OD-characterization of almost simple groups related to $U_{3}(11)$

P. Nosratpour ${ }^{\text {a,* }}$ and M. R. Darafsheh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of mathematics, ILam Branch, Islamic Azad university, Ilam, Iran;
${ }^{\mathrm{b}}$ School of mathematics, College of Science, University of tehran, Tehran, Iran.

Abstract

Let $L:=U_{3}(11)$. In this article, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we prove that $L, L .2$ and $L .3$ are OD-characterizable, and $L . S_{3}$ is 5 -fold OD-characterizable.

Keywords: prime graph, recognition, linear group, finite simple group, degree pattern

1. Introduction

Let G be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of G. The prime graph $\Gamma(G)$ of a finite group G is a simple graph with vertex set $\pi(G)$ in which two distinct vertices p and q are joined by an edge if and only if G has an element of order $p q$.

Definition 1.1 Let G be a finite group and $|G|=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where $p_{1}<$ $p_{2}<\ldots<p_{k}$. For $p \in \pi(G)$, let $\operatorname{deg}(p)=|\{q \in \pi(G) \mid p \sim q\}|$ be the degree of p in the graph $\Gamma(G)$, we define $D(G)=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \ldots, \operatorname{deg}\left(p_{k}\right)\right)$, which is called the degree pattern of G.

Given a finite group G, denote by $h_{O D}(G)$ the number of isomorphism classes of finite groups S such that $|G|=|S|$ and $D(G)=D(S)$. In terms of the function $h_{O D}$, groups G are classified as follows:

Definition 1.2 A group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic group S such that $|G|=|S|$ and $D(G)=D(S)$. Moreover, a 1fold OD-characterizable group is simply called an OD-characterizable.
Definition 1.3 A group G is said to be an almost simple related to S if and only if $S \unlhd G \unlhd \operatorname{Aut}(S)$ for some non-abelian simple group S.
Definition 1.4 Let p be a prime number. The set of all non-abelian finite simple groups G such that $p \in \Pi(G) \subseteq\{2,3,5, \ldots, p\}$ is denoted by \mathfrak{S}_{p}. It is clear that the set of all non-abelian finite simple groups is the disjoint union of the finite sets \mathfrak{S}_{p} for all primes p.

[^0]
2. Preliminaries

For any group G, let $w(G)$ be the set of orders of elements in G, where each possible order element occurs once in $w(G)$ regardless of how many elements of that order G has. This set is closed and partially ordered by divisibility, hence it is uniquely determined by its maximal elements. The set of maximal elements of $w(G)$ is denoted by $\mu(G)$. The number of connected components of $\Gamma(G)$ is denoted by $t(G)$. Let $\pi_{i}=\pi_{i}(G), 1 \leqslant i \leqslant t(G)$, be the i th connected components of $\Gamma(G)$. For a group of even order we let $2 \in \pi_{1}(G)$. We denote by $\pi(n)$ the set of all primes divisors of n , where n is a natural number. Then $|G|$ can be expressed as a product of $m_{1}, m_{2}, \ldots, m_{t(G)}$, where m_{i} 's are positive integers with $\pi\left(m_{i}\right)=\pi_{i}$. These m_{i} 's are called the order components of G. We write $O C(G)=\left\{m_{1}, m_{2}, \ldots, m_{t(G)}\right\}$ and call it the set of order components of G. The set of prime graph components of G is denoted by $T(G)=\left\{\pi_{i}(G) \mid i=1,2, \ldots, t(G)\right\}$.

Definition 2.1 Let n be a natural number. We say that a finite simple group G is a simple K_{n}-group if $|\pi(G)|=n$.

Definition 2.2 Suppose that $K \unlhd G$ and $G / K \cong H$. Then we shall call G an extension of K by H.

3. Elementary Results

Lemma $3.1[5]$ Let G be a finite group and $|\pi(G)| \geqslant 3$. If there exist prime numbers $r, s, t \in \pi(G)$ such that $\{t r, t s, r s\} \cap \omega(G)=\varnothing$, then G is non-solvable.

Definition 3.2 A group G is called a 2-Frobenius group, if there exists a normal series $1 \triangleleft H \triangleleft K \triangleleft G$, such that K and $\frac{G}{H}$ are Frobenius groups with kernels H and $\frac{K}{H}$, respectively.

Lemma 3.3 [1]Let G be a 2-Frobenius group of even order which has a normal series $1 \triangleleft H \triangleleft K \triangleleft G$, such that K and $\frac{G}{H}$ are Frobenius groups with kernels H and $\frac{K}{H}$, respectively. Then
(1) $t(G)=2$ and $T(G)=\left\{\pi_{1}(G)=\pi(H) \cup \pi\left(\frac{G}{K}\right), \pi_{2}(G)=\pi\left(\frac{K}{H}\right)\right\}$.
(2) $\frac{G}{K}$ and $\frac{K}{H}$ are cyclic groups, $\left|\frac{G}{K}\right|\left|\left|\operatorname{Aut}\left(\frac{K}{H}\right)\right|\right.$, and $\left(\left|\frac{G}{K}\right|,\left|\frac{K}{H}\right|\right)=1$.
(3) H is a nilpotent group and G is a solvable group.

The following lemmas are useful when dealing with a Frobenius group.
Lemma 3.4 [3], [8]Let G be a Frobenius group with complement H and kernel K. Then the following assertions hold:
(1) K is a nilpotent group;
(2) $|K| \equiv 1(\bmod |H|)$;
(3) Every subgroup of H of order $p q$, with p, q (not necessarily distinct)primes, is cyclic. In particular, every Sylow Subgroup of H of odd order is cyclic and a 2-Sylow subgroup of H is either cyclic or a generalized quaternion group. If H is a non-solvable group, then H has a subgroup of index at most 2 isomorphic to $Z \times S L(2,5)$, where Z has cyclic Sylow p-subgroups and $\pi(Z) \cap\{2,3,5\}=\varnothing$. In particular, $15,20 \notin \omega(H)$.

Lemma $3.5 \quad[1]$ Let G be a Frobenius group of even order where H and K are Frobenius complement and Frobenius kernel of G, respectively. Then $t(G)=2$ and $T(G)=\{\pi(H), \pi(K)\}$.

The structure of a finite group with non-connected prime graph is described in the following lemma.

Lemma 3.6 [4], [9]Let G be a finite group with $t(G) \geqslant 2$. Then G is one of the following groups:
(1) G is a Frobenius or a 2-Frobenius group;
(2) G has a normal series $1 \unlhd H \triangleleft K \unlhd G$, such that H and $\frac{G}{K}$ are π_{1}-groups and $\frac{K}{H}$ is a non-abelian simple group, where π_{1} is the prime graph component containing 2, H is a nilpotent group, and $\left|\frac{G}{H}\right|\left|\left|A u t\left(\frac{K}{H}\right)\right|\right.$. Moreover, any odd order component of G is also an odd order component of $\frac{K}{H}$.
The following lemma is taken from [10].
LEmma 3.7 Let $S=P_{1} \times P_{2} \times \ldots \times P_{r}$, where P_{i} 's are isomorphic non-abelian simple groups. Then $\operatorname{Aut}(S) \cong\left(\operatorname{Aut}\left(P_{1}\right) \times \operatorname{Aut}\left(P_{2}\right) \times \ldots \times \operatorname{Aut}\left(P_{r}\right)\right) \cdot S_{r}$.

4. Main Results

THEOREM 4.1 If G is a finite group such that $D(G)=D(M)$ and $|G|=|M|$, where M is an almost simple group related to $L:=U_{3}(11)$, then the following assertions holds:
(1) If $M=L$, then, $G \cong L$,
(2) If $M=L .2$, then, $G \cong L .2$,
(3) If $M=L .3$, then, $G \cong L .3$,
(4) If $M=L . S_{3}$, then, $G \cong L . S_{3}, Z_{3} \times(L .2)$ or $Z_{3} \cdot(L .2),\left(Z_{3} \times L\right) . Z_{2}$, $\left(Z_{3} . L\right) . Z_{2}$.
In particular, L, L. 2 and L. 3 are OD-characterizable; and L. S_{3} is 5-fold OD-characterizable.

Proof We break the proof into a number of separate cases:
Case 1: If $M=L$, then, $G \cong L$ by [7].
Case 2: If $M=L .2$, then, $G \cong L .2$.
If $M=L .2$, by $[2]$, we have $\mu(L .2)=\{24,37,40,44\}$ from which we deduce that $D(L .2)=(3,1,1,1,0)$. The prime graph of $L .2$ has the following form:

$\bullet 37$

Figure 1: The prime graph of L. 2
As $|G|=|L .2|=2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{3} \cdot 37$ and $D(G)=D(L .2)=(3,1,1,1,0)$, then, $\Gamma(G)=\Gamma(M)=\{2 \sim 3,2 \sim 5,2 \sim 11 ; 37\}$.
G is non-solvable. Since $\{3 \cdot 37,5 \cdot 37,3 \cdot 5\} \cap \omega(G)=\varnothing$, therefore by lemma 3.1, G is not solvable. Therefore, by lemma 3.2 (iii), G is not a 2-Frobenius group.

Suppose that G is a non-solvable Frobenius group with H and K as its Frobenius complement and Frobenius kernel, respectively. Using the same notations as in lemma 3.3(iii), we obtain $11 \in \pi(Z)$, it follows that H_{0} has an element of order $11 \cdot 5$, a contradiction.

By lemma 3.5 (ii), G has a normal series $1 \unlhd H \triangleleft K \unlhd G$, such that H is a nilpotent π_{1}-group, K / H is a non-abelian simple group and G / K is a solvable π_{1}-group. Therefore, $K / H \leqslant G / H \leqslant \operatorname{Aut}(K / H)$. Since $37 \nmid|H|$, we have $37 \in \pi(K / H)$.

Therefore, $K / H \in \mathfrak{S}_{37}$ and $\{7,13,17,19,23,29,31\} \nsubseteq \pi(K / H)$. Using [11] we listed the possibilities for K / H in Table 1.

By Table 1, we obtain that K / H isomorphic to $A_{5}, A_{6}, L_{2}(11), M_{11}$ or L.
If $K / H \cong A_{5}$ we get $A_{5} \leqslant G / H \leqslant \operatorname{Aut}\left(A_{5}\right)$, because $G / H \leqslant \operatorname{Aut}(K / H)$. It follows that $|H|=2^{4} \cdot 3 \cdot 11^{3} \cdot 37$ or $|H|=2^{3} \cdot 3 \cdot 11^{3} \cdot 37$. By nilpotency of H, $11 \sim 37$ in $\Gamma(G)$, a contradiction. Similarly, we can prove that $K / H \not \equiv A_{6}, L_{2}(11)$ or M_{11}.

Therefore, $K / H \cong L$. As $|G|=2|L|$, we deduce $|H|=1$ or 2 .
If $|H|=1$, then, $G \cong L .2$.
If $|H|=2$, then, $G / C_{G}(H) \leqslant \operatorname{Aut}(H) \cong Z_{2}^{\times}=1$, so $G=C_{G}(H)$. Therefore, $H \leqslant Z(G)$. It follows that $2 \sim 37$ in $\Gamma(G)$, a contradiction.

Table 1: Non-abelian simple group $S \in \mathfrak{S}_{37}$ with $\pi(S) \subseteq\{2,3,5,11,37\}$

S	$\|S\|$	\mid out $(S) \mid$	S	$\|S\|$	\mid out $(S) \mid$
A_{5}	$2^{2} \cdot 3 \cdot 5$	2			
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	4			
$U_{4}(2) \cong S_{41}(3)$	$2^{6} \cdot 3^{4} \cdot 5$	2	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	1	
$L_{2}(11)$	2_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	2		
$2^{2} \cdot 3 \cdot 5 \cdot 11$	2	$U_{5}(2)$	$2^{10} \cdot 3^{5} \cdot 5 \cdot 11$	2	
$U_{3}(11)$	$2^{5} \cdot 3^{2} \cdot 5 \cdot 11^{3} \cdot 37$	6			

Case 3: If $M=L .3$, then $G \cong L .3$.
If $M=L .3$, by $[2]$, we have $\mu(L .3)=\{111,120,132\}$ from which we deduce that $D(L .3)=(3,3,2,2,1)$. The prime graph of $L .3$ has the following form:

Figure 2: The prime graph of $L .3$
As $|G|=|L .3|=2^{5} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 37$ and $D(G)=D(L .3)=(3,4,2,2,1)$, then, $\Gamma(G)=\Gamma(M)=\{2 \sim 3,2 \sim 5,2 \sim 11,3 \sim 5,3 \sim 11,3 \sim 37\}$.

LEMMA 4.2 Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3\}$-group. In particular, G is non-solvable.

Proof First assume that $\{5,11\} \subseteq \pi(K)$. Let H be a Hall $\{5,11\}$-subgroup of K. It is easy to see that H is a subgroup of order $5 \cdot 11^{3}$. H is nilpotent, since $H=H_{5} \cdot H_{11}$, $5 \nsim 11$, therefore $H_{5} \cap H_{11}=\{1\}$. We have $H_{5} \unlhd H$ and $N_{11}=11 k+1| | H \mid=5.11^{3}$, where N_{11} is the number of 11- Sylow subgroups from H, and $\left(N_{11}, 11\right)=1$ then $11 k+1 \mid 5$, hence $k=0$ and, by Sylow's Lemma, $H_{11} \unlhd H$. Therefore $H \cong H_{5} \times H_{11}$ and by Tampson's Lemma, we have H_{11} is nilpotent, hence H is nilpotent.
Since H is nilpotent, which implies that $5 \cdot 11 \in \omega(K) \subseteq \omega(G)$, a contradiction. Thus $\{5\} \subseteq \pi(K) \subseteq\{2,3,5,37\}$. Let $K_{5} \in S y l_{5}(K)$, by Frattini argument $G=$ $K N_{G}\left(K_{5}\right)$. Therefore, the normalizer $N_{G}\left(K_{5}\right)$ contains an element of order 11, say x. Similar to H we can prove that $\langle x\rangle K_{5}$ is a nilpotent subgroup of G of order $5 \cdot 11$. Hence $5 \cdot 11 \in \omega(G)$, a contradiction. Similarly, we can prove that $\{11,37\} \cap \pi(K)=\varnothing$. Therefore, K is a $\{2,3\}$-group. In addition, since $K \neq G$, it follows that G is non-solvable. This completes the proof.

Lemma 4.3 The quotient G / K is an almost simple group. In fact, $S \leqslant G / K \leqslant$ Aut (S), where $S \cong L$.

Proof Let $\bar{G}:=G / K, S:=\operatorname{Soc}(\bar{G})$, where $\operatorname{Soc}(\bar{G})$ denotes the socle of the group \bar{G}, i.e., the subgroup of \bar{G} generated by the set of all the minimal normal subgroups of \bar{G}. Then, $S \cong P_{1} \times P_{2} \times \ldots \times P_{r}$, where P_{i} 's are non-abelian simple groups and $S \leqslant \bar{G} \leqslant \operatorname{Aut}(S)$. In what follows, we will show that $r=1$ and $P_{1} \cong L$.

Suppose that $r \geqslant 3$, then, there exists distinct P_{i} and P_{j} such that $\pi\left(P_{i}\right) \neq$ $\pi\left(P_{j}\right)$, because $|G|_{5}=5,|G|_{11}=11^{3}$ and $|G|_{37}=37$, where n_{p} denotes the p part of the integer $n \in N$. If $\left|\pi\left(P_{i}\right)\right|=5$ or $\left|\pi\left(P_{j}\right)\right|=5$, then, $37 \in \pi\left(P_{i}\right)$ or $37 \in \pi\left(P_{j}\right)$. It follows that $2.37 \in \omega(G)$, a contradiction. Hence, without loss of generality, by Table 1, we can suppose that $\{2,3\} \subseteq \pi\left(P_{i}\right) \subseteq\{2,3, p, q\}$ and $\{2,3\} \subseteq \pi\left(P_{j}\right) \subseteq\{2,3, r, s\}$, where $\{r, s\},\{p, q\} \subseteq\{\{5,11\},\{5,37\},\{11,37\}$ and $\{r, s\} \neq\{p, q\}$. As $S \cong P_{1} \times \ldots \times P_{i} \times \ldots \times P_{j} \times \ldots \times P_{r}$, we have $\{p r, p s, q r, q s\} \subseteq$ $\omega(S)$. Thus, $\{p r, p s, q r, q s\} \subseteq \omega(G)$, which is a contradiction because there exists no edge between 5,11 and 37 in $\Gamma(G)$.
Hence, $r=2$ if $r>1$. Recall that $|G|=2^{5} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 37$ and $S \cong P_{1} \times P_{2} \times \ldots \times P_{r}$, where $P_{i}^{\prime} s$ are finite non-abelian simple groups. By Table 1, we have $5 \in \pi\left(P_{i}\right)$, therefore, if $S \cong P_{i} \times P_{j}$, then, $5^{2}| | S \mid$, a contradiction. Thus, $r=1$ and $S=P_{1}$.
By Table $1,\{2,3\} \subseteq \pi(S)$ and $\pi(\operatorname{Out}(S)) \subseteq\{2,3\}$. Therefore, by Lemma 4.7, it is evident that $|S|=2^{a} \cdot 3^{b} \cdot 5 \cdot 11^{3} \cdot 37$, where $2 \leqslant a \leqslant 5$ and $1 \leqslant b \leqslant 3$. Now, using collected results contained in Table 1, we deduce that $S \cong U_{3}(11)$ and the proof is completed.
Lemma $4.4 G \cong L .3$.
Proof By Lemma 4.8, $L \leqslant G / K \leqslant \operatorname{Aut}(L)$. Hence, $|K|=1$ or 3 .
If $|K|=1$, then, $G \cong L .3$.
If $|K|=3$, then, $G / K \cong L$. In this case we have $G / C_{G}(K) \leqslant \operatorname{Aut}(K) \cong Z_{2}$. Thus $\left|G / C_{G}(K)\right|=1$ or 2 . If $\left|G / C_{G}(K)\right|=1$, then $K \leqslant Z(G)$. It follows that $3 \sim 37$ in $\Gamma(G)$, a contradiction. If $\left|G / C_{G}(K)\right|=2$, then $K \subset C_{G}(K)$ and $1 \neq$ $C_{G}(K) / K \unlhd G / K \cong L$. Thus, we obtain $G=C_{G}(K)$ because L is simple, which is a contradiction.

Case 4: If $M=L . S_{3}$, then, $G \cong L . S_{3}, Z_{3} \times(L .2), Z_{3} \cdot(L .2),\left(Z_{3} \times L\right) . Z_{2}$, $\left(Z_{3} \cdot L\right) . Z_{2}$.
If $M=L . S_{3}$, by [2], we have $\mu\left(L . S_{3}\right)=\{111,120,132\}$ from which we deduce that $D\left(L . S_{3}\right)=(3,3,2,2,1)$. The prime graph of $L . S_{3}$ has the following form:

Figure 3: The prime graph of $L . S_{3}$
As $|G|=\left|L \cdot S_{3}\right|=2^{6} \cdot 3^{3} \cdot 5 \cdot 11^{3} \cdot 37$ and $D(G)=D\left(L \cdot S_{3}\right)=(3,4,2,2,1)$, then, $\Gamma(G)=\Gamma(M)=\{2 \sim 3,2 \sim 5,2 \sim 11,3 \sim 5,3 \sim 11,3 \sim 37\}$.

Similarly to Lemma 4.7 in Case 3, we can prove that, if K be the maximal normal solvable subgroup of G, then K is a $\{2,3\}$-group and G is non-solvable. Also, similarly to Lemma 4.8 in case 3 , we can prove that, the quotient G / K is an almost simple group. In fact, $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where $S \cong L$.
Now, we proof that $G \cong L . S_{3}, Z_{3} \times(L .2), Z_{3} \cdot(L .2),\left(Z_{3} \times L\right) . Z_{2},\left(Z_{3} \cdot L\right) . Z_{2}$.
Since $L \leqslant G / K \leqslant \operatorname{Aut}(L)$, then, $|K|=1,2,3$ or 6 .
If $|K|=1$, then, $G \cong L . S_{3}$.
If $|K|=2$, then, $K \leqslant Z(G)$. It follows that $2 \sim 37$ in $\Gamma(G)$, a contradiction.
If $|K|=3$, then, $G / K \cong L .2$. In this case we have $G / C_{G}(K) \leqslant \operatorname{Aut}(K) \cong Z_{2}$.
Thus, $\left|G / C_{G}(K)\right|=1$ or 2 . If $\left|G / C_{G}(K)\right|=1$, then, $K \leqslant Z(G)$, i.e., G is a
central extension of Z_{3} by $L .2$. If G splits over K we obtain $G \cong Z_{3} \times(L .2)$, otherwise, we have $G \cong Z_{3} \cdot(L .2)$. If $\left|G / C_{G}(K)\right|=2$, then, $K \subset C_{G}(K)$ and $1 \neq C_{G}(K) / K \unlhd G / K \cong L .2$, and we obtain that $C_{G}(K) / K \cong L$. Because $K \leqslant$ $Z\left(C_{G}(K)\right), C_{G}(K)$ is a central extension of K by L. If G splits over K, we obtain that $C_{G}(K) \cong Z_{3} \times L$. Otherwise, we have $C_{G}(K)=Z_{3} \cdot L$. Thus, $G \cong\left(Z_{3} \times L\right) . Z_{2}$ or $G \cong\left(Z_{3} \cdot L\right) . Z_{2}$.

If $|K|=6$, then, $G / K \cong L$ and $K \cong Z_{6}$ or S_{3}.
Subcase 1: If $K \cong Z_{6}$, then, $G / C_{G}(K) \leqslant A u t\left(Z_{6}\right)=Z_{6}^{\times} \cong Z_{2}$ and so $\left|G / C_{G}(K)\right|=1$ or 2 . If $\left|G / C_{G}(K)\right|=1$, then, $Z_{6} \cong K \leqslant Z(G)$. It follows that $2 \sim 37$ in $\Gamma(G)$, a contradiction. If $\left|G / C_{G}(K)\right|=2$, then, $K \subset C_{G}(K)$ and $1 \neq C_{G}(K) / K \unlhd G / K \cong L$, which is a contradiction since L is simple.

Subcase 2: If $K \cong S_{3}$, then, $K \cap C_{G}(K)=1$ and $G / C_{G}(K) \leqslant S_{3}$. Thus, $C_{G}(K) \neq$ 1. Hence, $1 \neq C_{G}(K) \cong C_{G}(K) K / K \unlhd G / K \cong L$. It follows that $L \cong G / K \cong$ $C_{G}(K)$ because L is simple. Therefore, $G \cong S_{3} \times L$, Which implies that $2 \sim 37$ in $\Gamma(G)$, a contradiction.

References

[1] G. Y. Chen, On structure of Frobenius and 2-Frobenius group, Jornal of Southwest China Normal University, 20(5) (1995), pp. 485-487.(in Chinese)
2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).
[3] D. Gorenstein, Finite Groups, New York, Harpar and Row, (1980).
[4] A. S. Kondratev, Prime graph components of finite simple groups, Math. Sb., 180(6) (1989), pp. 787797.
[5] M. S. Lucido and A. R. Moghaddamfar, Groups in which all the connected components of their prime graphs are complete, Journal of Group Theory, 7(3) (2004), pp.373-384.
[6] V. D. Mazurov, Recognization of finite groups by a set of orders of their elements, Algebra and Logic, 37(6) (1998), pp.371-379.
[7] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, A characterization of finite simple groups by degrees of vertices of their prime graphs, Algebra Colloquium, 12(3) (2005), pp.431-442.
[8] D. S. Passman,Permutation Groups, New York, Benjamin Inc., (1968).
[9] J. S. Williams, Prime graph components of finite groups, J. Alg. 69(2) (1981), pp. 487-513.
[10] A. V. Zavarnitsine, Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime r and the group of degree 16 by their element order sets, Algebra and Logic, 39(6) (2000), pp. 370-377.
[11] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian Electronic Math. Reports. 6 (2009), pp. 1-12.

[^0]: *Corresponding author. Email: P. Nosratpour@ilam-iau.ac.ir

