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Abstract: 
A computational harmonic analysis technique, ETAP is 

developed from the first principle. A closed-form formula for 
harmonics addition is presented in this paper as the Harmonic 
Addition Theorem (HAT). Power of cosine formula is applied with 
mathematical pattern such as checker box triangle (CBT) to exactly 
compute the amplitude and phase of the harmonics at the output of 
a polynomial nonlinearity.  

 
Index Terms: Computational Harmonic Analysis, Harmonic 

Addition Theorem, Polynomials, and Harmonic Distortions. 
 

I. INTRODUCTION 
Let us define a polynomial nonlinearity as 
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where nh , and Q  denote the polynomial coefficient of the nth 
term, and the highest degree, respectively. Let us define the 
input single tone with arbitrary amplitude A and phase in φ 
radian as  
 ( ) cos( ),x t A tω ϕ= +  (2) 
where ω  is the angular frequency in radian per second and t  
is the time in seconds.  

When the sinusoidal signal in (2) is applied to the 
polynomial nonlinearity in (1), the output can be represented 
as  
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where 0DC  is the DC component; kB  and kψ  are the 
amplitude and phase of the kth harmonic, respectively.  

The research problem is defined as follows: given (1) and 
(2), to compute (3). 

II. HARMONIC ADDITION THEOREM (HAT) 
The HAT is the key ingredient to solve the problem. 
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Proof: Let ( )ex t  be denoted as a complex exponential 
function that is given by 
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where B  and ψ  can be presented in terms of iA  and iϕ  as 
shown in (4) and (5), respectively. For the computation of ψ , 
atan2 function [1] is used to exactly locate the angle in any of 
the four quadrants in the complex plane. The ordinary atan 
function range is, however, 2 2π ψ π− < ≤  in contrast to the 
atan2 function range of π ψ π− < ≤ . For the both cases of 
positive and negative angles in (6), let us define 
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Using (7), (8), and Euler’s formula, 
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III. EXACT TONAL ANALYSIS ON POLYNOMIALS (ETAP) 
By Demoivre’s formula, the following power of cosine 

trigonometric identity has been derived [2, 3]. 
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Let us denote the output signal at the thn  degree polynomial 
branch in Fig. 1 as follows: 

 

[ ] ( )

,
1

,0 ,
2

( ) ( ) cos

( , odd),

( , even),

nn
n n n

n

n k
k

n

n n k
k

y t h x t h A t

n k

n k

ω ϕ

=

=

= = +⎡ ⎤⎣ ⎦
⎧ Π =⎪⎪= ⎨
⎪Π + Π =
⎪⎩

∑

∑
 (10) 

where 
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By (9), 
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are amplitude and phase of the kth harmonic at the nth term of 
the polynomial, respectively. By (1) and (10), 
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where ,n kΠ  in (11) and (13) denotes the component generated 
at the n  degree polynomial branch and k  harmonic as 
illustrated in Fig. 1. When ,n kΠ s are placed in the checker 
box, as shown in Fig. 2, the checker-box triangle (CBT) 
pattern is emerged. By (13), 
 , ,( ) .n k n k

n k k n
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Thus, the component having the same frequency can be added 
together using (4) and (5). In pictorial representation (see Fig. 
2), the components in CBT are added vertically using HAT. In 
symbolic representation,  
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As a computational example, let (2) with 1A =  and 2ϕ π=  

is applied into 3 5( ) 1.4214 0.7409 0.3313 .f x x x x= − + The 
output signal in (3) or (15) is obtained as 

 
( ) 1.7541cos( 2) 0.2590cos(3 2)

0.0888cos(5 2).

y t t t

t

ω π ω π

ω π

= + + −

+ +
 

IV. CONCLUSION 
 

A technique to compute the harmonic amplitudes, phases, 
and DC components at the output of polynomial nonlinearity 
was developed.  

REFERENCES 
[1] S. Moritsugu and M. Matsumoto, “A note on the numerical evaluation of 

arctangent function,” ACM SIGSAM Bulletin, vol. 23, pp. 8-12, Jul. 
1989. 

[2] J. Wiener, “Integrals of 2cos n x  and 2sin n x ,” The College Mathematics 
Journal, vol. 31, pp. 60-61, Jan. 2000. 

[3] B. Wiener and J. Wiener, “Demoivre’s formula to the rescue,” Missouri 
Journal of Mathematical Sciences, vol. 13, pp. 1-9, Fall 2001. 

 

0,0Π

2,0Π

1,1Π

0n =

0k =

3,1Π

1 2 3 4 5

1

2

3

4

5

0k = 1 2 3 4

0n =

1

2

3

44,0Π

5,1Π

2,2Π

4,2Π

5,3Π

3,3Π

4,4Π

5,5Π

0,0Π

2,0Π

4,0Π

1,1Π

3,1Π

2,2Π

4,2Π

3,3Π

4,4Π

 
Fig. 2. Checker-box Triangle Pattern where each row and each column 
represent the component outputs from ( )ny t  and the generated harmonics 
with the exception of DC at 0k = , respectively. Sub-figures (a), and (c) 
illustrates the generated component fill-ups for the case of 5Q = , 
whereas (b), and (d) for 4Q = . The indices n  and k  denote the index 
of the coefficient of polynomial, which is equivalent to the index of 

( )ny t  and harmonic number respectively. Note that the component is DC 
when 0k = .
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Fig. 1. Block diagram representation of (1) for the case of 5Q = . Each 
branch represents (10), where their respective algebraic expansions are 
described in (11) and (12). 


