

Abstract — In this paper a new Steganography approach for

Arabic texts is repor ted. The approach hides secret information
bits within Arabic letters benefiting from the redundant
extension character " -" known as Kashida. To note the specific
letters holding encoded secret bits, the method considers the
number of the extension character inser ted after any letter that
can hold it. This paper introduces this new approach and
discusses the additional features it possesses like bits optimization
using mapping tables and dynamic assignment of letter codes.
This approach is found attractive and can be modified to enhance
the secur ity and the capacity features in Arabic and other
languages having similar texts such as Urdu and Persian.

Index Terms — Arabic e-Text, Text Steganography,
Information Secur ity, Text Hiding.

I. INTRODUCTION

The ever increasing number of networks users, e.g. the
Internet, drives the process of enhancing security into more
serious measures as more victims and attackers are brought
into these networks. In the second quarter of 2008, more than
1.46 billion Internet users were exchanging data [4]; data that
can be very sensitive for each user. So, data’s confidentiality
must be preserved. One way to strengthen the confidentiality
property of the exchanged data is steganography.

Steganography is described as the art and science of hiding
data in an unremarkable cover object so that an eavesdropper
will have no suspicions regarding this communication [7].
Steganography systems can be implemented in texts, pictures,
and sound files. In this paper we will deal with Steganography
in text files.

The steganography system has two inputs as shown in
Figure 1: a plain text, “Cover Object” , and a message, “Secret
Object” , which is confidential. Steganography algorithm
comes into picture to do the embedding part for the two

Adnan Abdul-Aziz Gutub
P. O. Box 6287
Center of Excellence in Hajj and Omrah Research
Umm Al-Qura University, Makkah 21955, Saudi Arabia
Email: aagutub@uqu.edu.sa

Wael Al-Alwani
Sulaimania, 30th street, Riyadh, Saudi Arabia
E-mail: wael.alalwani@gmail.com

Abdulelah Bin Mahfoodh
Olayya, Dabab street, Riyadh, Saudi Arabia
E-mail: bin.mahfoodh@gmail.com

inputs, i.e. the “Cover Object” and the “Secret Object” , and
then outputs the “Stego Object” .

Fig. 1. Steganography system

The algorithm implemented in a steganography system has

to consider three features: capacity, security, and
robustness [3]. First, capacity is the amount of the Secret
Object’s bits that can be hidden in the Cover Object. Second,
security is to make an eavesdropper unable to detect the
existence of the Secret Object’s data in the Stego Object.
Finally, robustness is the amount of tolerance a Stego Object
can have when modified by an attacker to keep the integrity of
the embedded Secret Object valid [7].

Section 2 of this paper discusses related published work in
Arabic text Steganography. Also, it lists advantages and
disadvantages of each work. In section 3, our new Arabic text
Steganography method is discussed. After that, section 4
introduces a comparison of two different approaches with our
proposed approach. Finally, the paper ends with a conclusion
in section 5.

II. RELATED ARABIC TEXT STEGANOGRAPHY ATTEMPTS

Recent works have focused on the development and the
potential applications of Arabic script steganography. The first
proposal in this field was done by Shirali-Shaherza [5, 12].
Their schema is based on hiding binary values into Arabic or
Persian scripts using a feature coding method. This method
depends on the points inherited in the Arabic, Urdu and

Improved Method of Arabic Text Steganography
Using the Extension ‘Kashida’ Character

Adnan Abdul-Aziz Gutub, Wael Al-Alwani, and Abdulelah Bin Mahfoodh

1999-4974©2010BUJICT

Bahria University Journal of Information & Communication Technology Vol. 3, Issue 1, December 2010

68

Persian letters.
The points' location within the pointed letters hide

information as follows: First, the length of the hidden
information, i.e. the Secret Object, is looked at as binary with
the first several bits. Then, the medium text, i.e. the Cover
Object, is scanned. Whenever a pointed letter is detected, the
location of the point may be affected if hidden binary value is
one or zero. The location of the point is slightly shifted up if
the hidden bit value is one as shown in figure 2; otherwise, the
location remains unchanged [10].

This schema has many advantages; for example, it has high
capacity in storing large number of hidden bits as the Arabic
language has 15 letters out of 28 letters that have points.
However, one of the main disadvantages of this method is in
robustness. The output font is not standard. Moreover, the
receiver will not be able to extract the secret message if the
output font is not installed on his machine. Also, the hidden
information can be lost in any retyping or scanning process.

Fig. 2. Shifting the letter " Fa'a" point up to hide bit value equals 1

Another proposal [6] aims to utilize the advantages of
diacritics in Arabic scripts [11] to implement steganography.
There are eight different diacritical symbols in Arabic, and
they are used in this approach to hide binary bits in the
original cover text. The team, who proposed this approach,
found that in Standard Arabic, the frequency of one diacritic,
namely Fat’ha, is equal to the total frequency of the other
seven diacritics. So, they assigned in this approach the
diacritic Fat’ha to the bit value equals one, and the remaining
seven diacritics were assigned to the bit value equals zero.

To implement this approach, a diacritized Arabic text is
used as a Cover Object. Then, a computer program reads the
first bit of data needed to be embedded. If the first bit was a
one and the first diacritic in the cover media was Fat’ha, the
diacritic is kept in the cover media and the index for both the
embedded data and the cover media is incremented. However,
if the diacritic is not Fat’ha and the bit value is one, the
diacritic is removed from the cover media and, in the same
time, the index of the cover media only is incremented to read
the next diacritic. The same process is implemented for the bit
value zero, except that a zero will search for all the other
seven diacritics instead of the Fat’ha. An example to this
approach can be seen in figure 3.

The use of diacritics in Standard Arabic language is
optional [11]. Moreover, it is uncommon nowadays to write a
diacritized Arabic text. Therefore, a drawback for this
approach is the high probability of raising suspicions for an
eavesdropper about the existence of a secret message when
using this approach. Another important drawback is that the
receiver has to have the original text so that the extracting
algorithm can compare the diacritics in the Stego Object with

the original Cover Object to extract the Secret Object.

Cover Object

Secret Object E7 (= 11100111)

Stego Object

Fig. 3. Hiding " E7" using diacr itics approach

The work in [2] presents another approach that uses

diacritics in Arabic scripts. This approach uses the idea of the
way how computers display and print Arabic diacritic marks.
When the code of a diacritic mark is encountered in almost all
Arabic fonts, the corresponding image is rendered and
displayed as an output without changing the place of the
cursor. This leads to the possibility of inserting multiple
diacritic marks in an almost invisible way. Then, a computer
program can detect the presence of these multiple diacritics,
extract them, and interpret the way they are inserted in the text
according to any encoding scenario. There are two main
approaches presented in this same idea: The textual approach,
and the image approach.

The textual approach which chooses a font that hides
multiple diacritics according to many encoding scenarios such
as: the direct and blocked value scenarios and the RLE
scenario. The differences between these scenarios vary among
capacity, robustness, and security.

The image approach selects one of the Arabic fonts that can
darken multiple occurrences of diacritics. The produced
document should be converted into image in order to
determine the level of the brightness and encode it into the
corresponded meaning. There are some limitations in this
approach such as the block or file size, but in general it has
advantages in capacity, robustness, and security.

Another proposed approach [1,9,13,14] uses the redundant
Arabic extension character “ ”ـ which is called “Kashida” . We
will use the word Kashida through out the context of this
paper to indicate this extension character. Arabic language has
28 main letters and a Kashida character which is considered as
a redundant character meant for formatting the Arabic
electronic typing. However, due to the nature of Arabic
writing, the Kashida character cannot be added at the
beginning or ending of words. It can be added between
connected letters in a word. Note that adding the Kashida
character does not affect the Arabic contextual meaning [1,9].

In this approach presented in [1] and [9], if a Kashida is
used after a pointed Arabic letter in the cover object, then a
secret bit which equals to one is hidden. On the other hand, a
secret bit equal to zero is hidden if an un-pointed Arabic letter
is followed by a Kashida as shown in figure 4. Using this
character enhances the features of security and robustness.
But, it might have some drawbacks in capacity of the cover
medium if the size of secret bits in the Secret Object is large.

1999-4974©2010BUJICT

Bahria University Journal of Information & Communication Technology Vol. 3, Issue 1, December 2010

69

Secret bits 110010

Cover-text من حسن اس&م المرء تركه ما� يعنيه

Steganographic
text

 مـن حسن اس&م المرء تـركـه مـا� يـعنـيه

 1 1 0 0 1 0

Fig. 4. Hiding secret bits using Kashida character

III. PROPOSED ARABIC TEXT STEGANOGRAPHY METHOD

The secret object is hidden in the form of zeros and ones
which represents the 16-bit Unicode of each character (using
the UTF-8 encoding scheme which uses 16 bits to represent
one Arabic character [8]). A common drawback in all previous
approaches is that they embed the bits without having some
optimization. Meaning that, these approaches will embed the
16 bits of each character in the Cover Object. Our novel
method benefits from the work with the Kashida character as
proposed by Gutub and Fattani [1].

We will add one Kashida representing secret bit = 0 and
two consecutive Kashidas when bit = 1. The Kashida will be
placed after any letter that can hold it. The optimization part of
the algorithm deals with the message to be hidden, i.e. the
Secret Object. As mentioned before, Arabic language has 28
main letters. But there are special forms of a letter like in letter
“Alef (ا)” which are used in Arabic writing and (… , آ , إ , أ) :
each one has a UTF-8 representation. So, the number of letters
and forms sums up to more than 32 and less than 64. Since
each letter and form is represented by 16 bits, we used a
mapping table in which each letter was assigned, instead, a 6-
bit code to save 10 bits. In the mapping table, we assigned the
6-bit codes starting from 000000 and incremented by one to
all letters and forms ordered alphabetically. As a result, saving
10 bits by implementing the mapping table means, enhancing
the capacity feature of this method.

One concern is that when the Cover Object for example is
one page long and the Secret Object is only one word, then,
the Stego Object will only contain Kashidas in the first few
lines. So, this will be suspicious for an eavesdropper who
might infer the existence of a hidden message in the text.

So, we solved this by creating a special character named
“ finishing character” which has the code 111111 and it will be
embedded just after the last letter of the message, i.e. the
Secret Object. After this “ finishing letter” , the algorithm will
randomly add Kashidas to the whole text to enhance the
security feature of this method. Finally, extracting the message
from the Stego Object is done by collecting the Kashidas back
and when 6 bits are collected, the algorithm checks the
mapping table to determine the corresponding letter. When it
detects the finishing character, it stops.

Figure 5 shows how the method works. The first letter in
the Secret Object is “Ba’a” which has the code 000001 in the
mapping table. We can see that the first and second letters in
the first word in the Cover Object can hold Kashidas, so one
Kashida is added after each one representing the first and

second 0 bits of the code 000001, as shown in the Stego
Object. The third letter can not hold a Kashida, so it is kept as
is. The second and third words in the Stego Object hold the
4th, 5th, and 6th zero bit of the code, i.e. 000001. Finally, the
fourth word is holding two consecutive Kashidas representing
the remaining bit of the code which is 1, i.e. 000001.

Secret Object بدأ اختبار

Cover Object

ميزة ھذا النوع من المعالجات أنه يقضي مدة
ثابتة في تنفيذ أي تعليمة، ومقدار ھذا الوقت ھو
دورة واحدة يحدد زمنھا أطول تعليمة من
مجموعة التعليمات وھي تعليمة القراءة من
وحدة الذاكرة، وھذا يعني سھولة كبيرة في

 تصميم المعالج

Stego Object

ـيـزة ھـذا الـنـوع مــن الـمـعـالــجــات أنــه م
يـقــضــي مــدة ثـابــتــة فـي تـنــفـيــذ أي
تـعـلـيـمـة، ومـقـدار ھـذا الـوقــت ھــو دورة
واحـدة يـحـدد زمـنـھــا أطـول تـعـلـيـمـة مــن
مـجـمـوعـة الـتـعـلـيــمـات وھـي تــعــلــيــمــة

ة الـذاكـرة، وھـذا يـعـنـي الــقــراءة مـن وحـد
 سـھـولـة كـبـيـرة فـي تـصـمـيـم الـمـعـالـج

Fig. 5. Embedding secret bits using Kashidas

We found that adding one Kashida when the bit of the
Secret Object is 0 and two consecutive Kashidas when the bit
is 1 after any letter or form that can accept Kashidas is
probably suspicious. An eavesdropper would find Kashidas at
any applicable position for a Kashida in the Stego Object.

We propose a double impact solution that can increasingly
enhance the capacity and the security feature. We modified the
algorithm of our method to avoid adding Kashida when the
letter code in the mapping table has two consecutive zero bits.
In other words, the code of letter “Ba’a” which is 000001 will
not be embedded in the Cover Object as: 1 Kashida, 1
Kashida, 1 Kashida, 1 Kashida, 1 Kashida, 2 Kashidas.
Instead, it will be embedded as: no Kashida, no Kashida, 1
Kashida, 2 Kashidas. Obviously, we saved two more bits
(Kashida) locations, which mean that this method will use
only 4 Kashida locations to embed the 6-bit letter code. This
allowed the absence of Kashidas in the Stego Object to
remove the suspiciousness that may arise, i.e. improving the
security feature of the method.

A final modification has been made to enhance the capacity
more. We modified the method to check the Secret Object,
before embedding it, and make statistics on it to find the most
frequent (existing) letters. Then, the method will assign the
letter code which have more consecutive zeros in the mapping
table to the most frequent letters. For example, if we find that
the Secret Object has the letter “Lam” (ل) as the most frequent
letter to occur and then the letter “Noon” then the method ,(ن)
will assign the codes 000000 to “Lam” and 000001 to “Noon”
in the mapping table. Therefore, we will enhance the capacity
by using the frequency of the occurrence of letters. By listing
all the codes combinations that use 6 bits, we found that there

1999-4974©2010BUJICT

Bahria University Journal of Information & Communication Technology Vol. 3, Issue 1, December 2010

70

are 13 codes which can be embedded using 4 Kashida
locations such as 000010 and 010000. Hence, the method can
assign these codes to the most 13 occurring letters. We also
found that 29 code combinations can be embedded using 5
Kashida locations. As a result, these 29 codes will be assigned
to the rest of the Arabic letters that exist in the Secret Object.
Note that calculating the frequencies is a dynamic process and
each time the Secret Object changes, the calculation is applied
and hence, the assignment of codes for most occurring letters
is changed accordingly.

IV. COMPARISON WITH PUBLISHED METHODS

We tested three approaches to compare their results. The aim
was to decide which approach efficiently maintains the
capacity feature. The first approach was Shirali-Shaherza’s
approach and the second one was Gutub and Fattani’s
approach. The third approach was the enhanced version of our
proposed approach which calculates statistics on the Secret
Object to assign 6-bit codes, which need 4 or 5 Kashida
locations, to the most frequently occurring letters.

The test was to embed a Secret Object which contains one
five-letter word, i.e. 5*16 bits for each letter = 80 bits, in
many different Cover Objects which contain, in average, 116
words. The results, as shown in table 1, show that using
Shirali-Shaherza’s approach, the Secret Object used, in
average, 74.32% of the total capacity found in most of the
Cover Objects. Gutub and Fattani’s approach used, in average,
33.68%. Our enhanced version approach used, in average,
10.25% of the total capacity of each Cover Object which
seems to mean that our approach outweighs the two other
approaches in terms of capacity efficiency.

TABLE I

RESULTS OF COMPARING THE DIFFERENT APPROACHES.

Approach Average Capacity Usage
in Each Cover Object

Shirali-Shaherza
(pointed letters)

74.32%

Gutub and Fattani
(Kashidas)

33.68%

Our enhanced
approach

10.25%

In terms of security feature, Shirali-Shaherza’s method is
probably the best method to maintain this feature especially if
the points of the letters are so slightly shifted that is hard to
notice them. Our enhanced approach is better than Gutub and
Fattani’s approach in terms of security feature because it
inserts less number of Kashidas in different places that do not
follow any kind of inserting patterns as used in Gutub and
Fattani’s approach, i.e. Gutub and Fattani’s approach inserts
Kashida after a pointed letter if the secret bit = 1 and after an
un-pointed letter if the bit = 0.

V. CONCLUSION

This paper presents a very interesting and novel
steganography method useful for Arabic and other similar
languages. This method benefits from the feature of having the
Kashida character in Arabic script "ـ". We use a mapping table
in which each letter of the Arabic language is assigned a
specific 6-bit code to save ten bits, as the letter's Unicode
representation using UTF-8 consists of 16 bits. The Secret
Object letters are transformed into secret bits using the
corresponding code for each letter found in the mapping table.
These secret bits are represented as follows: One extension
letter will be inserted after a letter that can hold it from the
Cover Object if the secret bit is 'zero'. The same process will
happen if the secret bit is 'one', but with inserting two
consecutive extension letters instead of one.

The method can be modified to remarkably enhance the
capacity and to eliminate suspiciousness of an eavesdropper
by not inserting extension letter to represent 2 consecutive
zeros, if found, in the 6-bit code of a letter. Also, by checking
the Secret Object before embedding it and make some
statistics on it to determine the most frequent letters will make
the method to be dynamic in regard of the assignment of codes
in the mapping table, which will help to increase the capacity.
This approach enhanced and featured security, capacity, and
robustness, which makes it useful to help Arab users to
exchange information through text documents and establish
secure communication.

ACKNOWLEDGMENT

We would like to thank King Fahd University of Petroleum
and Minerals (KFUPM) for partially hosting this research.
Special thanks to Dr. Ahmad Al-Mulhem the instructor of the
course COE499: Network Security Engineering for his
positive cooperation. Thanks to Center of Research Excellence
in Hajj and Omrah, Umm Al-Qura University (UQU),
Makkah, for moral support toward the achievements in this
work.

REFERENCES

[1] Adnan Gutub and Manal Fattani, “A Novel Arabic Text
Steganography Method Using Letter Points and
Extensions” , WASET International Conference on
Computer, Information and Systems Science and
Engineering (ICCISSE), Vienna, Austria, May 25-27,
2007.

[2] Adnan Gutub, Yousef Elarian, Sameh Awaideh, and
Aleem Alvi, "Arabic Text Steganography Using Multiple
Diacritics", WoSPA 2008 – 5th IEEE International
Workshop on Signal Processing and its Applications,
University of Sharjah, Sharjah, United Arab Emirates 18
– 20 MARCH 2008.

[3] B. Chen and G.W. Wornell, “Quantization Index
Modulation: A Class of Provably Good Methods for
Digital Watermarking and Information Embedding,”
IEEE Trans. Information Theory, Vol. 47, No. 4, 2001,
pp. 1423-1443.

1999-4974©2010BUJICT

Bahria University Journal of Information & Communication Technology Vol. 3, Issue 1, December 2010

71

[4] Internet World Statistics Website. Retrieved September 3,
2008, from <http://www.internetworldstats.com/stats.
htm>.

[5] M. Hassan Shirali-Shahreza, Mohammad Shirali-
Shahreza, “A New Approach to Persian/Arabic Text
Steganography,” 5th IEEE/ACIS International Conference
on Computer and Information Science (ICIS-COMSAR
06), July 2006, pp. 310- 315.

[6] Mohammed Aabed, Sameh Awaideh, Abdul-Rahman
Elshafei, and Adnan Gutub, “Arabic Diacritics Based
Steganography” , IEEE International Conference on
Signal Processing and Communications (ICSPC 2007),
Dubai, UAE, 24-27 November 2007, pp. 756-759.

[7] N. Provos and P. Honeyman, “Hide and Seek: An
Introduction to Steganography” , IEEE Security &
Privacy, May/June 2003, pp. 32-44.

[8] ‘UTF-8’ , Wikipedia The Free Encyclopedia. Retrieved
September 3, 2008, from < http://en.wikipedia.org/wiki/
UTF-8>.

[9] Adnan Gutub, L. Ghouti, A. Amin, T. Alkharobi, and
M.K. Ibrahim, “Utilizing Extension Character ‘Kashida’
With Pointed Letters For Arabic Text Digital
Watermarking” , Proceedings of the International
Conference on Security and Cryptography (SECRYPT),
Barcelona, Spain, 2007.

[10] G. Abandah, and F. Khundakjie, “ Issues Concerning
Code System for Arabic Letters” , Dirasat Engineering
Sciences Journal, Vol. 31, No. 1, 2004, pp. 165-177.

[11] M. Al-Ghamdi, and M. Zeeshan, “KACST Arabic
Diacritizer” , Proceedings of the First International
Symposium on Computers and Arabic Language, 2007.

[12] M.H. Shirali-Shahreza, and M. Shirali-Shahreza, “A New
Approach to Persian/Arabic Text Steganography” ,
Proceedings of the 5th IEEE/ACIS International
Conference on Computer and Information Science (ICIS
2006), Honolulu, HI, USA, 2006, pp. 310-315.

[13] Adnan Gutub and Ahmed Al-Nazer, " High Capacity
Steganography Tool for Arabic Text using 'Kashida' ",
The ISC Int'l Journal of Information Security (ISeCure),
Vol. 2, No. 2, Pages 109-120, July 2010.

[14] Adnan Gutub, Fahd Al-Haidari, Khalid Al-Kahsah, and
Jameel Hamodi, "e-Text Watermarking: Utilizing
'Kashida' Extensions in Arabic Language Electronic
Writing", Journal of Emerging Technologies in Web
Intelligence (JETWI), Vol. 2, No. 1, Pages: 48-55,
February 2010.

1999-4974©2010BUJICT

Bahria University Journal of Information & Communication Technology Vol. 3, Issue 1, December 2010

72

