right) \\
& +\left(\alpha_{2}+\alpha_{3}\right) d\left(T x_{2 n+1}, T x_{2 n+2}\right),
\end{aligned}
$$

which implies that

$$
d\left(T x_{2 n+1}, T x_{2 n+2}\right) \leqslant \gamma d\left(T x_{2 n}, T x_{2 n+1}\right)
$$

where $\gamma=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{1-\alpha_{2}-\alpha_{3}}<1$.
Similarly, we get

$$
d\left(T x_{2 n+3}, T x_{2 n+2}\right) \leqslant \gamma d\left(T x_{2 n+2}, T x_{2 n+1}\right),
$$

where $\gamma=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{1-\alpha_{2}-\alpha_{3}}<1$.

Thus, for all n

$$
\begin{align*}
d\left(T x_{n}, T x_{n+1}\right) \leqslant & \gamma d\left(T x_{n-1}, T x_{n}\right) \leqslant \gamma^{2} d\left(T x_{n-2}, T x_{n-1}\right) \\
& \leqslant \cdots \leqslant \gamma^{n} d\left(T x_{0}, T x_{1}\right) \tag{5}
\end{align*}
$$

Now, for any $m>n$

$$
\begin{aligned}
d\left(T x_{n}, T x_{m}\right) & \leqslant d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n+1}, T x_{n+2}\right)+\cdots+d\left(T x_{m-1}, T x_{m}\right) \\
& \leqslant\left(\gamma^{n}+\gamma^{n+1}+\cdots+\gamma^{m-1}\right) d\left(T x_{0}, T x_{1}\right) \\
& \leqslant \frac{\gamma^{n}}{1-\gamma} d\left(T x_{0}, T x_{1}\right) .
\end{aligned}
$$

From (1), we have

$$
\left\|d\left(T x_{n}, T x_{m}\right)\right\| \leqslant K \frac{\gamma^{n}}{1-\gamma}\left\|d\left(T x_{0}, T x_{1}\right)\right\| .
$$

It follows that $\left\{T x_{n}\right\}$ is a Cauchy sequence by Definition 2.5.(ii). Since cone metric space X is complete, there exist $u_{x} \in X$ such that $T x_{n} \rightarrow u_{x}$ as $n \rightarrow \infty$. Thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T f x_{2 n}=u_{x}, \quad \quad \lim _{n \rightarrow \infty} T g x_{2 n+1}=u_{x} . \tag{6}
\end{equation*}
$$

Now, if T is subsequentially convergent, $\left\{f x_{2 n}\right\}$ (resp. $\left\{g x_{2 n+1}\right\}$) has a convergent subsequence. Thus, there exist $v_{x_{1}} \in X$ and $\left\{f x_{2 n_{i}}\right\}$ (resp. $v_{x_{2}} \in X$ and $\left\{g x_{2 n_{i}+1}\right\}$) such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{2 n_{i}}=v_{x_{1}}, \quad \quad \lim _{n \rightarrow \infty} g x_{2 n_{i}+1}=v_{x_{2}} . \tag{7}
\end{equation*}
$$

Because of continuity T and by (7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T f x_{2 n_{i}}=T v_{x_{1}}, \quad \lim _{n \rightarrow \infty} T g x_{2 n_{i}+1}=T v_{x_{2}} . \tag{8}
\end{equation*}
$$

Now, by (6) and (8) and because of injectivity of T , there exist $w_{x} \in X$ (set $v_{x}=v_{x_{1}}=v_{x_{2}}$) such that $T v_{x}=u_{x}$.
On the other hand, by $\left(d_{3}\right)$ and (3), we have

$$
\begin{aligned}
d\left(T v_{x}, T g v_{x}\right) \leqslant & d\left(T v_{x}, T g x_{2 n_{i}+1}\right)+d\left(T g x_{2 n_{i}+1}, T f x_{2 n_{i}}\right)+d\left(T f x_{2 n_{i}}, T g v_{x}\right) \\
\leqslant & d\left(T v_{x}, T x_{2 n_{i}+2}\right)+d\left(T x_{2 n_{i}+2}, T x_{2 n_{i}+1}\right)+\alpha_{1} d\left(T x_{2 n_{i}}, T v_{x}\right) \\
& +\alpha_{2}\left[d\left(T x_{2 n_{i}}, T x_{2 n_{i}+1}\right)+d\left(T v_{x}, T g v_{x}\right)\right] \\
& +\alpha_{3}\left[d\left(T x_{2 n_{i}}, T g v_{x}\right)+d\left(T v_{x}, T x_{2 n_{i}+1}\right)\right] \\
\leqslant & d\left(T v_{x}, T x_{2 n_{i}+2}\right)+d\left(T x_{2 n_{i}+2}, T x_{2 n_{i}+1}\right)+\left(\alpha_{1}+\alpha_{3}\right) d\left(T x_{2 n_{i}}, T v_{x}\right) \\
& +\alpha_{2} d\left(T x_{2 n_{i}}, T x_{2 n_{i}+1}\right)+\alpha_{3} d\left(T v_{x}, T x_{2 n_{i}+1}\right) \\
& +\left(\alpha_{2}+\alpha_{3}\right) d\left(T v_{x}, T g v_{x}\right) .
\end{aligned}
$$

Now, by (4) and (5) we have

$$
\begin{aligned}
d\left(T v_{x}, T g v_{x}\right) \leqslant & \frac{1}{1-\alpha_{2}-\alpha_{3}} d\left(T v_{x}, T x_{2 n_{i}+2}\right)+\frac{1}{1-\alpha_{2}-\alpha_{3}} d\left(T x_{2 n_{i}+2}, T x_{2 n_{i}+1}\right) \\
& +\frac{\alpha_{1}+\alpha_{3}}{1-\alpha_{2}-\alpha_{3}} d\left(T x_{2 n_{i}}, T v_{x}\right)+\frac{\alpha_{2}}{1-\alpha_{2}-\alpha_{3}} d\left(T x_{2 n_{i}}, T x_{2 n_{i}+1}\right) \\
& +\frac{\alpha_{3}}{1-\alpha_{2}-\alpha_{3}} d\left(T v_{x}, T x_{2 n_{i}+1}\right) \\
= & A_{1} d\left(T v_{x}, T x_{2 n_{i}+2}\right)+A_{2} \gamma^{2 n_{i}}+A_{3} d\left(T x_{2 n_{i}}, T v_{x}\right) \\
& +A_{4} d\left(T v_{x}, T x_{2 n_{i}+1}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
A_{1}=\frac{1}{1-\alpha_{2}-\alpha_{3}} & , \quad A_{2}=\frac{\alpha_{2}+\gamma}{1-\alpha_{2}-\alpha_{3}} d\left(T x_{0}, T x_{1}\right) \\
A_{3}=\frac{\alpha_{1}+\alpha_{3}}{1-\alpha_{2}-\alpha_{3}}, & A_{4}=\frac{\alpha_{3}}{1-\alpha_{2}-\alpha_{3}} .
\end{array}
$$

From (1), we have

$$
\begin{aligned}
\left\|d\left(T v_{x}, T g v_{x}\right)\right\| \leqslant & A_{1} K\left\|d\left(T v_{x}, T x_{2 n_{i}+2}\right)\right\|+A_{2} K \gamma^{2 n_{i}}\left\|d\left(T x_{0}, T x_{1}\right)\right\| \\
& +A_{3} K\left\|d\left(T x_{2 n_{i}}, T v_{x}\right)\right\|+A_{4} K\left\|d\left(T v_{x}, T x_{2 n_{i}+1}\right)\right\|
\end{aligned}
$$

Now the right hand side of the above inequality approaches zero as $i \rightarrow \infty$. The convergence above give us that $\left\|d\left(T v_{x}, T g v_{x}\right)\right\|=0$. Hence $d\left(T v_{x}, T g v_{x}\right)=0$, that is, $T v_{x}=T g v_{x}$. Since T is one to one, then $g v_{x}=v_{x}$. Now, we shall show that $f v_{x}=v_{x}$.

$$
\begin{aligned}
d\left(T f v_{x}, T v_{x}\right) & =d\left(T f v_{x}, T g v_{x}\right) \\
& \leqslant \alpha_{1} d\left(T v_{x}, T v_{x}\right)+\alpha_{2}\left[d\left(T v_{x}, T f v_{x}\right)+d\left(T v_{x}, T g v_{x}\right)\right] \\
& +\alpha_{3}\left[d\left(T v_{x}, T g v_{x}\right)+d\left(T v_{x}, T f v_{x}\right)\right] \\
& =\left(\alpha_{2}+\alpha_{3}\right) d\left(T v_{x}, T f v_{x}\right) .
\end{aligned}
$$

which, using the definition of partial ordering on E and properties of cone P, gives $d\left(T f v_{x}, T v_{x}\right)=0$. Hence, $T f v_{x}=T v_{x}$. Since T is one to one, then $f v_{x}=v_{x}$. Thus, $f v_{x}=g v_{x}=v_{x}$, that is, v_{x} is a common fixed point of f and g. Now, we shall show that v_{x} is a unique common fixed point. Suppose that v_{x}^{\prime} be another common fixed point of f and g, then

$$
\begin{aligned}
d\left(T v_{x}, T v_{x}^{\prime}\right) & =d\left(T f v_{x}, T g v_{x}^{\prime}\right) \\
& \leqslant \alpha_{1} d\left(T v_{x}, T v_{x}^{\prime}\right)+\alpha_{2}\left[d\left(T v_{x}, T f v_{x}\right)+d\left(T v_{x}^{\prime}, T g v_{x}^{\prime}\right)\right] \\
& +\alpha_{3}\left[d\left(T v_{x}, T g v_{x}^{\prime}\right)+d\left(T v_{x}^{\prime}, T f v_{x}\right)\right] \\
& =\left(\alpha_{1}+2 \alpha_{3}\right) d\left(T v_{x}, T v_{x}^{\prime}\right) .
\end{aligned}
$$

By the same arguments as above, we conclude that $d\left(T v_{x}, T v_{x}^{\prime}\right)=0$, which implies the equality $T v_{x}=T v_{x}^{\prime}$. Since T is one to one, then $v_{x}=v_{x}^{\prime}$. Thus f and g have a unique common fixed point.

Ultimately, if T is sequentially convergent, then we replace n for n_{i}. Thus, we have

$$
\lim _{n \rightarrow \infty} f x_{2 n}=v_{x}, \quad \quad \lim _{n \rightarrow \infty} g x_{2 n+1}=v_{x}
$$

Therefore if T is sequentially convergent, then iterate sequences $\left\{f x_{2 n}\right\}$ and $\left\{g x_{2 n+1}\right\}$ converge to v_{x}.

The following results is obtained from Theorem 3.1.
Corollary 3.2 Let (X, d) be a complete cone metric space, P be a normal cone and $T: X \rightarrow X$ be a continuous and one to one mapping. Moreover, let mapping f be a map of X satisfying

$$
\begin{align*}
d(T f x, T f y) \leqslant & \alpha_{1} d(T x, T y)+\alpha_{2}[d(T x, T f x)+d(T y, T f y)] \\
& +\alpha_{3}[d(T x, T f y)+d(T y, T f x)] \tag{9}
\end{align*}
$$

for all $x, y \in X$, where

$$
\begin{equation*}
\alpha_{i} \geqslant 0 \quad \text { for } \quad i=1,2,3 \quad \text { and } \quad \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}<1 \tag{10}
\end{equation*}
$$

That is, f be a T-contraction. Then,
(1) For each $x_{0} \in X,\left\{T f^{n} x_{0}\right\}$ is a cauchy sequence.
(2) There exist $u_{x_{0}} \in X$ such that $\lim _{n \rightarrow \infty} T f^{n} x_{0}=u_{x_{0}}$.
(3) If T is subsequentially convergent, then $\left\{f^{n} x_{0}\right\}$ has a convergent subsequence.
(4) There exist a unique $v_{x_{0}} \in X$ such that $f v_{x_{0}}=v_{x_{0}}$, that is, f has a unique fixed point.
(5) If T is sequentially convergent, then for each $x_{0} \in X$ the iterate sequence $\left\{f^{n} x_{0}\right\}$ converges to $v_{x_{0}}$.

Recently, Fillipović et al. prove that the Corollary 3.2 for a non-normal cone.
Corollary 3.3 Let (X, d) be a complete cone metric space, P be a solid cone and $T: X \rightarrow X$ be a continuous and one to one mapping. Moreover, let mapping f be a T-Hardy-Rogers contraction. Then, the results of previous Corollary hold.

Proof See [5].

4. Periodic point results

Obviously, if f is a map which has a fixed point z, then z is also a fixed point of f^{n} for each $n \in \mathbf{N}$. However the converse is not true [2]. If a map $f: X \rightarrow X$ satisfies $F i x(f)=F i x\left(f^{n}\right)$ for each $n \in \mathbf{N}$, where $F i x(f)$ stands for the set of fixed points of f [9], then f is said to have property P. Recall also that two mappings $f, g: X \rightarrow X$ is said to have property Q if $\operatorname{Fix}(f) \bigcap \operatorname{Fix}(g)=\operatorname{Fix}\left(f^{n}\right) \bigcap \operatorname{Fix}\left(g^{n}\right)$. The following results extend some theorems of [2].

Theorem 4.1 Let (X, d) be a cone metric space, P be a normal cone and $T: X \rightarrow$ X be a one to one mapping. Moreover, let mapping f be a map of X satisfyiing (i) $d\left(f x, f^{2} x\right) \leqslant \lambda d(x, f x)$ for all $x \in X$, where $\lambda \in[0,1)$ and or (ii) with strict inequality, $\lambda=1$ for all $x \in X$ with $x \neq f x$. If $\operatorname{Fix}(f) \neq \emptyset$, then f has property P.

Proof See [5].

Theorem 4.2 Let (X, d) be a complete cone metric space, and P a normal cone with normal constant K. Suppose that mappings $f, g: X \rightarrow X$ satisfy all the conditions of Theorem 3.1. Then f and g have property Q.

Proof From Theorem 3.1, f and g have a unique common fixed point in X. Suppose that $z \in \operatorname{Fix}\left(f^{n}\right) \bigcap \operatorname{Fix}\left(g^{n}\right)$, thus we have

$$
\begin{aligned}
d(T z, T g z)= & d\left(T f\left(f^{n-1} z\right), T g\left(g^{n} z\right)\right) \\
\leqslant & \alpha_{1} d\left(T f^{n-1} z, T g^{n} z\right)+\alpha_{2}\left[d\left(T f^{n-1} z, T f^{n} z\right)+d\left(T g^{n} z, T g^{n+1} z\right)\right] \\
& +\alpha_{3}\left[d\left(T f^{n-1} z, T g^{n+1} z\right)+d\left(T g^{n} z, T f^{n} z\right)\right] \\
= & \alpha_{1} d\left(T f^{n-1} z, T z\right)+\alpha_{2}\left[d\left(T f^{n-1} z, T z\right)+d(T z, T g z)\right] \\
& +\alpha_{3} d\left(T f^{n-1} z, T g z\right) \\
\leqslant & \left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) d\left(T f^{n-1} z, T z\right)+\left(\alpha_{2}+\alpha_{3}\right) d(T z, T g z),
\end{aligned}
$$

which implies that

$$
d(T z, T g z) \leqslant \gamma d\left(T f^{n-1} z, T z\right)
$$

where $\gamma=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{1-\alpha_{2}-\alpha_{3}}<1$ (by relation (4)). Now, we have

$$
d(T z, T g z)=d\left(T f^{n} z, T g^{n+1} z\right) \leqslant \gamma d\left(T f^{n-1} z, T z\right) \leqslant \cdots \leqslant \gamma^{n} d(T f z, T z) .
$$

From (1), we have

$$
\|d(T z, T g z)\| \leqslant \gamma^{n} K\|d(T f z, T z)\|
$$

Now the right hand side of the above inequality approaches zero as $n \rightarrow \infty$. Hence, $\|d(T z, T g z)\|=0$. It follows that $d(T z, T g z)=0$, that is, $T g z=T z$. Since T is one to one, then $g z=z$. Also, Theorem 3.1 implies that $f z=z$ and $z \in$ $F i x(f) \cap \operatorname{Fix}(g)$.

Theorem 4.3 Let (X, d) be a complete cone metric space, and P a solid cone. Suppose that mapping $f: X \rightarrow X$ satisfies all the conditions of Corollary 3.2. Then f has property P.

Proof From Corollary 3.2, f has a unique common fixed point in X. Suppose that $z \in \operatorname{Fix}\left(f^{n}\right)$, we have

$$
\begin{aligned}
d(T z, T f z)= & d\left(T f\left(f^{n-1} z\right), T f\left(f^{n} z\right)\right) \\
\leqslant & \alpha_{1} d\left(T f^{n-1} z, T f^{n} z\right)+\alpha_{2}\left[d\left(T f^{n-1} z, T f^{n} z\right)+d\left(T f^{n} z, T f^{n+1} z\right)\right] \\
& +\alpha_{3}\left[d\left(T f^{n-1} z, T f^{n+1} z\right)+d\left(T f^{n} z, T f^{n} z\right)\right] \\
\leqslant & \left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) d\left(T f^{n-1} z, T z\right)+\left(\alpha_{2}+\alpha_{3}\right) d(T z, T f z),
\end{aligned}
$$

which implies that $d(T z, T f z) \leqslant \gamma d\left(T f^{n-1} z, T z\right)$ where $\gamma=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{1-\alpha_{2}-\alpha_{3}}<1$, (by relation (10)). Hence,

$$
d(T z, T f z)=d\left(T f^{n} z, T f^{n+1} z\right) \leqslant \gamma d\left(T f^{n-1} z, T z\right) \leqslant \cdots \leqslant \gamma^{n} d(T f z, T z)
$$

Therefore, we have $d(T z, T f z) \leqslant \gamma^{n} d(T f z, T z) \leqslant \gamma d(T f z, T z)$. By the same arguments as Theorem 4.2, we conclude that $d(T f z, T z)=0$, that is, $T f z=T z$. Since T is one to one, then $f z=z$ and proof is complete.

Corollary 4.4 Let (X, d) be a complete cone metric space, and P be a solid cone. Suppose that mapping $f: X \rightarrow X$ satisfies all the conditions of Corollary 3.3. Then f has property P.

Proof See [5].

References

[1] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), pp. 416-420.
[2] M. Abbas, B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett. 22 (2009), pp. 511-515.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. J. 3 (1922), pp. 133-181.
[4] L.B. Ćirić, A generalization of Banach contraction principle, Proc. Amer. Math. Soc. 45 (1974), pp. 267-273.
[5] M. Filipović, L. Paunović, S. Radenović, M. Rajović, Remarks on "Cone metric spaces and fixed point theorems of T-Kannan and T-Chatterjea contractive mappings", Math. Comput. Modelling. 54 (2011), pp. 1467-1472.
[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
[7] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 1 (6) (1973), pp. 201-206.
[8] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), pp. 1467-1475.
[9] G.S. Jeong, B.E. Rhoades, Maps for which $F(T)=F\left(T^{n}\right)$, Fixed Point Theory Appl. 6 (2005), pp. 87-131.
[10] G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly 83 (1976), pp. 261-263.
[11] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), pp. 71-76.
[12] J.R. Morales, E. Rojas, Cone metric spaces and fixed point theorems of T-Kannan contractive mappings, Int. J. Math. Anal. 4 (4) (2010), pp. 175-184.
[13] H. Rahimi, Gh. Soleimani Rad, Some fixed point results in metric type space, J. Basic Appl. Sci. Res. 2 (9) (2012), pp. 9301-9308.
[14] S. Rezapour, R. Hamlbarani, Some note on the paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008), pp. 719-724.
[15] B.E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 (1977), pp. 257-290.
[16] G. Song, X. Sun, Y. Zhao, G. Wang, New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett. 23 (2010), pp. 1033-1037.
[17] S. Wang, B. Guo, Distance in cone metric spaces and common fixed point theorems, Appl. Math. Lett. 24 (2011), pp. 1735-1739.

[^0]: *Corresponding author. Ghasem Soleimani Rad, Email: gha.soleimani.sci@iauctb.ac.ir

