n-Jordan homomorphisms on C^{*}-algebras

Abasalt Bodaghi ${ }^{\text {a }}$ and Behrouz Shojaee ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

Let $n \in \mathbb{N}$. An additive map $h: \mathcal{A} \longrightarrow \mathcal{B}$ between algebras \mathcal{A} and \mathcal{B} is called n-Jordan homomorphism if $h\left(a^{n}\right)=(h(a))^{n}$ for all $a \in \mathcal{A}$. We show that every n-Jordan homomorphism between commutative Banach algebras is a n-ring homomorphism when $n<8$. For these cases, every involutive n-Jordan homomorphism between commutative C^{*}-algebras is norm continuous.

Keywords: n-homomorphism; n-ring.

1. Introduction

Let \mathcal{A} and \mathcal{B} be two algebras. An n-ring homomorphism from \mathcal{A} to \mathcal{B} is a map $h: \mathcal{A} \longrightarrow \mathcal{B}$ that is additive (i.e., $h(a+b)=h(a)+h(b)$ for all $a, b \in \mathcal{A}$) and n-multiplicative (i.e., $h\left(a_{1} a_{2} \ldots a_{n}\right)=h\left(a_{1}\right) h\left(a_{1}\right) \ldots h\left(a_{n}\right)$ for all $\left.a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}\right)$. The map $h: \mathcal{A} \longrightarrow \mathcal{B}$ is called n-Jordan homomorphism if it is additive and $h\left(a^{n}\right)=(h(a))^{n}$ for all $a \in \mathcal{A}$. It is clear that every n-ring homomorphism is n Jordan homomorphism but the converse is not true. There are some examples of n-Jordan homomorphisms which are not n-ring homomorphisms (for example refer to [2]). It is shown in [2] that every n-Jordan homomorphism between commutative Banach algebras is also n-ring homomorphism when $n \in\{3,4\}$. For $n=2$, the proof is simple and routine. For the non-commutative case, Zelazko in [9] showed that if \mathcal{A} is a Banach algebra which need not be commutative, and \mathcal{B} is a semisimple commutative Banach algebra, then each Jordan homomorphism $h: \mathcal{A} \longrightarrow \mathcal{B}$ is a ring homomorphism.
An n-ring homomorphism $h: \mathcal{A} \longrightarrow \mathcal{B}$ between C^{*}-algebras is said to be $*$ -n-ring homomorphism if $h\left(a^{*}\right)=h(a)^{*}$ for all $a \in \mathcal{A}$. Similarly one can define *- n-Jordan homomorphism. If, in addition, h is linear, we say that h is involutive n-ring (Jordan) homomorphism.

One of the fundamental results in the study of C^{*}-algebras is that if $T: \mathcal{A} \longrightarrow \mathcal{B}$ is is a $*$-homomorphism between C^{*}-algebras, then it is norm contractive [6 , theorem 2.1.7]. In [4], authors ask: Is every involutive n-ring homomorphism between C^{*}-algebras continuous? Park and Trout in [7] answered this question and proved that every involutive n-ring homomorphism between C^{*}-algebras is in fact norm

[^0]contractive. Some questions of automatic continuity for n-homomorphisms between Banach algebras were also investigated in $[1,5]$. After that, Tomforde in $[8$, theorem 3.6] proved that if \mathcal{A} and \mathcal{B} are unital C^{*}-algebras and $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ is a unital $*$-preserving ring homomorphism, then ϕ is contractive. Consequently, ϕ is also continuous.

In this paper, we prove that every n-Jordan homomorphism between commutative Banach algebras is n-ring homomorphism when $n \in\{5,6,7\}$ (for the case $n=5$ this had been proved earlier by Eshaghi et al in [3] with a long proof). Finally, using these results, we show that every involutive n-Jordan homomorphism between commutative C^{*}-algebras is continuous.

2. Main Results

Theorem 2.1. Let \mathcal{A} and \mathcal{B} be two commutative algebras, and let $h: \mathcal{A} \longrightarrow$ \mathcal{B} be an n-Jordan homomorphism. Then h is an n-ring homomorphism for $n \in$ $\{3,4,5,6,7\}$.

Proof For the cases $n=3,4$, refer to [3]. As for $n=5$, the map h is additive such that $h\left(x^{5}\right)=(h(x))^{5}$ for all $x \in \mathcal{A}$. Using this equality, we have

$$
\begin{equation*}
h\left(\sum_{k=1}^{4}\binom{5}{k} x^{k} y^{5-k}\right)=\sum_{k=1}^{4}\binom{5}{k} h(x)^{k} h(y)^{5-k} \tag{1}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Replacing x by $x+z$ in (1), we obtain

$$
\begin{align*}
& h\left(\left[\sum_{k=0}^{4}\binom{4}{k} x^{k} z^{4-k}\right] y+2\left[\sum_{k=0}^{3}\binom{3}{k} x^{k} z^{3-k}\right] y^{2}\right. \\
& \left.\quad+2\left[\sum_{k=0}^{2}\binom{2}{k} x^{k} z^{2-k}\right] y^{3}+x y^{4}+z y^{4}\right) \\
& \quad=\left[\sum_{k=0}^{4}\binom{4}{k} h(x)^{k} h(z)^{4-k}\right] h(y)+2\left[\sum_{k=0}^{3}\binom{3}{k} h(x)^{k} h(z)^{3-k}\right] h(y)^{2} \\
& \quad+2\left[\sum_{k=0}^{2}\binom{2}{k} h(x)^{k} h(z)^{2-k}\right] h(y)^{3}+h(x) h(y)^{4}+h(z) h(y)^{4} \tag{2}
\end{align*}
$$

for all $x, y, z \in \mathcal{A}$. Combining (1) and (2) gives

$$
\begin{align*}
h\left(2 x^{3} z y+\right. & \left.3 x^{2} z^{2} y+2 x z^{3} y+3 x^{2} z y^{2}+3 x z^{2} y^{2}+2 x z y^{3}\right) \\
= & 2 h(x)^{3} h(z) h(y)+3 h(x)^{2} h(z)^{2} h(y)+2 h(x) h(z)^{3} h(y) \\
& +3 h(x)^{2} h(z) h(y)^{2}+3 h(x) h(z)^{2} h(y)^{2}+2 h(x) h(z) h(y)^{3} \tag{3}
\end{align*}
$$

for all $x, y, z \in \mathcal{A}$. Substituting z by $-x$ in (3), we obtain

$$
\begin{equation*}
h\left(x^{4} y+2 x^{2} y^{3}\right)=h(x)^{4} h(y)+2 h(x)^{2} h(y)^{3} \tag{4}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Now, if we replace y by $y+w$ in (4) and employ the same equality, we get

$$
\begin{equation*}
h\left(x^{2} y^{2} w+x^{2} y w^{2}\right)=h(x)^{2} h(y)^{2} h(w)+h(x)^{2} h(y) h(w)^{2} \tag{5}
\end{equation*}
$$

for all $x, y, w \in \mathcal{A}$. Replacing x by $x+u$ in (5), we have

$$
\begin{equation*}
h\left(x u y^{2} w+x u y w^{2}\right)=h(x) h(u) h(y)^{2} h(w)+h(x) h(u) h(y) h(w)^{2} \tag{6}
\end{equation*}
$$

for all $x, y, u, w \in \mathcal{A}$. Now, if we change y to $y+v$ in (6), we conclude

$$
h(x u y v w)=h(x) h(u) h(y) h(v) h(w)
$$

for all $x, y, u, v, w \in \mathcal{A}$. Therefore h is 5-ring homomorphism.
For the case $n=6$, we assume that the map h is additive and $h\left(x^{6}\right)=(h(x))^{6}$ for all $x \in \mathcal{A}$. This fact implies the following equality if we replace x by $x+y$

$$
\begin{equation*}
h\left(\sum_{k=1}^{5}\binom{6}{k} x^{k} y^{6-k}\right)=\sum_{k=1}^{5}\binom{6}{k} h(x)^{k} h(y)^{6-k} \tag{7}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Commuting x by $x+z$ in (7), we obtain

$$
\begin{aligned}
h & \left(\left[\sum_{k=0}^{5}\binom{5}{k} x^{k} z^{5-k}\right] y+15\left[\sum_{k=0}^{4}\binom{4}{k} x^{k} z^{4-k}\right] y^{2}\right. \\
& \left.+20\left[\sum_{k=0}^{3}\binom{3}{k} x^{k} z^{3-k}\right] y^{3}+15\left[\sum_{k=0}^{2}\binom{2}{k} x^{k} z^{2-k}\right] y^{4}+6 x y^{5}+6 z y^{5}\right) \\
& =6\left[\sum_{k=0}^{5}\binom{5}{k} h(x)^{k} h(z)^{5-k}\right] h(y)+15\left[\sum_{k=0}^{4}\binom{4}{k} h(x)^{k} h(z)^{4-k}\right] h(y)^{2} \\
& +20\left[\sum_{k=0}^{3}\binom{3}{k} h(x)^{k} h(z)^{3-k}\right] h(y)^{3}+15\left[\sum_{k=0}^{2}\binom{2}{k} h(x)^{k} h(z)^{2-k}\right] h(y)^{4} \\
& +6 h(x) h(y)^{5}+6 h(z) h(y)^{5}
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. Combining the above equality and (7), we get

$$
\begin{aligned}
h(6 & {\left[\sum_{k=1}^{4}\binom{5}{k} x^{k} z^{5-k}\right] y+15\left[\sum_{k=1}^{3}\binom{4}{k} x^{k} z^{4-k}\right] y^{2} } \\
& \left.+20\left[\sum_{k=1}^{2}\binom{3}{k} x^{k} z^{3-k}\right] y^{3}+30 z y^{4}\right) \\
& =6\left[\sum_{k=1}^{4}\binom{5}{k} h(x)^{k} h(z)^{5-k}\right] h(y)+15\left[\sum_{k=1}^{3}\binom{4}{k} h(x)^{k} h(z)^{4-k}\right] h(y)^{2} \\
& +20\left[\sum_{k=1}^{2}\binom{3}{k} h(x)^{k} h(z)^{3-k}\right] h(y)^{3}+30 h(x) h(z) h(y)^{4}
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. Changing z to $-x$ in the last equality, we obtain

$$
\begin{equation*}
h\left(x^{4} y^{2}+x^{2} y^{4}\right)=h(x)^{4} h(y)^{2}+h(x)^{2} h(y)^{4} \tag{8}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Now, if we replace y by $y+t$ in (8), we conclude

$$
\begin{gather*}
h\left(x^{4} y t+2 x^{2} y t^{3}+3 x^{2} y^{2} t^{2}+2 x^{2} y^{3} t\right)=h(x)^{4} h(y) h(t)+2 h(x)^{2} h(y) h(t)^{3} \\
+3 h(x)^{2} h(y)^{2} h(t)^{2}+2 h(x)^{2} h(y)^{3} h(t) \tag{9}
\end{gather*}
$$

for all $x, y, t \in \mathcal{A}$. Substituting t by $t+u$ in (9), we have

$$
\begin{align*}
h\left(x^{2} y t^{2} u+x^{2} y t u^{2}+x^{2} y^{2} t u\right) & =h(x)^{2} h(u) h(y) h(t)^{2} h(u)+h(x)^{2} h(u) h(y) h(t) h(u)^{2} \\
& +h(x)^{2} h(y)^{2} h(t) h(u) \tag{10}
\end{align*}
$$

for all $x, y, t, u \in \mathcal{A}$. We replace u by $u+v$ in (10) to obtain

$$
\begin{equation*}
h\left(x^{2} y t u v\right)=h(x)^{2} h(u) h(y) h(t) h(v) \tag{11}
\end{equation*}
$$

for all $x, y, t, u, v \in \mathcal{A}$. Finally if we change x to $x+w$ in (11), we get

$$
h(x y t u v w)=h(x) h(y) h(t) h(u) h(v) h(w) .
$$

The above equality shows that the map h is 6 -ring homomorphism. Now, for $n=7$. Replacing x by $x+y$ in equality $h\left(x^{7}\right)=(h(x))^{7}$, we have

$$
\begin{equation*}
h\left(\sum_{k=1}^{6}\binom{7}{k} x^{k} y^{7-k}\right)=\sum_{k=1}^{6}\binom{7}{k} h(x)^{k} h(y)^{7-k} \tag{12}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Commuting x by $x+z$ in (12), we obtain

$$
\left.\begin{array}{l}
h\left(7\left[\sum_{k=0}^{6}\binom{6}{k} x^{k} z^{6-k}\right] y+21\left[\sum_{k=0}^{5}\binom{5}{k} x^{k} z^{5-k}\right] y^{2}\right. \\
\quad+35\left[\sum_{k=0}^{4}\binom{4}{k} x^{k} z^{4-k}\right] y^{3}+35\left[\sum_{k=0}^{3}\binom{3}{k} x^{k} z^{3-k}\right] y^{4} \\
\left.\quad+21\left[\sum_{k=0}^{2}\binom{2}{k} x^{k} z^{2-k}\right] y^{5}+7 x y^{6}+7 z y^{6}\right)
\end{array}\right] \begin{aligned}
{\left[\sum_{k=0}^{6}\binom{6}{k} h(x)^{k} h(z)^{6-k}\right] h(y)+21\left[\sum_{k=0}^{5}\binom{5}{k} h(x)^{k} h(z)^{5-k}\right] h(y)^{2} } \\
+35\left[\sum_{k=0}^{4}\binom{4}{k} h(x)^{k} h(z)^{4-k}\right] h(y)^{3}+35\left[\sum_{k=0}^{3}\binom{3}{k} h(x)^{k} h(z)^{3-k}\right] h(y)^{4} \\
+21\left[\sum_{k=0}^{2}\binom{2}{k} h(x)^{k} h(z)^{2-k}\right] h(y)^{5}+7 h(x) h(y)^{6}+7 h(z) h(y)^{6}
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. Combining (12) and the above equality, we get

$$
\begin{aligned}
h(7[& \left.\sum_{k=1}^{5}\binom{6}{k} x^{k} z^{6-k}\right] y+21\left[\sum_{k=1}^{4}\binom{5}{k} x^{k} z^{5-k}\right] y^{2} \\
& \left.+35\left[\sum_{k=1}^{3}\binom{4}{k} x^{k} z^{4-k}\right] y^{3}+35\left[\sum_{k=1}^{2}\binom{3}{k} x^{k} z^{3-k}\right] y^{4}+42 x z y^{5}\right) \\
& =7\left[\sum_{k=1}^{5}\binom{6}{k} h(x)^{k} h(z)^{6-k}\right] h(y)+21\left[\sum_{k=1}^{4}\binom{5}{k} h(x)^{k} h(z)^{5-k}\right] h(y)^{2} \\
& +35\left[\sum_{k=1}^{3}\binom{4}{k} h(x)^{k} h(z)^{4-k}\right] h(y)^{3}+35\left[\sum_{k=1}^{2}\binom{3}{k} h(x)^{k} h(z)^{3-k}\right] h(y)^{4} \\
& +42 h(x) h(z) h(y)^{5}
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. Letting z to be $-x$ in the above, we obtain

$$
\begin{equation*}
h\left(3 x^{2} y^{5}+5 x^{4} y^{3}+x^{6} y\right)=3 h(x)^{2} h(y)^{5}+5 h(x)^{4} h(y)^{3}+h(x)^{6} h(y) \tag{13}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Now, if we replace y by $y+t$ in (13) and use the same equality, we conclude

$$
\begin{align*}
& h\left(x^{2} y^{4} t+2 x^{2} y^{3} t^{2}+2 x^{2} y^{2} t^{3}+x^{2} y t^{4}+x^{4} y^{2} t+x^{4} y t^{2}\right) \\
& \quad=h(x)^{2} h(y)^{4} h(t)+2 h(x)^{2} h(y)^{3} h(t)^{2}+2 h(x)^{2} h(y)^{2} h(t)^{3} \\
& \quad+h(x)^{2} h(y) h(t)^{4}+h(x)^{4} h(y)^{2} h(t)+h(x)^{4} h(y) h(t)^{2} \tag{14}
\end{align*}
$$

for all $x, y, t \in \mathcal{A}$. Substituting t by $t+u$ in (14), we have

$$
\begin{aligned}
& h\left(2 x^{2} y^{3} t u+3 x^{2} y^{2} t^{2} u+3 x^{2} y^{2} t u^{2}+2 x^{2} y t^{3} u+3 x^{2} y t^{2} u^{2}+2 x^{2} y t u^{3}+x^{4} y t u\right) \\
& \quad=2 h(x)^{2} h(y)^{3} h(t) h(u)+3 h(x)^{2} h(y)^{2} h(t)^{2} h(u) \\
& \quad+3 h(x)^{2} h(y)^{2} h(t) h(u)^{2}+2 h(x)^{2} h(y) h(t)^{3} h(u) \\
& \quad+3 h(x)^{2} h(y) h(t)^{2} h(u)^{2}+2 h(x)^{2} h(y) h(t) h(u)^{3}+h(x)^{4} h(y) h(t) h(u)
\end{aligned}
$$

for all $x, y, t, u \in \mathcal{A}$. We replace u by $u+v$ in the last equality to obtain

$$
\begin{align*}
h\left(x^{2} y^{2} t u v+\right. & \left.x^{2} y t^{2} u v+x^{2} y t u^{2} v+x^{2} y t u v^{2}\right) \\
= & h(x)^{2} h(y)^{2} h(t) h(u) h(v)+h(x)^{2} h(u) h(y) h(t)^{2} h(u) h(v) \\
& +h(x)^{2} h(y) h(t) h(u)^{2} h(v)+h(x)^{2} h(y) h(t) h(u) h(v)^{2} \tag{15}
\end{align*}
$$

for all $x, y, t, u, v \in \mathcal{A}$. Replacing v by $v+w$ in (15), we deduce

$$
\begin{equation*}
h\left(x^{2} y t u v w\right)=h(x)^{2} h(y) h(t) h(u) h(v) h(w) \tag{16}
\end{equation*}
$$

for all $x, y, t, u, v, w \in \mathcal{A}$. Finally, if we change x to $x+z$ in (16), we get

$$
h(x y z t u v w)=h(x) h(y) h(z) h(t) h(u) h(v) h(w)
$$

for all $x, y, z, t, u, v, w \in \mathcal{A}$. Hence the map h is 7-ring homomorphism.

3. Applications

An element a of a C^{*}-algebra \mathcal{A} is positive if a is hermitian, that is $a=a^{*}$, and $\sigma(a) \subseteq \mathbb{R}^{+}$, where $\sigma(a)$ is the spectrum of a. We write $a \geqslant 0$ to mean a is positive. Also a linear map $T: \mathcal{A} \longrightarrow \mathcal{B}$ between C^{*}-algebras is positive if $a \geqslant 0$ implies $T(a) \geqslant 0$ for all $a \in \mathcal{A}$. We say that the map T is completely positive if, for any natural number k, the induced map $T_{k}: M_{k}(\mathcal{A}) \longrightarrow M_{k}(\mathcal{B}) ; T_{k}\left(\left(a_{i j}\right)\right) \mapsto\left(T\left(a_{i j}\right)\right)$, on $k \times k$ matrices is positive.
proposition 3.1. Let $n \in \mathbb{N}$ such that $2 \leqslant n \leqslant 7$. Suppose \mathcal{A} and \mathcal{B} are commutative C^{*}-algebras. Let α and β be nonnegative real numbers and let r, s be real numbers, f be a map from \mathcal{A} into \mathcal{B}, and let r, s be real numbers such that either $(r-1)(s-1)>0$ and $s \geqslant 0$ or $(r-1)(s-1)>0, s<0$, and $f(0)=0$. Assume that f satisfies the system of functional inequalities

$$
\begin{gathered}
\left\|f\left(x+y+z^{*}\right)-f(x)-f(y)-f(z)^{*}\right\| \leqslant \alpha\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \\
\left\|f\left(x^{n}\right)-f(x)^{n}\right\| \leqslant \beta\|x\|^{n s}
\end{gathered}
$$

for all $x, y \in \mathcal{A}$. Then, there exists a unique $*-n$-ring homomorphism $h: \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$
\|f(x)-h(x)\| \leqslant \frac{2 \alpha}{\left|2-2^{r}\right|}\|x\|^{r}
$$

for all $x \in \mathcal{A}$.
Proof We can deduce the result from [3, theorm 2.1, theorem 2.2] and theorem 2.

The following theorem has been proved by Park and Trout in [7, theorm 3.2].
Theorem 3.1. Let $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ be an involutive n-homomorphism between C^{*}-algebras. If $n \geqslant 3$ is odd, then $\|\phi\| \leqslant 1$, i.e., ϕ is norm-contractive.
corollary 3.1. Let $n \in\{3,5,7\}$, and let \mathcal{A} and \mathcal{B} be commutative C^{*}-algebras. If $h: \mathcal{A} \longrightarrow \mathcal{B}$ is an involutive n-Jordan homomorphism, then $\|h\| \leqslant 1$, i.e., h is norm contractive.

Proof For $n=3$, The result follows from [2, theorm 2.1] and theorem 2 and for $n=5,7$, we can use theorem 2 and theorem 3 .

For the even case, we need the following theorem which is proved in $[7$, theorm 2.3].

Theorem 3.2. Let $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ be an involutive n-homomorphism between C^{*}-algebras. If $n \geqslant 2$ is even, then ϕ is completely positive. Thus, ϕ is bounded.
corollary 3.2. Let $n \in\{4,6\}$. If $h: \mathcal{A} \longrightarrow \mathcal{B}$ is an involutive n-Jordan homomorphism between commutative C^{*}-algebras, then h is completely positive. Thus, h is bounded.

Proof By using [2, theorm 2.1] and theorem 2 for $n=4$ and theorems 2 and 3 for $n=6$, we obtain the desired result.

Question. Let n be an arbitrary and fixed natural number. Is every n-Jordan homomorphism between commutative algebras is also a n-ring homomorphism? If this is true, then every involutive n-Jordan homomorphism between commutative C^{*}-algebras is norm contractive. Is this true in the non-commutative case?

Acknowledgement. The authors sincerely thank the anonymous reviewer for his careful reading, constructive comments and fruitful suggestions to improve the quality of the manuscript.

References

[1] Bracic J., Moslehian M.S., On Aautomatic continuty of 3-homomorphisms on Banach algebra, Bull. Malays. Math. Sci., 30(2007), 195-200.
[2] Eshaghi Gordji M., n-Jodan Homomorphisms, Bull. Aust. Math. Soc., 80 (2009), 159-164.
[3] Eshaghi Gordgi M., Karimi T., and Kaboli Gharetapeh S., Approximately n-Jordan Homomorphisms on Banach Algebras, J. Ineq. Appl., (2009), 8.
[4] Hejazian S., Mirzavaziri M. and Moslehian M.S., n-Homomorphisms, Bull. Iranian Math. Soc., 1 (2005), 13-23.
[5] Honary T.G., Shayanpour H., Automatic Continuity of n-Homomorphisms Between Banach Algebras, Quaest. Math., 33 (2010), 189-196.
[6] Murphy G.J., C ${ }^{*}$-algebras and Operator Theory, Acedemic Press, Sandiego, (1990).
[7] Park E., Trout J., On the nonexistence of nontrivial involutive n-homomorphisms of C^{*}-algebras, Trans. Amer. Math. Soc, 361(2009), 1949-1961.
[8] Tomforde M., Continiuty of ring *-homomorphisms between C^{*}-algebras, New York J. Math. Soc., 15(2009), 161-167.
[9] Zelazko W., A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math, 30(1968), 83-85.

[^0]: *Corresponding author. Email: abasalt.bodaghi@gmail.com

