
European Researcher, 2014, Vol.(79), № 7-2 

1296 

 

  
Copyright © 2014 by Academic Publishing House Researcher 

 
Published in the Russian Federation 
European Researcher 
Has been issued since 2010. 
ISSN 2219-8229 
E-ISSN 2224-0136 
Vol. 79, No. 7-2, pp. 1296-1300, 2014 
 
DOI: 10.13187/issn.2219-8229 
www.erjournal.ru 

 
 

Physical and Mathematical sciences 
 

Физико-Математические науки 
 
 

 
The First Main Boundary Value Problem of Dynamics of Thermo-Resiliency‟s 

Momentum Theory  
 

1 Merab Aghniashvili 
2 Diana Mtchedlishvili 

 
1-2 Iakob Gogebashvili Telavi State University, Georgia 
2200 Telavi, 1, Kartuli Universiteti Str. 
Doctor of Physical and Mathematical sciences 
E-mail: diana.mtchedlishvili@gmail.com 
1 Associate Professor 
2 Professor 
 

Abstract 
In the paper, the first main boundary value problem of Dynamics of Thermo-resiliency‟s 

momentum theory is converted into the Elliptic boundary value problem with the formal usage of 
the Laplace transform. This problem is studied using the method of singular integral equations. 
The solution of the first main boundary value problem is derived using the inverse Laplace 
transform. 
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Introduction 
Let 𝐷 be a finite or infinite three-dimensional space with the compact boundary 𝑆 from the 

class Λ2(𝛼), (𝛼 > 0). 
Denote by 𝐷𝑙  and 𝑆𝑙  cylinders 𝐷𝑙 = 𝐷 × 𝑙, 𝑆𝑙 = 𝑆 × 𝑙, respectively, where 𝑙 =  0, ∞ .  
The main equations of the thermo-resiliency‟s momentum theory can be written in a vector form as 
follows [1], [2]: 

 𝜇 + 𝛼 Δ𝑢 +  𝜆 + 𝜇 − 𝛼  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢 + 2𝛼 𝑟𝑜𝑡 𝜔 − 𝜈 𝑔𝑟𝑎𝑑 휃 + 𝜌𝐹 = 𝜌 𝜕𝑡
2𝑢, 

 𝛾 + 휀 Δ𝜔 +  𝛽 + 𝛾 − 휀  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝜔 − 4𝛼𝜔 + 2𝛼 𝑟𝑜𝑡 𝑢 +  𝜌𝒴 =  휁 𝜕𝑡
2𝜔, 

Δ휃 −
1

𝜗
𝜕𝑡휃 − 휂 𝜕𝑡  𝑑𝑖𝑣 𝑢 +  

1

𝜗
ℚ = 0, 

where 𝑢 𝑥, 𝑡 = (𝑢1 ,𝑢2 ,𝑢3) is a movement vector, while 𝜔 𝑥, 𝑡 = (𝜔1 ,𝜔2 ,𝜔3) is a rotation vector 
and 휃(𝑥, 𝑡) - temperature. By 𝜌, 𝜆, 𝜇,𝛼,𝛽, 𝛾, 휀, 휁, 𝜈,𝜗, 휂 are denoted resiliency constants, by 𝐹 =
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(𝐹1 ,𝐹2 ,𝐹3), 𝒴 = (𝒴1 ,𝒴2,𝒴3), 𝑄 – weight power, weight moment and temperature source, 
respectively.  
The main equations of the thermo-resiliency‟s momentum theory can be written as: 

 𝑀 𝜕𝑥 𝒰 − 𝜈𝜒휃 − 𝜒0 𝜕2𝒰

𝜕𝑡2 = ℋ,   ∆휃 −
1

𝜗

𝜕휃

𝜕𝑡
− 휂

𝜕

𝜕𝑡
 𝑑𝑖𝑣 𝑢 = ℋ7 ,             (1) 

where 𝑀 𝜕𝑥  is a differential operator of the momentum resilience theory [3] and  

𝜒 =  𝜕𝑥1
,𝜕𝑥2

,𝜕𝑥3
 , 𝜒0 =  𝜒𝑖𝑗  6×6

, 𝜒𝑖𝑖
0 = 𝜌 for 𝑖 = 1, 2, 3,  𝜒𝑖𝑖

0 = 휁 for 𝑖 = 4, 5, 6, 𝜒𝑖𝑗
0 = 0 for 𝑖 ≠ 𝑗, 

ℋ =  −𝜌𝐹,−𝜌 𝒴 , ℋ7 = −
1

𝜗
 𝑄 , 𝒰 = (𝑢, 𝑣). 

The first problem states: to find in the cylinder 𝐷𝑙  the solution 𝑈 =  𝒰,휃  of the equation (1) 
belonging to 𝐶1 𝐷 𝑙 ∩ 𝐶

2 𝐷𝑙  and satisfying the initial and boundary conditions: 

lim𝑡→0 𝒰 𝑥, 𝑡 = 𝜑 0  𝑥 ,   lim𝑡→0 휃 𝑥, 𝑡 = 𝜑7
 0  𝑥 ,   lim

𝑡→0

𝜕𝒰 𝑥 ,𝑡 

𝜕𝑡
= 𝜑 1 (𝑥),      (2) 

lim𝐷∋𝑥→𝑦∈𝑆 𝒰 𝑥, 𝑡 = 𝑓 𝑦, 𝑡 ,   lim𝐷∋𝑥→𝑦∈𝑆 휃 𝑥, 𝑡 = 𝑓7 𝑦, 𝑡 ,              (3) 

where 𝜑(𝑖) = ( (𝑖)𝜑
1 , (𝑖)𝜑

2 ) for 𝑖 = 0, 1, (𝑖)𝜑
𝑘 = (𝜑1

𝑘 𝑖 ,𝜑2

𝑘 𝑖 ,𝜑3

𝑘 𝑖 ) for 𝑘 = 1, 2 and 𝜑7
(𝑖)

 for 𝑖 = 0, 1 are 

functions given in the area  𝐷 , while 𝑓 = (𝑓 1 ,𝑓 2 ), 𝑓 𝑖 = (𝑓1
 𝑖 

,𝑓2
 𝑖 

,𝑓3
 𝑖 

) for 𝑖 = 1, 2  and  𝑓7 are 

functions given on 𝑆𝑙 . 
The uniqueness theorem of the solution was proved for this problem in [4].  
It should be mentioned that in boundary cases some conditions are required to be fulfilled [5]. 

 
Solution of the problem 
The stated problem is converted into the Elliptic problem as follows below.  

 Consider the vector function 

  𝐻 = (;  7),  = ( 1 , 2 ),  𝑖 = (1
 𝑖 ,2

 𝑖 ,3
 𝑖 ) for 𝑖 = 1, 2,           (*) 

where  = 𝑒−𝑡
7
 

𝑡𝑘

𝑘!
6
𝑘=0 𝜑 𝑘 (𝑥), 7 = 𝑒−𝑡

5
 

𝑡𝑘

𝑘!
4
𝑘=0 𝜑7

 𝑘 
(𝑥). 

Let 𝑈 =  𝒰,휃  be a solution of the first problem, then 𝑈0 = 𝑈 − 𝐻 will be a solution of the following 
problem: 

𝑀 𝜕𝑥 𝒰0 − 𝜈𝜒θ0 − 𝜒0 𝜕2𝒰0

𝜕𝑡2 = ℋ0,                                 (4) 

     ∆휃0 −
1

𝜗

𝜕휃0

𝜕𝑡
− 휂

𝜕

𝜕𝑡
 𝑑𝑖𝑣 𝑢0 = ℋ07,                                  (5) 

lim𝑡→0 𝒰0 𝑥, 𝑡 = 0, lim
𝑡→0

𝜕𝒰0 𝑥 ,𝑡 

𝜕𝑡
= 0,                                 (6) 

lim𝐷∋𝑥→𝑦∈𝑆 𝒰0 𝑥, 𝑡 = 𝑓 𝑦, 𝑡 −  𝑦, 𝑡 ≡ 𝑓0 𝑦, 𝑡 ,                   (7) 

lim𝐷∋𝑥→𝑦∈𝑆 휃0 𝑥, 𝑡 = 𝑓7 𝑦, 𝑡 − 7 𝑦, 𝑡 ≡ 𝑓07 𝑦, 𝑡 ,                (8) 

where   

ℋ0 = ℋ −𝑀 𝜕𝑥  + 𝜈𝜒h7 − 𝜒0 𝜕2

𝜕𝑡2 ,                           (9) 

ℋ07 = ℋ7 − ∆h7 +
1

𝜗

𝜕h7

𝜕𝑡
− 휂

𝜕

𝜕𝑡
 𝑑𝑖𝑣 (1).                      (10) 

From (9) and (10) we can derive that  

(
𝜕𝑚ℋ0

𝜕𝑡𝑚
)𝑡=0 = 0, (

𝜕𝑘ℋ07

𝜕𝑡𝑘
)𝑡=0 = 0, 𝑥 ∈ 𝐷  for 𝑚 = 0, 1, 2, 3, 4 and k=0, 1, 2, 3.   (11) 

Analogously, from (7) and (8) we get that  

(
𝜕𝑚 𝑓0 𝑦 ,𝑡 

𝜕𝑡𝑚
)𝑡=0 = 0, (

𝜕𝑘𝑓07 𝑦 ,𝑡 

𝜕𝑡𝑘
)𝑡=0 = 0, 𝑦 ∈ 𝑆 for 𝑚 = 0,… , 6 and k=0,… , 4.  (12) 

Let 𝜏 = 𝜍 + 𝑖𝜉 be a complex variable and 𝜍 > 𝜍′, where 𝜍′ is a constant from [5] (condition 40). We 
have: 

ℋ0
  𝑥, 𝜏 =   𝑒−𝜏𝑡

∞

0
ℋ0 𝑥, 𝑡 𝑑𝑡, ℋ07

  𝑥, 𝜏 =  𝑒−𝜏𝑡
∞

0
ℋ07 𝑥, 𝑡 𝑑𝑡       (13) 

𝑓0
  𝑦, 𝜏 =   𝑒−𝜏𝑡

∞

0
𝑓0 𝑦, 𝑡 𝑑𝑡, 𝑓07

  𝑦, 𝜏 =  𝑒−𝜏𝑡
∞

0
𝑓07 𝑦, 𝑡 𝑑𝑡.         (14) 

ℋ,ℋ7 ,𝑓,𝑓7, 𝜑
(0),𝜑(1),𝜑7

0 are taken from [5] according to 10 − 50 conditions, where 𝜍 > 𝜍′ and 

integrals (13) and (14) are absolutely and uniformly convergent. 
With the formal usage of the Laplace transform 

𝑈0
 (x, 𝜏)=   𝑒−𝜏𝑡

∞

0
𝑈0 𝑥, 𝑡 𝑑𝑡,                                 (15) 

the stated boundary value problem can be converted into the following boundary value problem[6]: 
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𝑀 𝜕𝑥 𝒰0
  𝑥, 𝜏 − 𝜒0𝜏2𝒰0

  𝑥, 𝜏 − 𝜈𝜒휃0
  𝑥, 𝜏 = ℋ0

  𝑥, 𝜏 , 

Δ휃0
  𝑥, 𝜏 −

𝜏

𝜗
휃0
  𝑥, 𝜏 −  휂𝜏 𝑑𝑖𝑣 𝑢0  𝑥, 𝜏 = ℋ07

  𝑥, 𝜏 , 

lim𝐷∋𝑥→𝑦∈𝑆 𝒰0
  𝑥, 𝜏 = 𝑓0

  𝑦, 𝜏 , lim𝐷∋𝑥→𝑦∈𝑆 휃0
  𝑥, 𝜏 = 𝑓07

  𝑦, 𝜏 . 

Let us denote this problem by (𝐼𝜏). 
The existence and uniqueness theorem of this problem is given in [7].  

In order to have the inverse Laplace transform for the function 𝑈0
 (x,𝜏) and this transform 

would give the classical solution of the problem (𝐼𝜏), we should prove some estimates for the 

function 𝑈0
 (x,𝜏) and for its up to the second derivatives with respect to 𝜏.  

 For this purpose, we will present the solution of the problem (𝐼𝜏) by the sum of the solutions 
of the following problems: 

𝑀 𝜕𝑥 𝒰0
(1)  𝑥, 𝜏 − 𝜒0𝜏2𝒰0

(1)  𝑥, 𝜏 = 0,                    (16) 

Δ휃0
 (1)

 𝑥, 𝜏 −
𝜏

𝜗
휃0
  1 

 𝑥, 𝜏 = 0,                              (17) 

lim𝐷∋𝑥→𝑦∈𝑆 𝒰0
(1)  𝑥, 𝜏 = 𝑓0

  𝑦, 𝜏 ,                                 (18) 

lim𝐷∋𝑥→𝑦∈𝑆 휃0
 (1)

 𝑥, 𝜏 = 𝑓07
  𝑦, 𝜏 ,                                (19) 

𝑀 𝜕𝑥 𝒰0
(2)  𝑥, 𝜏 − 𝜒0𝜏2𝒰0

 2   𝑥, 𝜏 − 𝜈𝜒휃0
  2 

 𝑥, 𝜏 = ℋ0
 1   𝑥, 𝜏 ,     (20) 

Δ휃0
  2 

 𝑥, 𝜏 −
𝜏

𝜗
휃0
  2 

 𝑥, 𝜏 −  휂𝜏 𝑑𝑖𝑣 𝑢0 
(2) 𝑥, 𝜏 = ℋ07

(1)  𝑥, 𝜏 ,     (21) 

lim𝐷∋𝑥→𝑦∈𝑆 𝒰0
(2)  𝑥, 𝜏 = 0.                                     (22) 

Denote that 𝑈0
(1) = ( 𝒰0

(1) ,휃0
 (1)

) and  𝑈0
(2) = ( 𝒰0

(2) ,휃0
 (2)

).  

Let us show that 𝑈0
(1)  𝑥, 𝜏  and 𝑈0

(2)  𝑥, 𝜏  are analytic functions with respect to 𝜏 and determine 
asymptotic assessments of these functions and their derivatives. 

At first we will begin with the function 𝑈0
(1)  𝑥, 𝜏 . Using the method of partial integration for the 

integrals from (13) and (14), according to (11) and (12), and considering the conditions 10 − 50 
from [5], we get: 

ℋ0
  𝑥, 𝜏 ∈ 𝐶1,𝛿(𝐷 ), ℋ07

  𝑥, 𝜏 ∈ 𝐶1,𝛿(𝐷 ),                          (23) 

𝑓0
  𝑦, 𝜏 ∈ 𝐶1,𝜆(𝑆), 𝑓07

  𝑦, 𝜏 ∈ 𝐶1,𝜆 𝑆 .                            (24) 
Then, in the half-plane Π𝜍0

 the following assessments take place: 

 ℋ0
  𝑥, 𝜏  

(𝐷 ,0,𝛿) 
≤

𝑐

 𝜏 6
 ,  ℋ07

  𝑥, 𝜏  
(𝐷 ,0,𝛿) 

≤
𝑐

 𝜏 5
 ,                 (25) 

 𝑓0
  𝑦, 𝜏  

(𝑆,0,𝛿) 
≤

𝑐

 𝜏 8
 ,  𝑓07

  𝑦, 𝜏  
(𝑆,0,𝛿) 

≤
𝑐

 𝜏 6
 ,                   (26) 

 𝑓0
  𝑦, 𝜏  

(𝑆,1,𝛿) 
≤

𝑐

 𝜏 7
 ,  𝑓07

  𝑦, 𝜏  
(𝑆,1,𝛿) 

≤
𝑐

 𝜏 6
 .                   (27) 

According to 50 from [5], for the rather high value of  𝑥 , we will have:  

 ℋ0
  𝑥, 𝜏  ≤

𝑐

 𝑥 2
1

 𝜏 6
 ,  ℋ07

  𝑥, 𝜏  ≤
𝑐

 𝑥 2
1

 𝜏 5
 .                       (28) 

The problems (16) and (18) have the unique solution [8] and can be given as 

𝒰0
(1) 𝑥, 𝜏 =  𝑆  𝑇  𝜕𝑦 ,𝑛 𝑦  Ψ′ z− y; iτ  ′𝜓(𝑦, 𝜏)𝑑𝑦𝑆 ,         (29) 

where 𝑇  𝜕𝑦 ,𝑛 𝑦   is an operator of momentary voltage and Ψ z − y; iτ  – a matrix of the 

fundamental solutions of the equation (16) [3].  
In case of internal problem the vector-function 𝜓 𝑦, 𝜏  represents the solution of the integral 
equation: 

- 𝜓(𝑧, 𝜏)+  𝑆  𝑇  𝜕𝑦 ,𝑛 𝑦  Ψ′ z− y; iτ  
′
𝜓 𝑦, 𝜏 𝑑𝑦𝑆 = 𝑓0

  𝑧, 𝜏 .      (30) 

And in case of external problem it represents the solution of the integral equation: 

𝜓(𝑧, 𝜏)+  𝑆  𝑇  𝜕𝑦 ,𝑛 𝑦  Ψ′ z − y; iτ  
′
𝜓 𝑦, 𝜏 𝑑𝑦𝑆 = 𝑓0

  𝑧, 𝜏 .     (31) 

 In the half-plane Π𝜍0
 the solutions of these equations are analytic with respect to 𝜏, as the 

right sides of these equations are analytic functions with respect to 𝜏. Hence, 𝒰0
(1) 𝑥, 𝜏  is also an 

analytic function with respect to 𝜏. 
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 According to the Banach theorem, the operators corresponding to the equations (30) and (31) 

have inverse operators in the class 𝐶0,𝜆(𝑆). Hence, we have: 

 𝜓 ∙, 𝜏  (𝑆,0,𝜆) ≤ 𝐶 𝑓0
  ∙, 𝜏  

(𝑆,0,𝜆) 
, 

from which, according to (26) we get: 

 𝜓 ∙, 𝜏  (𝑆,0,𝜆) ≤
𝑐

 𝜏 8
 .                                         (32) 

Analogously, from (27) we have: 

 𝜓 ∙, 𝜏  (𝑆,1,𝜆) ≤
𝑐

 𝜏 7
 .                                         (33) 

According to (32) and (33), from (27) follows that 

 𝒰0
(1)  ∙, 𝜏  

(𝐷 ±,0,𝜆) 
≤

𝑐

 𝜏 8
 ,  𝒰0

(1)  ∙, 𝜏  
(𝐷 ±,1,𝜆)  

≤
𝑐

 𝜏 7
 .                 (34) 

 In case of external problem we will have: 

 𝒰0
(1)  𝑥, 𝜏  ≤

𝑐

 𝑥 2
1

 𝜏 8
,  

𝜕

𝜕𝑥𝑘
𝒰0

(1)  𝑥, 𝜏  ≤
𝑐

 𝑥 2
1

 𝜏 8
 ,                  (35) 

where 𝑘 = 1, 2, 3 and τϵΠ𝜍0
. 

For each  𝐷 ∗ ⊂ 𝐷 takes place the assessment: 

sup𝑥∈𝐷∗  
𝜕2

𝜕𝑥𝑘𝜕𝑥𝑗
𝒰0

(1)  𝑥, 𝜏  ≤
𝐶(𝐷∗)

 𝜏 8
 , τϵΠ𝜍0

. 

There exists a solution of the problem (17) and (19), it is unique and can be expressed as [3]: 

휃0
 (1)

 𝑥, 𝜏 =  𝑆
𝜕

𝜕𝑛 (𝑦)

𝑒−𝑘 𝑥−𝑦 

 𝑥−𝑦 
𝜑7(𝑦, 𝜏)𝑑𝑦𝑆, 𝑥 ∈ 𝐷,               (36) 

where 𝜑7(𝑥, 𝜏) represents a solution of the singular equation: 

±𝜑 𝑧, 𝜏 +
1

2𝜋
 𝑆

𝜕

𝜕𝑛  𝑦 

𝑒−𝑘 𝑧−𝑦 

 𝑧−𝑦 
𝜑7 𝑦, 𝜏 𝑑𝑦𝑆 =

1

2𝜋
𝑓07
  𝑧, 𝜏 ,        (37) 

for the external and internal problems, respectively.  

As the function 𝑓07
  𝑧, 𝜏  is analytic with respect to 𝜏, then the solution of the equation (37) is also 

analytic with respect to 𝜏. Hence, 휃0
 (1)

 𝑥, 𝜏  will be analytic with respect to 𝜏, as well.  
For each 𝜏 ∈ Π𝜍0

, according to (26) and (27) and using the Banach theorem, from (37) we will have: 

 𝜑7 ∙, 𝜏  (𝑆,0,𝜆) <
𝑐

 𝜏 6
 ,  𝜑7 ∙, 𝜏  (𝑆,1,𝜆) <

𝑐

 𝜏 5
 .                  (38) 

 Hence, we derive that 

 휃0
(1)  ∙, 𝜏  

(𝐷 +,0,𝜆) 
≤

𝑐

 𝜏 6
 ,  휃0

(1)  ∙, 𝜏  
(𝐷 +,1,𝜆)  

≤
𝑐

 𝜏 5
 ,                (39) 

 
𝜕

𝜕𝑥𝑘
휃0

(1)  𝑥, 𝜏  ≤
𝑐

 𝜏 3
 , 𝑥 ∈ 𝐷 +, k=1, 2, 3.                         (40) 

For the highest value of  𝑥  we will have: 

 휃0
(1)  𝑥, 𝜏  ≤

𝑐

 𝑥 2
1

 𝜏 6
 ,  

𝜕

𝜕𝑥𝑘
휃0

(1)  𝑥, 𝜏  ≤
𝑐

 𝑥 2
1

 𝜏 5
 , k=1, 2, 3. 

sup𝑥∈𝐷∗  
𝜕2

𝜕𝑥𝑘𝜕𝑥𝑗
휃0

(1)  𝑥, 𝜏  ≤
𝐶

 𝜏 6
 , 𝑘, 𝑗 = 1, 2, 3. 

 From (34), (35) and (39) follows that  

 𝑈0
(1)  𝑥, 𝜏  ≤

𝑐

 𝜏 5
 .                                                (41) 

 The following assessments are true: 

 𝑈0
(2)  𝑥, 𝜏  ≤

𝑐

 𝜏 4
 ,  𝑥 ∈ 𝐷  .                                             (42) 

 From (41) and (42) we get that 

 𝑈0
  𝑥, 𝜏  ≤

𝑐

 𝜏 4
 .                                                       (43) 

 The auxiliary statement. The following theorem is true [6]: 

 Theorem. Let 𝜏 ∈ Π𝜍0
, then the problem (I)τ has the unique, analytic solution 𝑈0

  𝑥, 𝜏  with 

respect to 𝜏, for which the following assessments take place: 

1)  𝑈0
  𝑥, 𝜏  ≤

𝑐

 𝜏 4
 ,  

𝜕𝑈0  𝑥 ,𝜏 

𝜕𝑥𝑘
 ≤

𝑐

  𝜏 
2+

2
3

  for any (𝑥, 𝜏) ∈ 𝐷 × Π𝜍0
; 

2) 
𝜕2𝑈0  𝑥 ,𝜏 

𝜕𝑥𝑘𝜕𝑥𝑙
 ≤

𝑐

  𝜏 
1+

1
9

  for any (𝑥, 𝜏) ∈ 𝐷 × Π𝜍0
; 
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3)  𝑈0
  𝑥, 𝜏  ≤

𝑐

 𝑥 2 𝜏 
2+

2
3

 ,  
𝜕𝑈0  𝑥 ,𝜏 

𝜕𝑥𝑘
 ≤

𝑐

 𝑥 2 𝜏 
1+

2
3

  for 𝑥 → ∞, 

where 𝑘, 𝑙 = 1, 2, 3. 
  

The main result 
Using the above mentioned auxiliary theorem and based on the properties of the Laplace 

transform, we prove the following result:  
Theorem. The first problem of the thermo-resiliency‟s momentum theory has in 𝐷𝑙  a unique 

solution which can be presented as:  

𝑈 𝑥, 𝑡 = 𝐻 𝑥, 𝑡 +
1

2𝜋𝑖
 𝑒𝜏𝑡𝑈0

  𝑥, 𝜏 𝑑𝜏
𝜍+𝑖∞

𝜍−𝑖∞
, 𝜍 > 𝜍0

′ , 

where 𝑈0
  𝑥, 𝜏  represents the solution of the problem (I)τ and 𝐻 𝑥, 𝑡  is a vector-function (*). 

  
Conclusion 
The main task was to convert the first main boundary value problem of the thermo-

resiliency‟s momentum theory into the oscillatory problem using the Laplace transform. In the 
paper, the solution of the oscillatory problem is found and there are given those conditions, which 
enable to prove the existence of the inverse transform. The effective solution of the main boundary 
value problem is found using this inverse Laplace transform. 
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