A note on power values of generalized derivation in prime ring and noncommutative Banach algebras

Shervin Sahebi ${ }^{\text {a }}$ and Venus Rahmani ${ }^{\text {b,,* }}$
${ }^{\text {a }}$ Department of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 14168-94351, Iran;
${ }^{\mathrm{b}}$ Department of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 14168-94351, Iran

Abstract

Let R be a prime ring with extended centroid C, H a generalized derivation of R and $n \geqslant 1$ a fixed integer. In this paper we study the situations: (1) If $(H(x y))^{n}=$ $(H(x))^{n}(H(y))^{n}$ for all $x, y \in R$; (2) obtain some related result in case R is a noncommutative Banach algebra and H is continuous or spectrally bounded.

Keywords: generalized derivation, prime ring, Banach algebras, Martindale quotient ring.

1. Introduction

Let R be an algebra with center $Z(R)$ and radical Jacobson $\operatorname{rad}(R)$. For given $x, y \in$ R, the Lie commutator of x, y is denoted by $[x, y]$ and defined by $[x, y]=x y-y x$. A linear mapping $d: R \rightarrow R$ is called derivation if it satisfies the Leibniz rule $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. We recall that an additive map $H: R \rightarrow R$ is called a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $H(x y)=H(x) y+x d(y)$ holds for all $x, y \in R$. Many results in literature indicate that global structure of a prime ring R is often lightly connected to the behaviour of additive mappings defined on R. A well-known result of Herstein [10] stated that if R is a prime ring and d is an inner derivation of R such that $d(x)^{n}=0$ for all $x \in R$ and n is fixed integer, then $d=0$. The number of authors extended this theorem in several ways. In [3] Bell and Kappe proved that if d is a derivation of a prime ring R which $d(x y)=d(x) d(y)$ or $d(x y)=d(y) d(x)$ such that for all $x, y \in I$, a non-zero right ideal of R, then $d=0$ on R. Recently in [19] Rehman studies the case when the derivation d is replaced by generalized derivation H. More precisely, he proves the following: Let R is a 2 -torsion free prime ring and $H(x y)=H(x) H(y)$ or $H(x y)=H(y) H(x)$ for all $x, y \in I$, a non-zero ideal of R, then R must be a commutative.

[^0]
1.1 Main result

In the present paper our motivation is to generalize, all the above results by studying the following theorem:

THEOREM 1.1 Let R be a prime ring and H a generalized derivation of R. Suppose $(H(x y))^{n}=(H(x))^{n}(H(y))^{n}$ for all $x, y \in R$ and $n \geqslant 1$ is a fixed integer. Then either R is commutative or $d=0$ and there exists $a \in C$ such that $H(x)=$ ax and $H(y)=$ ay for all $x, y \in R$.

Finally, in the last section of this paper we apply this result to the study of analogous conditions for continuous generalized derivations on Banach algebras.

2. In case R is a prime ring

In this section R denotes a prime ring with extended centroid C, U its two sided Martindale quotient ring. For the definitions and elementary properties of derivation and two sided Martindale quotient ring we refer the reader to [2].

The following results are useful tools needed in the proof of Theorem1.1.
Remark 1 (see [6, Theorem 2]). Let R be a prime ring and I a non-zero ideal of R Then I, R and U satisfy the same generalized polynomial identities with coefficient in U.

Remark 2 (see [16, Theorem 2]). Let R be a prime ring and I a non-zero ideal of R. Then I, R and U satisfy the same differential identities.
Remark 3 Let R be a prime ring and U be the Utumi quotient ring of R and $C=Z(U)$, the center of U. It is well known that any derivation of R can be uniquely extended to a derivation of U, In [16] Lee proved that every generalized derivation H on a dense right ideal of R can be uniquely extended to a generalized derivation of U and assume the form $H(x)=a x+d(x)$ for all $x \in U$, some $a \in U$ and a derivation d of U.

ThEOREM 2.1 (Kharchenko [13]). Let R be a prime ring, d a nonzero derivation of R and I a nonzero ideal of R. If I satisfies the differential identity

$$
f\left(r_{1}, r_{2}, \ldots, r_{n}, d\left(r_{1}\right), d\left(r_{2}\right), \ldots, d\left(r_{n}\right)\right)=0
$$

for any $r_{1}, r_{2}, \ldots, r_{n} \in I$, then one of the following holds:
(i) first item I satisfies the generalized polynomial identity

$$
f\left(r_{1}, r_{2}, \ldots, r_{n}, x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

(ii) d is Q-inner, that is, for some $q \in Q, d(x)=[q, x]$ and I satisfies the generalized polynomial identity

$$
f\left(r_{1}, r_{2}, \ldots, r_{n},\left[q, r_{1}\right],\left[q, r_{2}\right], \ldots,\left[q, r_{n}\right]\right)=0
$$

We establish the following technical result required in the proof of Theorem 1.1.
Lemma 2.2 Let R be a prime ring with extended centroid C. Suppose (axy + $[b, x] y+x a y+x[b, y])^{n}-(a x+[b, x])^{n}(a y+[b, y])^{n}=0$, for all $x, y \in R$ and some $a \in R$. Then R is a commutative or $a, b \in C$.

Proof If R is commutative there is nothing to prove. Suppose R is not commutative. Set

$$
f(x, y)=(a x y+[b, x] y+x a y+x[b, y])^{n}-(a x+[b, x])^{n}(a y+[b, y])^{n}
$$

Since R is not commutative, then by Remark $1, f(x, y)$ is a nontrivial generalized polynomial identity for R and so for U.
In case C is infinite, we have $f(x, y)=0$ for all $x, y \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed [12], we may replace R by U or $U \bigotimes_{C} \bar{C}$ according to C is finite or infinite. Thus we may assume that R is a centrally closed over C which is either finite or algebraically closed and $f(x, y)=0$ for all $x, y \in R$. By Martindale's Theorem [17], R is then a primitive ring having nonzero socle H with C as associated division ring. Hence by Jacobson's Theorem [12] R is isomorphic to a dense ring of linear transformations of some vector space V over C, and H consists of the linear transformations in R of finite rank. Let $\operatorname{dim}_{C} V=k$. Then the density of R on V implies that $R \cong M_{k}(C)$. If $\operatorname{dim}_{C} V=1$, then R is a commutative, which is a contradiction.
Suppose that $\operatorname{dim}_{C} V \geqslant 2$. We show that for any $v \in V, v$ and $a v$ are linearly dependent over C. Suppose v and $b v$ are linearly independent for some $v \in V$. By density of R, there exist $x, y \in R$ such that

$$
\begin{aligned}
& x v=0, x b v=-v, \\
& y v=0, y b v=-v .
\end{aligned}
$$

Hence we get following contradiction

$$
0=\left((a x y+[b, x] y+x a y+x[b, y])^{n}-(a x+[b, x])^{n}(a y+[b, y])^{n}\right) v=-v .
$$

So we conclude that $\{v, a v\}$ are linearly C-dependent. Hence for each $v \in V$, $a v=v \alpha_{v}$ for some $\alpha_{v} \in C$. Now we prove α_{v} is not depending on the choice of $v \in V$.
Since $\operatorname{dim}_{C} V \geqslant 2$ there exists $w \in V$ such that v and w are linearly independent over C. Now there exist $\alpha_{v}, \alpha_{w}, \alpha_{v+w} \in C$ such that

$$
b v=v \alpha_{v}, b w=w \alpha_{w}, b(v+w)=(v+w) \alpha_{(v+w)} .
$$

Which implies

$$
v\left(\alpha_{v}-\alpha_{(v+w)}\right)+w\left(\alpha_{w}-\alpha_{(v+w)}\right)=0
$$

and since $\{v, w\}$ are linearly C-independent, it follows $\alpha_{v}=\alpha_{(v+w)}=\alpha_{w}$. Therefore there exists $\alpha \in C$ such that $b v=v \alpha$ for all $v \in V$.
Now let $r \in R, v \in V$. Since $b v=v \alpha$,

$$
[b, r] v=(b r) v-(r b) v=b(r v)-r(b v)=(r v) \alpha-r(v \alpha)=0,
$$

that is $[b, r] V=0$. Hence $[b, r]=0$ for all $r \in R$, implying $b \in C$. Similarly we get $a \in C$.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Let R be not commutative. By the given hypothesis R satisfies the generalized differential identity

$$
\begin{equation*}
(H(x) y+x H(y))^{n}=(H(x))^{n}(H(y))^{n} \tag{1}
\end{equation*}
$$

By Remark 2, R and U satisfy the same differential identities, thus U satisfies (1). As we have already remarked in Remark 3, we may assume that for all $x, y \in U$, $H(x)=a x+d(x), H(y)=a y+d(y)$, for some $a \in U$ and a derivation d of U. Hence U satisfies

$$
\begin{equation*}
(a x y+d(x) y+x d(y))^{n}-(a x+d(x))^{n}(a y+d(y))^{n}=0 \tag{2}
\end{equation*}
$$

Assume first that d is inner derivation of U, i.e., there exists $b \in Q$ such that $d(x)=[b, x]$ and $d(y)=[b, y]$ for all $x, y \in U$. Then by (2), we have

$$
(a x y+[b, x] y+x a y+x[b, y])^{n}-(a x+[b, x])^{n}(a y+[b, y])^{n}=0
$$

for all $x, y \in U$. Now by Lemma $2.2, a, b \in C$ and so $d=0$. Hence for some $a \in C$, $H(x)=a x$ and $H(y)=a y$ for all $x, y \in U$ and so for all $x \in R$.
If d is not a U-inner derivation, then by Theorem $2,(2)$ becomes

$$
(a x y+z y+x a y+x w)^{n}-(a x+z)^{n}(a y+w)^{n}=0
$$

for all $x, y, z, w \in U$. In particular U satisfies its blended component $(a x y+z y+$ $x a y+x w)^{n}$. This is a polynomial identity and hence there exists a field F such that $U \subseteq M_{k}(F)$, the ring of $k \times k$ matrices over field F, where $k>1$. Moreover U and $M_{k}(F)$ satisfy the same polynomial identity [15, Lemma 1]. But by choosing $x=w=e_{i i}, y=0$, we get

$$
0=(a x y+z y+x a y+x w)^{n}=e_{i i}
$$

which is a contradiction. This complete the proof.

2.1 Example

The following example shows the hypothesis of primeness is essential in theorem 1.1.

Example 2.3 Let S be any ring, and $R=\left\{\left.\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, c \in S\right\}$. Define $d: R \rightarrow R$ as follows:

$$
d\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Then $0 \neq d$ is a derivation of R such that $(d(x y))^{n}=(d(x))^{n}(d(y))^{n}$ for all $x, y \in R$, where $n \geqslant 1$ is a fixed integer, however R is not commutative.

3. In case R is complex Banach algebra

Here R will denote a complex Banach algebra. Let us introduce some well known and elementary definition for a sake of completeness.

By a Banach algebra we shall mean a complex normed algebra R whose underlying vector space is a Banach space. By $\operatorname{rad}(R)$ we denote the Jacobson radical of R. Without loss of generality we assume R to be unital. In fact any Banach algebra R without a unity can be embedded into a unital Banach algebra $R_{I}=R \oplus \mathbb{C}$ as an ideal of codimension one. In particular we may identity R with the ideal $\{(x, 0): x \in R\}$ in R_{I} via the isometric isomorphism $x \rightarrow(x, 0)$. We refer the reader for details to [8, 18].

Our first result in this section is about continuous generalized derivations on a Banach algebras:

ThEOREM 3.1 Let R be a non-commutative Banach algebra, $H=L_{a}+d$ a continuous generalized derivation of R for some $a \in R$ and some derivation d of R. If $(H(x y))^{n}-(H(x))^{n}(H(y))^{n} \in \operatorname{rad}(R)$ for all $x \in R$, then $[a, R] \subseteq \operatorname{rad}(R)$, for all $x \in R$ and $d(R) \subseteq \operatorname{rad}(R)$.
The following results are useful tools needed in the proof of Theorem 3.1.
Remark 1 (see [20]). Any continuous derivation of Banach algebra leaves the primitive ideals invariant.

Remark 2 (see [21]). Any continuous linear derivation on a commutative Banach algebra maps the algebra into its radical.

Remark 3 (see [11]). Any linear derivation on semisimple Banach algebra is continuous.

Now we can prove Theorem 3.1.
Proof of Theorem 3.1. Under the assumption that H is continuous, and since it is well known that the left multiplication map L_{a} is also continuous, we have the derivation d is continuous. As we have already remarked in Remark 1, we may assume that for any primitive ideal P of $R, H(P) \subseteq a P+d(P) \subseteq P$, that is, also the continuous generalized derivation H leaves the primitive ideals invariant. Denote $\frac{R}{P}=\bar{R}$ for any primitive ideals P. Hence we may introduce the generalized derivation $H_{P}: \bar{R} \rightarrow \bar{R}$ by $H_{P}(\bar{x})=H_{p}(x+P)=H(x)+P=a x+d(x)+P$ for all $x \in R$ and $\bar{x}=x+P$. Moreover by $H_{P}(\bar{y})=H_{p}(y+P)=H(y)+P=a y+d(y)+P$ for all $y \in R$ and $\bar{y}=y+P$. Now by our assumption we have

$$
(H(\overline{x y}))^{n}-(H(\bar{x}))^{n}(H(\bar{y}))^{n}=\overline{0}
$$

for all $\bar{x}, \bar{y} \in \bar{R}$. Since \bar{R} is primitive, a fortiori it is prime. Thus by Theorem 1.1, we get that either \bar{R} is commutative, i.e., $[R, R] \subseteq P$ or $d=\overline{0}$ and $\bar{a} \in Z(\bar{R})$, i.e., $d(R) \subseteq P$ and $[a, R] \subseteq P$. Now let P be a primitive ideal such that \bar{R} is commutative, By Remarks 2 and 3, there are no non-zero linear continuous derivations on commutative semisimple Banach algebras. Therefore $d=\overline{0}$ in \bar{R}, and since $[R, R] \subseteq P$ follows by the commutativity of \bar{R}, we also have $[a, R] \subseteq P$. Hence in any case $d(R) \subseteq P$ and $[a, R] \subseteq P$ for all primitive ideal P of R. Since $\operatorname{rad}(R)$ is the intersection of all primitive ideals, we get the required conclusion.
In the special case when R is a semisimple Banach algebra we have:
Corollary 3.2 Let R be a non-commutative semisimple Banach algebra, $H=$ $L_{a}+d$ a continuous generalized derivation of R for some $a \in R$ and some derivation d of R. If $(H(x y))^{n}-(H(x))^{n}(H(y))^{n}=0$ for all $x, y \in R$, then $H(x)=$ ax and $H(y)=$ ay for some $a \in Z(R)$.
Proof For proof we use the fact that $\operatorname{rad}(R)=0$, since R is a semisimple.

References

1] K. I. Beidar, Rings of quotients of semiprime rings, Vestnik Moskovskogo Universiteta. 33(5) (1978), pp. 36-43.
2] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Pure and Applied Math. Vol. 196, New York, 1996.
[3] H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hungar. 53(3-4) (1989), pp. 339-346.
[4] M. Bresar, A note on derivations, Math. J. Okayama Univ. 32 (1990), pp. 83-88.
5] L. Carini, A. Giambruno, Lie ideals and nil derivations, Boll. Un. Math. Ital. 6 (1985), pp. 497-503.
6] C. L. Chuang, GPI's having coefficients in Utumi quotient rings, proc. Amer. Math. soc. 103 (1988), pp. 723-728.
7] B. Felzenszwalb, C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra. 83 (1983), pp. 520-530.
[8] H. Garth Dales, P. Aiena, J. Eschmeier, K. Laursen, G. Willis, Introduction to Banach algebras, operators, and harmonicanalysis, Pablished in the U.S.A by Cambridge University Press, New York, (2003).
[9] A. Giambruno, I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo. 30(2) (1981), pp. 199-206.
[10] I. N. Herstein, Center like elements in prime rings, J. Alebra. 60 (1979), pp. 567-574.
11] B. E. Jacobson, A. M. Sinclair, Continuity of derivations and problem of kaplansky, Amer. J. Math. 90 (1968), pp. 1067-1073.
[12] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37.Providence, RI: Amer. Math.Soc., (1964).
[13] V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic. 17 (1978), pp. 155-168.
[14] C. Lanski, Derivation with nilpotent values on Lie ideals, Proc. Amer. Math. Soc. 108 (1990), pp. 31-37.
[15] C. Lanski, An engle condition with derivation, Proc. Amer. Math. Soc. 183(3) (1993), pp. 731-734.
16] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica. 20(1) (1992), pp. 27-38.
[17] W.S. Martindale III, prime rings satistying a generalized polynomial identity, J.Algebra. 12 (1969), pp. 576-584.
[18] C. M. Ndipingwi, Derivations mapping into the radical, A dissertation submitted to the Faculty of Science University of Johannesburg, (2008).
[19] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glas. Mat. III. 39(1) (2004), pp. 27-30.
[20] A. M. Sinclair, continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), pp.166170.

21] I. M. Singer, J. Werner, Derivations on commutative normed algebras, Math. Ann. 129 (1955), pp. 260-264.

[^0]: *Corresponding author. Email: ven.rahmani.math@iauctb.ac.ir

