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OD-characterization of almost simple groups related to U3(11)
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Abstract. Let L := U3(11). In this article, we classify groups with the same order and
degree pattern as an almost simple group related to L. In fact, we prove that L, L.2 and L.3
are OD-characterizable, and L.S3 is 5-fold OD-characterizable.
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1. Introduction

Let G be a finite group. Denote by π(G) the set of all prime divisors of the order
of G. The prime graph Γ(G) of a finite group G is a simple graph with vertex set
π(G) in which two distinct vertices p and q are joined by an edge if and only if G
has an element of order pq.

Definition 1.1 Let G be a finite group and |G| = pα1

1 · pα2

2 · · · pαk

k , where p1 <
p2 < . . . < pk. For p ∈ π(G), let deg(p) = |{q ∈ π(G)|p ∼ q}| be the degree of p in
the graph Γ(G), we define D(G) = (deg(p1), deg(p2), . . . , deg(pk)), which is called
the degree pattern of G.

Given a finite group G, denote by hOD(G) the number of isomorphism classes
of finite groups S such that |G| = |S| and D(G) = D(S). In terms of the function
hOD, groups G are classified as follows:

Definition 1.2 A group G is called k-fold OD-characterizable if there exist exactly
k non-isomorphic group S such that |G| = |S| and D(G) = D(S). Moreover, a 1-
fold OD-characterizable group is simply called an OD-characterizable.

Definition 1.3 A group G is said to be an almost simple related to S if and only
if S ⊴G⊴Aut(S) for some non-abelian simple group S.

Definition 1.4 Let p be a prime number. The set of all non-abelian finite simple
groups G such that p ∈ Π(G) ⊆ {2, 3, 5, . . . , p} is denoted by Sp. It is clear that
the set of all non-abelian finite simple groups is the disjoint union of the finite sets
Sp for all primes p.
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2. Preliminaries

For any group G, let w(G) be the set of orders of elements in G, where each
possible order element occurs once in w(G) regardless of how many elements of
that order G has. This set is closed and partially ordered by divisibility, hence it
is uniquely determined by its maximal elements. The set of maximal elements of
w(G) is denoted by µ(G). The number of connected components of Γ(G) is denoted
by t(G). Let πi = πi(G), 1 ⩽ i ⩽ t(G), be the ith connected components of Γ(G).
For a group of even order we let 2 ∈ π1(G). We denote by π(n) the set of all primes
divisors of n, where n is a natural number. Then |G| can be expressed as a product
of m1,m2, . . . ,mt(G), where mi’s are positive integers with π(mi) = πi. These mi’s
are called the order components of G. We write OC(G) = {m1,m2, . . . ,mt(G)} and
call it the set of order components of G. The set of prime graph components of G
is denoted by T (G) = {πi(G)|i = 1, 2, . . . , t(G)}.

Definition 2.1 Let n be a natural number. We say that a finite simple group G
is a simple Kn-group if |π(G)| = n.

Definition 2.2 Suppose that K ⊴ G and G/K ∼= H. Then we shall call G an
extension of K by H.

3. Elementary Results

Lemma 3.1 [5]Let G be a finite group and |π(G)| ⩾ 3. If there exist prime numbers
r, s, t ∈ π(G) such that {tr, ts, rs} ∩ ω(G) = ∅, then G is non-solvable.

Definition 3.2 A group G is called a 2-Frobenius group, if there exists a normal
series 1 ◁ H ◁ K ◁ G, such that K and G

H are Frobenius groups with kernels H

and K
H , respectively.

Lemma 3.3 [1]Let G be a 2-Frobenius group of even order which has a normal
series 1 ◁ H ◁ K ◁ G, such that K and G

H are Frobenius groups with kernels H

and K
H , respectively. Then

(1) t(G) = 2 and T (G) = {π1(G) = π(H) ∪ π(GK ), π2(G) = π(KH )}.
(2) G

K and K
H are cyclic groups, |GK | | |Aut(KH )|, and (|GK |, |KH |) = 1.

(3) H is a nilpotent group and G is a solvable group.

The following lemmas are useful when dealing with a Frobenius group.

Lemma 3.4 [3], [8]Let G be a Frobenius group with complement H and kernel K.
Then the following assertions hold:

(1) K is a nilpotent group;
(2) |K| ≡ 1(mod|H|);
(3) Every subgroup of H of order pq, with p, q (not necessarily distinct)primes,

is cyclic. In particular, every Sylow Subgroup of H of odd order is cyclic
and a 2-Sylow subgroup of H is either cyclic or a generalized quaternion
group. If H is a non-solvable group, then H has a subgroup of index at most
2 isomorphic to Z × SL(2, 5), where Z has cyclic Sylow p-subgroups and
π(Z) ∩ {2, 3, 5} = ∅. In particular, 15, 20 /∈ ω(H).

Lemma 3.5 [1]Let G be a Frobenius group of even order where H and K are
Frobenius complement and Frobenius kernel of G, respectively. Then t(G) = 2 and
T (G) = {π(H), π(K)}.
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The structure of a finite group with non-connected prime graph is described in
the following lemma.

Lemma 3.6 [4], [9]Let G be a finite group with t(G) ⩾ 2. Then G is one of the
following groups:

(1) G is a Frobenius or a 2-Frobenius group;
(2) G has a normal series 1⊴H◁K⊴G, such that H and G

K are π1-groups and
K
H is a non-abelian simple group, where π1 is the prime graph component

containing 2, H is a nilpotent group, and |GH | | |Aut(KH )|. Moreover, any

odd order component of G is also an odd order component of K
H .

The following lemma is taken from [10].

Lemma 3.7 Let S = P1 × P2 × . . . × Pr, where Pi’s are isomorphic non-abelian
simple groups. Then Aut(S) ∼= (Aut(P1)×Aut(P2)× . . .×Aut(Pr)) · Sr.

4. Main Results

Theorem 4.1 If G is a finite group such that D(G) = D(M) and |G| = |M |,
where M is an almost simple group related to L := U3(11), then the following
assertions holds:

(1) If M = L, then, G ∼= L,
(2) If M = L.2, then, G ∼= L.2,
(3) If M = L.3, then, G ∼= L.3,
(4) If M = L.S3, then, G ∼= L.S3, Z3 × (L.2) or Z3.(L.2), (Z3 × L).Z2,

(Z3.L).Z2.
In particular, L, L.2 and L.3 are OD-characterizable; and L.S3 is 5-fold
OD-characterizable.

Proof We break the proof into a number of separate cases:
Case 1: If M = L, then, G ∼= L by [7].
Case 2: If M = L.2, then, G ∼= L.2.
If M = L.2, by [2], we have µ(L.2) = {24, 37, 40, 44} from which we deduce

that D(L.2) = (3, 1, 1, 1, 0). The prime graph of L.2 has the following form:

• •

•

•

•37
2

3

5

11

Figure 1: The prime graph of L.2

As |G| = |L.2| = 26 · 32 · 5 · 113 · 37 and D(G) = D(L.2) = (3, 1, 1, 1, 0), then,
Γ(G) = Γ(M) = {2 ∼ 3, 2 ∼ 5, 2 ∼ 11; 37}.
G is non-solvable. Since {3 · 37, 5 · 37, 3 · 5} ∩ ω(G) = ∅, therefore by lemma 3.1,

G is not solvable. Therefore, by lemma 3.2(iii), G is not a 2-Frobenius group.
Suppose that G is a non-solvable Frobenius group with H and K as its Frobenius

complement and Frobenius kernel, respectively. Using the same notations as in
lemma 3.3(iii),we obtain 11 ∈ π(Z), it follows that H0 has an element of order
11 · 5, a contradiction.
By lemma 3.5(ii), G has a normal series 1⊴H◁K⊴G, such that H is a nilpotent

π1-group, K/H is a non-abelian simple group and G/K is a solvable π1-group.
Therefore, K/H ⩽ G/H ⩽ Aut(K/H). Since 37 ∤ |H|, we have 37 ∈ π(K/H).
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Therefore, K/H ∈ S37 and {7, 13, 17, 19, 23, 29, 31} ⊈ π(K/H). Using [11] we
listed the possibilities for K/H in Table 1.

By Table 1, we obtain that K/H isomorphic to A5, A6, L2(11), M11 or L.
If K/H ∼= A5 we get A5 ⩽ G/H ⩽ Aut(A5), because G/H ⩽ Aut(K/H). It

follows that |H| = 24 · 3 · 113 · 37 or |H| = 23 · 3 · 113 · 37. By nilpotency of H,
11 ∼ 37 in Γ(G), a contradiction. Similarly, we can prove that K/H ≇ A6, L2(11)
or M11.
Therefore, K/H ∼= L. As |G| = 2|L|, we deduce |H| = 1 or 2.
If |H| = 1, then, G ∼= L.2.
If |H| = 2, then, G/CG(H) ⩽ Aut(H) ∼= Z×

2 = 1, so G = CG(H). Therefore,
H ⩽ Z(G). It follows that 2 ∼ 37 in Γ(G), a contradiction.

Table 1: Non-abelian simple group S ∈ S37 with π(S) ⊆ {2, 3, 5, 11, 37}

S |S| |out(S)|
A5 22 · 3 · 5 2
A6 23 · 32 · 5 4
U4(2) ∼= S4(3) 26 · 34 · 5 2
L2(11) 22 · 3 · 5 · 11 2

S |S| |out(S)|
M11 24 · 32 · 5 · 11 1
M12 26 · 33 · 5 · 11 2
U5(2) 210 · 35 · 5 · 11 2
U3(11) 25 · 32 · 5 · 113 · 37 6

Case 3: If M = L.3, then G ∼= L.3.
If M = L.3, by [2], we have µ(L.3) = {111, 120, 132} from which we deduce

that D(L.3) = (3, 3, 2, 2, 1). The prime graph of L.3 has the following form:

• •

•

•

•2
3

5

37

11
Figure 2: The prime graph of L.3

As |G| = |L.3| = 25 · 33 · 5 · 113 · 37 and D(G) = D(L.3) = (3, 4, 2, 2, 1), then,
Γ(G) = Γ(M) = {2 ∼ 3, 2 ∼ 5, 2 ∼ 11, 3 ∼ 5, 3 ∼ 11, 3 ∼ 37}.

Lemma 4.2 Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.

Proof First assume that {5, 11} ⊆ π(K). Let H be a Hall {5, 11}-subgroup of K. It
is easy to see thatH is a subgroup of order 5·113.H is nilpotent, sinceH = H5.H11,
5 ≁ 11, thereforeH5∩H11 = {1}. We haveH5 ⊴ H andN11 = 11k+1 | |H| = 5.113,
where N11 is the number of 11- Sylow subgroups from H, and (N11, 11) = 1 then
11k+1 | 5, hence k = 0 and, by Sylow’s Lemma, H11 ⊴ H. Therefore H ∼= H5×H11

and by Tampson’s Lemma, we have H11 is nilpotent, hence H is nilpotent.
Since H is nilpotent, which implies that 5 · 11 ∈ ω(K) ⊆ ω(G), a contradiction.
Thus {5} ⊆ π(K) ⊆ {2, 3, 5, 37}. Let K5 ∈ Syl5(K), by Frattini argument G =
KNG(K5). Therefore, the normalizer NG(K5) contains an element of order 11, say
x. Similar to H we can prove that < x > K5 is a nilpotent subgroup of G of
order 5 · 11. Hence 5 · 11 ∈ ω(G), a contradiction. Similarly, we can prove that
{11, 37} ∩ π(K) = ∅. Therefore, K is a {2, 3}-group. In addition, since K ̸= G, it
follows that G is non-solvable. This completes the proof. ■

Lemma 4.3 The quotient G/K is an almost simple group. In fact, S ⩽ G/K ⩽
Aut(S), where S ∼= L.
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Proof Let G := G/K, S := Soc(G), where Soc(G) denotes the socle of the group
G, i.e., the subgroup of G generated by the set of all the minimal normal subgroups
of G. Then, S ∼= P1 × P2 × . . .× Pr, where Pi’s are non-abelian simple groups and
S ⩽ G ⩽ Aut(S). In what follows, we will show that r = 1 and P1

∼= L.
Suppose that r ⩾ 3, then, there exists distinct Pi and Pj such that π(Pi) ̸=

π(Pj), because |G|5 = 5, |G|11 = 113 and |G|37 = 37, where np denotes the p-
part of the integer n ∈ N . If |π(Pi)| = 5 or |π(Pj)| = 5, then, 37 ∈ π(Pi) or
37 ∈ π(Pj). It follows that 2.37 ∈ ω(G), a contradiction. Hence, without loss
of generality, by Table 1, we can suppose that {2, 3} ⊆ π(Pi) ⊆ {2, 3, p, q} and
{2, 3} ⊆ π(Pj) ⊆ {2, 3, r, s}, where {r, s}, {p, q} ⊆ {{5, 11}, {5, 37}, {11, 37} and
{r, s} ̸= {p, q}. As S ∼= P1× . . .×Pi× . . .×Pj × . . .×Pr, we have {pr, ps, qr, qs} ⊆
ω(S). Thus, {pr, ps, qr, qs} ⊆ ω(G), which is a contradiction because there exists
no edge between 5, 11 and 37 in Γ(G).
Hence, r = 2 if r > 1. Recall that |G| = 25 ·33 ·5·113 ·37 and S ∼= P1×P2×. . .×Pr,

where P ′
is are finite non-abelian simple groups. By Table 1, we have 5 ∈ π(Pi),

therefore, if S ∼= Pi × Pj , then, 5
2 | |S| , a contradiction. Thus, r = 1 and S = P1.

By Table 1, {2, 3} ⊆ π(S) and π(Out(S)) ⊆ {2, 3}. Therefore, by Lemma 4.7, it
is evident that |S| = 2a · 3b · 5 · 113 · 37, where 2 ⩽ a ⩽ 5 and 1 ⩽ b ⩽ 3. Now, using
collected results contained in Table 1, we deduce that S ∼= U3(11) and the proof is
completed. ■

Lemma 4.4 G ∼= L.3.

Proof By Lemma 4.8, L ⩽ G/K ⩽ Aut(L). Hence, |K| = 1 or 3.
If |K| = 1, then, G ∼= L.3.
If |K| = 3, then, G/K ∼= L. In this case we have G/CG(K) ⩽ Aut(K) ∼= Z2.

Thus |G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then K ⩽ Z(G). It follows that
3 ∼ 37 in Γ(G), a contradiction. If |G/CG(K)| = 2, then K ⊂ CG(K) and 1 ̸=
CG(K)/K ⊴G/K ∼= L. Thus, we obtain G = CG(K) because L is simple, which is
a contradiction. ■

Case 4: If M = L.S3, then, G ∼= L.S3, Z3 × (L.2), Z3 · (L.2), (Z3 × L).Z2,
(Z3 · L).Z2.
If M = L.S3, by [2], we have µ(L.S3) = {111, 120, 132} from which we deduce

that D(L.S3) = (3, 3, 2, 2, 1). The prime graph of L.S3 has the following form:
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11
Figure 3: The prime graph of L.S3

As |G| = |L.S3| = 26 · 33 · 5 · 113 · 37 and D(G) = D(L.S3) = (3, 4, 2, 2, 1), then,
Γ(G) = Γ(M) = {2 ∼ 3, 2 ∼ 5, 2 ∼ 11, 3 ∼ 5, 3 ∼ 11, 3 ∼ 37}.
Similarly to Lemma 4.7 in Case 3, we can prove that, if K be the maximal

normal solvable subgroup of G, then K is a {2, 3}-group and G is non-solvable.
Also, similarly to Lemma 4.8 in case 3, we can prove that, the quotient G/K is an
almost simple group. In fact, S ⩽ G/K ⩽ Aut(S), where S ∼= L.
Now, we proof that G ∼= L.S3, Z3 × (L.2), Z3 · (L.2), (Z3 × L).Z2, (Z3 · L).Z2.
Since L ⩽ G/K ⩽ Aut(L), then, |K| = 1, 2, 3 or 6.
If |K| = 1, then, G ∼= L.S3.
If |K| = 2, then, K ⩽ Z(G). It follows that 2 ∼ 37 in Γ(G), a contradiction.
If |K| = 3, then, G/K ∼= L.2. In this case we have G/CG(K) ⩽ Aut(K) ∼= Z2.

Thus, |G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then, K ⩽ Z(G), i.e., G is a
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central extension of Z3 by L.2. If G splits over K we obtain G ∼= Z3 × (L.2),
otherwise, we have G ∼= Z3 · (L.2). If |G/CG(K)| = 2, then, K ⊂ CG(K) and
1 ̸= CG(K)/K ⊴ G/K ∼= L.2, and we obtain that CG(K)/K ∼= L. Because K ⩽
Z(CG(K)), CG(K) is a central extension of K by L. If G splits over K, we obtain
that CG(K) ∼= Z3×L. Otherwise, we have CG(K) = Z3 ·L. Thus, G ∼= (Z3×L).Z2

or G ∼= (Z3 · L).Z2.
If |K| = 6, then, G/K ∼= L and K ∼= Z6 or S3.
Subcase 1: If K ∼= Z6, then, G/CG(K) ⩽ Aut(Z6) = Z×

6
∼= Z2 and so

|G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then, Z6
∼= K ⩽ Z(G). It follows

that 2 ∼ 37 in Γ(G), a contradiction. If |G/CG(K)| = 2, then, K ⊂ CG(K)
and 1 ̸= CG(K)/K ⊴G/K ∼= L, which is a contradiction since L is simple.
Subcase 2: If K ∼= S3, then, K∩CG(K) = 1 and G/CG(K) ⩽ S3. Thus, CG(K) ̸=

1. Hence, 1 ̸= CG(K) ∼= CG(K)K/K ⊴ G/K ∼= L. It follows that L ∼= G/K ∼=
CG(K) because L is simple. Therefore, G ∼= S3 × L, Which implies that 2 ∼ 37 in
Γ(G), a contradiction. ■
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