
I

J E
E

CE International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626
and Computer Engineering 2(2): 160-169(2013)

A Modified Distributed Approach for Mutual Exclusion with
Increased Memory and CPU Utilization

Rahul Singh*, Sunita Gond** and Deshraj Ahirwar***
*Department of Information Technology, BUIT BU Bhopal, (MP)

**Department of MCA, BUIT BU Bhopal, (MP)
***Department of Computer Science and Engineering, UIT RGPV Bhopal, (MP)

(Received 05 November, 2013 Accepted 07 December, 2013)

ABSTRACT: A distributed system consists of a collection of geographically dispersed autonomous
sites connected by a communication network. The sites have no shared memory and communicate
with one another by passing messages. To achieve mutual exclusion concurrent access to a shared
resource or the Critical Section (CS) must be synchronized such that at any time only one process
can access the CS. Over the past decade, many algorithms to achieve mutual exclusion in distributed
systems have been proposed. Those algorithms have succeeded in minimizing either message traffic
or time delay. However, there is no single algorithm that can increase CPU and memory utilization at
the same time. To increase CPU and memory utilization at the same time, we must look for a
modified distributed approach to mutual exclusion in which one special message reply is added to
ensure exact time for waiting to enter in critical section. The process which is waiting for entering the
critical section for a long time while being in the main memory, we can make the process move to
secondary memory for some time, So that small processes which were waiting for other resources but
could not enter in main memory due to lack of space in the main memory can be executed.

I. INTRODUCTION

In distributed system cooperating processes can
effect or be affected by other processes in the
system. Cooperating processes either share address
space (that is both code and data) or be allowed to
share data only through files or messages. The
former can be implemented through
multithreading. Concurrent access to shared data
may result in data inconsistency [1]. The critical
section problem is available almost in every text
book of operating systems. Consider there are n
numbers of processes which are competing to use
some shared data. Each process has a code
segment, called critical section, in which it can
access and manipulate shared data. If concurrent
processes accessing the shared common resource
are not synchronized such that only one process
can access this shared resource, then it will lead to
integrity violations. CS Problem is to guarantee
that when one process is executing in its critical
section, no other process is allowed to execute in
its critical section.
In distributed systems, cooperating processes share
both local and remote resources. Chance is very
high that multiple processes make simultaneous
requests to the same resource.

If the resource requires mutually exclusive access
(critical section – CS), then some regulation is
needed to access it for ensuring synchronized
access of the resource so that only one process
could use the resource at a given time. This is the
distributed mutual exclusion problem [2]. of the
resource so that only one process could use the
resource at a given time. If the resource requires
mutually exclusive access (critical section – CS),
then some regulation is needed to access it for
ensuring synchronized access. This is the
distributed mutual exclusion problem [2].
There are several definitions and view points on
what distributed systems are. Coulouris defines a
distributed system as “a system in which hardware
or software components located at networked
computers communicate and coordinate their
actions only by message passing” [3]; and
Tanenbaum defines it as “A collection of
independent computers that appear to the users of
the system as a single computer” [4]. Leslie
Lamport – a famous researcher on timing, message
ordering, and clock synchronization in distributed
systems once said that “A distributed system is one
on which I cannot get any work done because some
machine never heard of has crashed” reflecting on
the huge number of challenges faced by distributed
system designers.

Singh, Gond and Ahirwar 161

Fig. 1. Distributed system.

Despite these challenges, the benefits of distributed
systems and applications are many, making it
worthwhile to pursue [5].
In most of the distributed systems it is very
common that, resources are being shared among
various processes, with the condition that a single
resource can be allocated to a single process at a
time. Therefore, mutual exclusion is a fundamental
problem in any distributed computing system. So,
the goal is to find a solution that will synchronize
the access among shared resources in order to
maintain their consistency and integrity [6].

II. MUTUAL EXCLUSION

Systems involving multiple processes are often
most easily programmed using critical regions [7].

When a process has to read or update certain
shared data structures, it first enters a critical
region to achieve mutual exclusion and ensure that
no other process will use the shared data structures
at the same time. In single-processor systems,
critical regions are protected using semaphores,
monitors, and similar constructs. We will now look
at a few examples of how critical regions and
mutual exclusion can be implemented in
distributed systems.

A. Centralized Algorithm
The most straightforward way to achieve mutual

exclusion in a distributed system is to simulate how
it is done in a one-processor system. One process is
elected as the coordinator (e.g., the one running on
the machine with the highest network address).

Fig. 2. (a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted. (b)
Process 2 then asks permission to enter the same critical region. The coordinator does not reply. (c) When

process 1 exits the critical region, it tells the coordinator, which then replies to 2.

Singh, Gond and Ahirwar 162

Whenever a process wants to enter a critical region,
it sends a request message to the coordinator
stating which critical region it wants to enter and
asking for permission. If no other process is
currently in that critical region, the coordinator
sends back a reply granting permission, as shown
in Fig. 2 (a). When the reply arrives, the requesting
process enters the critical region.

A. Token Ring Algorithm

A completely different approach to achieving
mutual exclusion in a distributed system
is illustrated in Fig. 3.
Here we have a bus network, as shown in Fig. 3(a),
(e.g., Ethernet), with no inherent ordering of the
processes.

Fig. 3 (a) An unordered group of processes on a network. (b) A logical ring constructed in software.

In software, a logical ring is constructed in which
each process is assigned a position in the ring, as
shown in Fig. 3(b). The ring positions may be
allocated in numerical order of network addresses
or some other means. It does not matter what the
ordering is. All that matters is that each process
knows who is next in line after itself.

When the ring is initialized, process 0 is given a
token. The token circulates around the ring. It is
passed from process k to process k  1 (modulo the
ring size) in point-to-point messages. When a
process acquires the token from its neighbor, it
checks to see if it is attempting to enter a critical
region. If so, the process enters the region, does all
the work it needs to, and leaves the region. After it
has exited, it passes the token along the ring. It is
not permitted to enter a second critical region using
the same token.

B. Distributed Algorithm
Having a single point of failure is frequently
unacceptable, so researchers have looked for
distributed mutual exclusion algorithms. Lamport’s
1978 paper on clock synchronization presented the
first one. Ricart and Agrawala (1981) made it more
efficient. In this section we will describe their
method. Ricart and Agrawala’s algorithm requires
that there be a total ordering of all events in the

system. That is, for any pair of events, such as
messages, it must be unambiguous which one
actually happened first.
The algorithm works as follows.
When a process wants to enter a critical region, it
builds a message containing the name of the
critical region it wants to enter, its process number,
and the current time. It then sends the message to
all other processes, conceptually including itself.
The sending of messages is assumed to be reliable;
that is, every message is acknowledged. Reliable
group communication if available can be used
instead of individual messages. When a process
receives a request message from another process,
the action it takes depends on its state with respect
to the critical region named in the message. Three
cases have to be distinguished:
(i) If the receiver is not in the critical region and
does not want to enter it, it sends back an OK
message to the sender.
(ii) If the receiver is already in the critical region, it
does not reply. Instead, it queues the request.
(iii) If the receiver wants to enter the critical region
but has not yet done so, it compares the timestamp
in the incoming message with the one contained in
the message that it has sent everyone. The lowest
one wins. If the incoming message is lower, the
receiver sends back an OK message.

Singh, Gond and Ahirwar 163

If its own message has a lower timestamp, the
receiver queues the incoming request and sends
nothing. After sending out requests asking
permission to enter a critical region, a process sits
back and waits until everyone else has given
permission. As soon as all the permissions are in, it
may enter the critical region.

When it exits the critical region, it sends OK
messages to all processes on its queue and deletes
them all from the queue. Let us try to understand
why the algorithm works. If there is no conflict, it
clearly works. However, suppose that two
processes try to enter the same critical region
simultaneously, as shown in Fig. 4(a).

Fig. 4 (a). Two processes want to enter the same critical region at the same moment. (b) Process 0 has the
lowest timestamp, so it wins. (c) When process 0 is done, it sends an OK also, so 2 can now enter the

critical region.

Process 0 sends everyone a request with timestamp
8, while at the same time, process 2 sends everyone
a request with timestamp 12. Process 1 is not
interested in entering the critical region, so it sends
OK to both senders. Processes 0 and 2 both see the
conflict and compare timestamps. Process 2 sees
that it has lost, so it grants permission to 0 by
sending OK. Process 0 now queues the request
from 2 for later processing and enters the critical
region, as shown in Fig. 4(b). When it is finished, it
removes the request from 2 from its queue and
sends an OK message to process 2, allowing the
latter to enter its critical region, as shown in Fig.
4(c). The algorithm works because in the case of a
conflict, the lowest timestamp wins and everyone
agrees on the ordering of the timestamps.

III. RELATED WORK

Mi-Sook Kim and Reda A [8] says that In shared
memory environment, processes in a parallel
structure communicate with one another via
common variables. Since no two processes should
access shared variables simultaneously therefore
they should be placed in the critical section to
ensure mutually exclusive access. One way to
divide up the work in a shared memory system is
the fork-join structure where the FORK statement
spawns several processes and JOIN is used to
synchronize the termination of processes [9]. The

portion of program between the FORK and JOIN is
called the parallel structure [10,11].
This paper [8] says that a scheduling algorithm
using a partitioning tool can be used as a way
towards improving the results produced by the
prior scheduling approach. The problem is how to
order processes competing to traverse the critical
section with the task of minimizing the time spent
to execute these processes. The simulation showed
that this algorithm produces even better outcome.
However we did not consider any overhead from
allowing preemptive access to the critical section in
this paper Previous heuristic algorithm scheduled
these processes without allowing preemption in
accessing the critical section.
Xiao Peng1[10] presents a kernel level distributed
interprocess communication system model with
support for distributed process synchronization and
communication. With the development of
computer networks, especially the development of
the Internet, distributed systems have been applied
to all kinds of fields. It has played an important
role in people’s daily life. It is necessary for a
distributed system to offer a powerful and flexible
inter process communication function, and to
effectively release and get information in a wide
area of computing environment. Hence, inter
process communication of the distributed
computing systems becomes an important question
for discussion.

Singh, Gond and Ahirwar 164

Fig. 5. Distributed IPC.

Xiao Peng1 [12] says that, The Distributed
Interprocess Communication System is also based
on pure TCP/IP protocol and C/S model to provide
service to user processes, as shown in Figure 5.
Sandipan Basu [13] presents an algorithm for
achieving mutual exclusion in Distributed System.
Proposed algorithm does not allow the circulation
of the token along the ring, when there is no need
(i.e. when no process wants to enter in its critical
section). In the already existing algorithm, there are
few problems, which, if occur during process
execution, then the distributed system will not be
able to ensure mutual exclusion among the
processes and consequently unwanted situations
may arise. Loss of a token in the ring can easily be
detected, and regeneration of token can be done
easily in this algorithm. And process crash and
recovery of crashed process can easily be managed
using this algorithm.

IV. PROPOSED WORK

In distributed approach a change has been made as
a part of my research to increase the memory and
CPU utilization by temporarily swapping out those
processes which have been waiting for a long time
and entering small processes in the main memory.
Distributed approach is used for implementing
mutual exclusion by sending messages to all other
active processes. It only implements mutual
exclusion. It requires reply messages from all other
processes to ensure that the resource is available to
it.

V. ALGORITHM

Step 1. There are n processes P1 to Pn.

Step 2. If Pi sends request message to all other n-1
processes with its own process id, the name of the

critical section that the process wants to enter and a
unique timestamp generated by the process for the
request message.

Step 3. IF process Pj(other than Pi) on receiving a
request message, neither is in the critical section
nor is waiting for its chance to enter the critical
section go to step 7.

Step 4. Else If process Pj(other than Pi) on
receiving a request message, is itself currently
executing in the critical section
Do
{

Process Pj queues the received request
message

Go to step 8
}

Step 5. Else If process Pj(other than Pi) on
receiving a request message, is currently not
executing in the critical section but is waiting for
its chance to enter the critical section.

Do
{

Pj compares the timestamp in the received
request message with the timestamp in its
own request message that it has sent to
other processes.
If the timestamp of the received request
message is lower
Do
{

Go to step 7
}
Else
Do
{

Go to step 6

Singh, Gond and Ahirwar 165
}

Step 6. Process Pj queues the received request message.
Est = Est(old) + own burst time

Send pre reply message with Est value to Pi.
Go to step 9

Step 7. Process Pj immediately sends a reply message to the Pi(sender).
Go to step 9

Step 8. After Pi finishes executing in the critical section, it sends reply message to all processes in its queue
and deletes them from its queue.

Go to step 12.

Step 9. If Pi receiving special message from Pj with Pj’s Est value

Do

{
If Est>limit

Do

{
Send special reply msg with its own Est value to that Process, from where Pi got
highest Est value.

Swap out Pi for (Est - (swap out time + swap in time)) time to secondary
memory.

Go to step 10

}

Else

Do

{
Go to 11

}

}

Go to 11

Step 10. After (Est - (swap out time + swap in time)) time, Process Pi again swapin in main memory.
Go to step 11

Step 11. If Pi got reply message from every processes

Do

{
Go to step 8

}

Step 12. Exit.

Singh, Gond and Ahirwar 166

There are n
processes
P1 to Pn

If Process Pi wants to enter in critical section it sends
request message to all other n-1 processes with its own
process id, the name of the critical section that the process
wants to enter and a unique timestamp generated by the
process for the request message.

Does process Pj(other than Pi)
on receiving a request message,
is itself currently executing in
the critical section ?

Process Pj queues the
received request
message.

Yes No

Does process Pj(other than Pi)
on receiving a request message,
neither is in the critical section
nor is waiting for its chance to
enter the critical section ?

Yes

Process Pj immediately
sends a reply message to
the Pi(sender).

Process Pj queues the received
request message .and Est =
Est(old) + own burst time

After Pi finishes executing in the
critical section, it sends reply
message to all processes in its
queue and deletes them from its
queue

No

Pj compares the timestamp in the
received request message with
the timestamp in its own request
message that it has sent to other
processes.

does the timestamp of
the received request
message is lower ?

Process Pj queues the
received request message
.and Est = Est(old) + own
burst time

No
Yes

Send pre reply message
with Est value to Pi

VI. FLOW CHART

Singh, Gond and Ahirwar 167

Fig. 6. Flow chart of a Modified Distributed Approach For Mutual Exclusion With Increased Memory And
CPU Utilization.

VII. RESULTS

Table 1.

Process ID Arrival time Burst time

P1 3 5

P2 4 2

P3 2 4

P4 4 1

P5 8 2

Est>limit

Pi receiving special message from Pj
with Pj’s Est value

Yes No

Send special reply msg with its
own Est value to that Process,
from where Pi got highest Est
value.

Swap out Pi for (Est - (swap out
time + swap in time)) time to
secondary memory.

After (Est - (swap out time + swap
in time)) time, Process Pi again
swapin in main memory

If Pi(sender) got reply from every
processes, then enter in critical
section.

Wait while Pi(sender) is
not getting reply from
every processes.

End

Singh, Gond and Ahirwar 168

Fig. 7. Comparison of throughput of distributed algorithm and proposed algorithm for given values in table 1.

Table 2.

Process ID Arrival time Burst time
P1 9 8
P2 4 4
P3 1 7
P4 8 2
P5 3 7

Fig. 8. Comparison of throughput of distributed algorithm and proposed algorithm for given values in table
2.

Singh, Gond and Ahirwar 169

VIII. CONCLUSION

Distributed approach can be utilized for
implementing mutual exclusion by sending
messages to all active processes. It implements
mutual exclusion. It requires response from all
other processes to ensure that the resource is
available to it. This is where we make it sure that
the waiting process is provided with a reply from
the process which holds the resource, this in turn,
makes it sure that the memory held by the waiting
processes is freed and the burst time of all the
processes is known to every other process which is
in the queue and thus the solution is pertainable
and is clearly better than the usual approach which
was being followed till the date. Though there is a
constraint regarding the time taken in sending the
message which needs to be taken care of. Resource
allocation techniques which primarily implements
the mutual exclusion concept which makes it sure
that the editing by multiple processes of a chunk of
data must not be executed simultaneously.
Therefore the utilization of input output devices
must be handled by one process at a time. Here the
time management can be proved to be critical and
hence special care is required to have it managed in
order to keep the execution of the system smooth
and utter.

IX. FUTURE WORK

Future holds the key. These investigations have
identified some interesting directions :
1. Reducing the complexity of the algorithm by
making it simpler despite having lots of processes
and resources.
2. Time management can be made better via
research in future.
3. Resource allocation can be made simpler by
adding a newer algorithm.

REFERENCES

[1]. Md. Abdur Razzaque Choong Seon Hong,
2008, “Multi-Token Distributed Mutual Exclusion
Algorithm,” in 22nd IEEE International
Conference on Advanced Information Networking
and Applications, 1550-445X/08, AINA, pp. 963–
970.
[2]. E.W. Dijkstra, 1965, Solution of a Problem in
Concurrent Programming Control, Communication
ACM, vol. 8, no. 9, Sept.

[3]. G. Couloris, J. Dollimore, and T. Kinberg,
2001, Distributed Systems - Concepts
and Design, 4th Edition, Addison-Wesley, Pearson
Education, UK.
[4]. A. Tanenbaum and M. Van Steen, 2002,
Distributed Systems: Principles and Paradigms,
Prentice Hall, Pearson Education, USA.
[5]. Krishna Nadiminti, Marcos Dias de Assunção,
and Rajkumar Buyya, 2013, Distributed Systems
and Recent Innovations: Challenges and Benefits
Grid Computing and Distributed Systems
Laboratory, Department of Computer Science and
Software Engineering ,The University of
Melbourne, Australia
[6]. Token Ring Algorithm To Achieve Mutual
Exclusion In Distributed System – A Centralized
Approach Sandipan Basu Post Graduate
Department of Computer Science, St. Xavier’s
College, University of Calcutta Kolkata-700016,
INDIA.
[7]. Andrew S. Tanenbaum, Maarten van Steen,
Distributed Systems: Principles and Paradigms
[8] M.-S. Kim, R.A. Ammar, 1998, "Using
Preemptive Access to the Critical Section in Shared
Memory Environment to Minimize the Execution
Time of the Fork-Join Structure," iscc, pp.559,
Third IEEE Symposium on Computers &
Communications.
[9]. Alan H. Karp, May 1987 ”Programming for
Parallelism”, IEEE Com- puter, pp. 43-57.
[10]. Reda A. Ammar, A.I. El-Desouky, T.A.
Fergany, and M.M. Hefeeda. Sep., 1996 ”Heuristic
scheduling algorithms to access the crit- ical
section in Shared Memory Environment,”
Proceedings of the ISCA conference on Parallel
and Distributed Computing Systems, Dijon,
France, pp. 244-247.
[11]. T.G. Lewis and H. El-Rewini, 1992,
“Introduction to parallel com- puting,” Prentice–
Hall, Inc..
[12]. Xiao Peng, Li Yuanyuan, 2009, A Model of
Distributed Interprocess Communication System,
IEEE DOI 10.1109/WKDD.2009.37
[13]. Sandipan Basu, January 2011, Token Ring
Algorithm To Achieve Mutual Exclusion In
Distributed System – A Centralized Approach,
IJCSI International Journal of Computer Science ,
Vol. 8, Issue 1, ISSN (Online): 1694-0814
www.IJCSI.org.

www.IJCSI.org

