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Abstract-  Various authors and researchers have established fuzzy divergence measures and their applications in multi-criteria 

decision making (MCDM), pattern recognition (PR), medical diagnosis (MD), fuzzy clustering, speech recognition etc. Here, we have 

derived a new fuzzy divergence measure and investigated their properties to existence and validity. Also investi-gated fuzzy 

divergence measure in PR, MCDM and MD. Compared the established results by various authors and researcher. Novelty of this 

research may be useful to industries for decision making, identifying the medical diseases and pattern recognition. 
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Introduction 

In information theory, Shannon [20] de ned the entropy measure for a prob-ability distribution. Fuzzy entropy, a fuzziness measure 

(cf.[13]) often used and cited in many literatures, was introduced by Zadeh [27, 28]; then De Luca and Termini [14] de ned an entropy 

of a fuzzy set based on Shannon’s func-tion. Later on, many other researchers made more e ort in this particular area. In 1975, 

Kaufmann [11] proposed a new fuzziness measure of fuzzy set by a distance between its membership function and its nearest 

Classical(Ordinary) sets. Entropy, is a very important notion for measuring uncertain information and received great attention in the 

past decades. It has broad applications in many areas such as Pattern recognition, decision making, medical diagno-sis, signal and 

image processing, fuzzy clustering, speech recognition, feature selection, fuzzy aircraft control, bio-informatics etc. 

Afterwards, a number of other researchers have studied the fuzzy diver-gence measures in di erent ways and provide their applications 

in di erent areas. Fuzzy divergence measure introduced by Fan and Xie [5] is based on ex-ponential operation and its relation with 

fuzzy divergence measure [1]. Prakash et al. [17] proposed two fuzzy divergence measures corresponding to Ferreri [7] probabilistic 

measure of directed divergence. Ghosh et al. [8] gave its appli-cation in the area of automated leukocyte recognition. The study 

submitted by Montes et al. [15] in 2002 was based on special classes of divergence mea-sures and used the link between fuzzy and 

probabilistic uncertainty. Bhatia and Singh [2] proposed the fuzzy divergence measure corresponding to Taneja Tomar and Ohlan [22] 

studied a sequence of fuzzy mean di erence di-vergence measures by establishing inequalities among them and provided their 

applications in the context of consistency in linguistic variables and pattern recognition. Tomar and Ohlan [24] introduced a new 

parametric generalized exponential fuzzy divergence measure corresponding to Verma and Sharma [25] with its application to 

strategic decision making. 

In recent times, the literature on applications of information and divergence measures between fuzzy sets has extended considerably, 

still there is a possi-bility of developing better divergence measures can be developed which can be applied to various elds. Here we 

study a new symmetric generalized measure of fuzzy divergence and its essential properties to check its authenticity. The new 

generalized measure has elegant properties which are proven in the paper to present the e ciency of the proposed measure. 

 

This paper is organized as follows. In Section 1, some important concepts of probability theory will be reviewed along with the 

illustration of fuzzy set theory using the membership degree and non-membership degree of fuzzy set. In Section 2, a new symmetric 

fuzzy divergence measure between fuzzy sets is proposed. Section 3 provides some more elegant properties of the proposed measure 
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in a number of theorems. Finally, the applications of proposed gen-eralized fuzzy divergence measure to MCDM, PR and MD are 

illustrated by three numerical examples in Section 4. In section 5, results and discussion. Finally, some concluding remarks are drawn 

in Section 6. 

1.1 Shannon Entropy 

Shannon rstly use the word entropy to measure an uncertain degree of the randomness in a probability distribution and de ned the 

information contained in an experiment. It is given by 

 n  

 Xi  

H(P) = pilogpi (1.1) 

 =1  

 

Directed divergence measure is a relative entropy measure which provides a distance formula between the two discrete probability 

distributions. Kullback and Leibler [12] rst proposed a measure of directed divergence between the two distributions P = (p1, p2, p3, 

....., pn) and Q = (q1, q2, q3, ....., qn) as: 

n 

D(P j Q) = X pilog pi 

i=1 qi 

The New f-divergence contains several divergences used in determining the a nity/distance between two probability distributions. This 

divergence is in- 

troduced by using a 

convex function f, de ned on (0, 

1 

). Let  n = P = (p , 

 n  1 

p2, p3, ....., pn): pi   0, P p i = 1, n   2 be a set of complete  nite discrete 

i=1 

probability distributions. For a convex function, a new f-divergence measure is developed by Jain and Saraswat and is given by 

n 

qif pi2qi i Sf (P; Q) = i=1 

X 

  + q   

     

 

 

It is well known that Sf (P, Q) is a multi-purpose functional form which results in number of general divergence measures. Most 

common choices of f satisfy f(1) = 0, so that Sf (P, Q) = 0. Convexity ensures that divergence measure Sf (P, Q) is non-negative. 
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1.2 Fuzzy Concepts 

Fuzziness, a feature of uncertainty, results from the lack of sharp di erence of being or not being a member of the set, i.e., the 

boundaries of the set under consideration are not sharply de ned. A fuzzy set A de ned on a universe of discourse X is given by Zadeh 

and is de ned below: 

A = fh x, A(x) / x 2 Xig, 

where A(x) : X ! [0, 1] is the membership function of A. The membership value describes the degree of belongingness of X in A. 

When valued in [0, 1], it is the characteristic function of crisp (i.e. non fuzzy) set. Zadeh [28, 27] gave some notions related to fuzzy 

sets, some of which are listed below: 

(1) Complement: A = Complement of A () A(x) = 1 A(x) for all x 2 X . 

Union: A[B = Union of A and B () A[B(x) = maxf A(x), B(x)g for all x 2 X 

Intersection: A\B = intersection of A and B () A\B (x)= minf A(x), B(x)g for all x 2 X 

 

Considering the concept of fuzzy sets, De Luca and Termini [14] introduced the measure of fuzzy entropy corresponding to Shannon’s 

entropy and given as 

 

H(N) = 

n 

h A(xi)log A(xi) + (1   A(xi))log(1   A(xi))i i=1 

 X  

This idea of divergence measure was extended from probabilistic to fuzzy set theory by Bhandari and Pal [1] by giving a fuzzy 

information measure for discrimination of a fuzzy set B relative to some other fuzzy set A. Let A and B be two fuzzy sets de ned in 

discrete universe of discourse X = fx1, x2, ...., 

 

xng having the membership values A(xi) and B(xi), i = 1,2,...n respectively, then the fuzzy divergence measure of fuzzy set B relative to 

A is given by 

 

 

 

Satisfying the condition 

D(A, B)   0, 

D(A, B) = 0 i  A = B, 

D(A, B) is a convex function of  A(xi). 

n 

A(xi)log  B(xi) + (1 D(A j B) = i=1 

X 

 A(xi) 

   

A(xi))log 1 B(xi) (1.2) 

 1 A(xi)   
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If X is a universe of discourse and F(X) is the set of all fuzzy subsets, a mapping L : F(X) x F(X) ! R is a fuzzy divergence measure if 

and only if for each A, B, C 2 F(X), the following axioms hold: 

(a1) L(A, B) 0, 

(a2) L(A, A) = 0, 

(a3) max fL(A U C, B U C), L(A \ C, B \ C)g L(A, B). 

Non-negativity of L(A, B) is the natural assumption. 

Generliazed Symmetric fuzzy divergence mea-sure 

Here, we shall propose a symmetric generalized measure of divergence between two fuzzy sets A, B of universe of discourse X = fx1, 

x2, x3,...., xng having the 

membership values 2 (0, 1) corresponding to [19] and is given by 

 

Nt(A; B) = 22t+1 

n 

B(xi))2t ( A(xi ) B(xi))t  + (1 A(xi))(1   B(xi)))t 
i=1 ( A(xi) 

1 

X 

 ( A(xi) +  B(xi))   (2   A(xi)   B(xi)) 

         

 

(2.1) 

t = 0, 1,.... 

2.1 Theoram 

Nt(A, B) is a valid measure of fuzzy divergence. 

Proof. It is clear From (2.1) that 

Nt(A, B)   0 

Nt(A, B) = 0 if  A(xi) =  B(xi), 

max fNt(A [ C, B [ C ), Nt(A \ C, B \ C )g Nt(A, B) We divide X into six subsets: 

X1 = fx/x 2 X, A(x) B(x) C (x)g 

 

X2 = fx/x 2 X, A(x) C (x) <  B(x)g 

X3 = fx/x 2 X, B(x) <  A(x) C (x)g 

X4 = fx/x 2 X, B(x) C (x) <  A(x)g 

X5 = fx/x 2 X, C (x) <  A(x) B(x)g 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 8, Issue 3, May-June, 2020                                                                                   
ISSN 2091-2730 

36                                                                                           www.ijergs.org 

X6 = fx/x 2 X, C (x) <  B(x) <  A(x)g 

In set X1, 

A [ C = Union of A and B () A[C (x) = maxf A(x),  C (x)g =  C (x) 

B [ C = Union of B and C () B[C (x) = maxf B(x),  C (x)g =  C (x); 

A \ C = intersection of A and C () A\C (x) = minf A(x), C (x)g = A(x); 

B \ C = intersection of B and C () B\C (x) = minf B(x), C (x)g = B(x); 

Nt(A [ C, B [ C ) = Nt(C, C) = 0, 

Nt(A \ C, B \ C ) = Nt(A, B), 

So, maxfNt(A [ C, B [ C ), Nt(A \ C, B \ C )g = Nt(A, B), 

Similarly, in the sets X2, X3, X4, X5, X6 we have 

maxfNt(A [ C, B [ C), Nt(A \ C, B \ C )g Nt(A, B). 

Thus, max fNt(A [ C, B [ C ), Nt(A \ C, B \ C )g Nt(A, B) for all A, B, C 2 F(X) 

Properties of proposed fuzzy divergence mea-sure 

In this section we provide properties of the proposed generalized fuzzy diver-gence measure (2.1) in accordance with the following 

theorems. To prove these theorems we assume that X divided into two parts X1 and X2 such that the sets 

X1 = fx/x 2 X, A(xi) B(xi)g 

X2 = fx/x 2 X, A(xi) <  B(xi)g 

Theorem 1.  (a)Nt(A, A \ B) = Nt(B, A [ B). 

Nt(A [ B, A) + Nt(A \ B, A) = Nt(B, A). 

Nt(A [ B, A \ B) = Nt(A, B). 

(d)Nt(A [ B, C) + Nt(A \ B, C) = Nt(A, B) + Nt(B, C). 

Theorem 2.  (a) Nt(A, A) = Nt(A, A) 

Nt(A, B) = Nt(A, B) 

Nt(A, B) = Nt(A, B) 

Nt(A, B) + Nt(A, B) = Nt(A, B) + Nt(A, B). 

 

Applications of Proposed fuzzy divergence mea-sure 

Here we are going to introduce the application in the context of MCDM, PR and MD. 
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4.1 Multi-Criteria Decision Making 

Decision-making deals with the problem of choosing the best alternative with the highest degree of satisfaction for all the appropriate 

criteria or goals. Multi-criteria decision-making (MCDM) is the most well known branch of decision-making that allows decision-

makers to rank and select alternatives according to di erent criteria. Using below method we can solve the MCDM problems with the 

help of proposed generalized fuzzy divergence measure. 

Let R = (R1, R2, R3,....., Rm) be a set of options, D = (D1, D2, D3,....., Dm) 

be the set of criteria. The Characteristics of the option Ri in term of criteria 

D are represented by the following FSs: 

Ri = f < Dj, ij >, Dj 2 Dg, i = f1, 2, 3,...., mg and j = f1, 2, 3,.., ng 

Where ij indicates the degree that the option Ri satis es the criteria Dj. 

We can solve the above MCDM problem using Eq. (2.1). 

Step 1: Find out the positive-ideal solution R+ and negative-ideal solution 

R : 

R+ = f< 1+>, < 2+>,...,< n+>g 

= f< 1  >, < 2  >..., < n  >g 

where for each j = 1, 2, 3,.... , n. 

j
+ = < maxi ij 

j = < mini ij 

Step 2: Calculate Nt(R+, Ri) and Nt(R , Ri) using Eq. (2.1) 

Step 3: Calculate the relative fuzzy divergence measure Nt(Ri) of alterna-tive Ri with respect to R+ and R , where 

Nt(Ri) = 

Nt(R+;Ri) 

, i = 1, 2, ..., m. Nt(R+;Ri)+Nt(R ;Ri) 

Step 4: Rank the preference order of all alternatives according to the rel-ative fuzzy divergence measure. 

Step 5: Select the best alternative Rk with the smallest Nt(Rk). 

To solve a real problem related to MCDM, we establish the applicability of new fuzzy divergence measure. For this we are going to 

consider customer decision-making problem given below. 

Case study Consider a customer who wants to by a car . let there be ve types of cars , the alternatives R = fR1, R2, R3, R4, R5 g be 

available in the market to by a car the customer takes the following four criteria : (i) Quality of product (D1), (ii) price (D2), (iii) 

Technical capability (D3) and (iv) Fuel 

 

 

Economy (D4). 
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The ve possible options are to be evaluated by using decision making un-der the above four criteria in the following form: 

R1 = f< D1, .5>, <D2, .3>, <D3, .4>, <D4, .7> g 

R2 = f<D1, .2>, <D2, .7>, <D3, .6>, <D4, .6>g 

R3 = f<D1, .8>, <D2, .5>, <D3, .9>, <D4, .2>g 

R4 = f<D1, .6>, <D2, .4>, <D3, .7>, <D4, .5>g 

R5 = f<D1, .6>, <D2, .5>, <D3, .5>, <D4, .7>g 

The stepwise computational procedure to solve the above multi-criteria fuzzy decision- problem now goes as follows. 

Step 1: The positive-ideal solution (R+) and negative-ideal solution (R ) 

respectively are 

R+ = f<D1, .8>, <D2, .7>, <D3, .9>, <D4, .7>g 

= f<D1, .2>, <D2, .3> ,<D3, .4>, <D4, .2>g 

Step 2: Table (1) and (2) shows the calculated numerical values of Nt(R+, Ri) and Nt(R , Ri) using Eq. (2.1) for t 0 

Step 3: Calculated values of the relative fuzzy divergence measure Nt(Ri) 

for i= 1, 2, 3, 4, 5 with t are presented in table (3) 

Step 4: According to the calculated numerical values of relative divergence measure for di erent values of t ranking order of 

alternative as follows: 

For t = 1, R3 > R4 > R5 >R2 > R1 

For t = 5, R3 > R4 > R5 >R2 > R1 

For t = 10, R3 > R4 > R5 >R2 > M1 

For t = 100, R3 > R4 > R5 >R2 > R3 

Table 1: Calculated numerical values of Nt(R+, Ri), t 0 

 t=1 t=5 t=10 t=100 

     

Nt(R+, R1) .78309 .42980 .52645 20.74649 

Nt(R+, R2) .74554 .07039 .00396 1.02861e-25 

Nt(R+, R3) .38793 .00864 .00014 4.25021e-36 

Nt(R+, R4) .27570 .00082 3.38702e-06 3.88065e-49 

Nt(R+, R5) .39811 .09831 .03322 6.11111e-11 
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Table 2: Calculated numerical values of Nt(R , Ri), t 0 

 t=1 t=5 t=10 t=100 

     

Nt(R , R1) .45944 .00884 .00014 4.25021e-36 

Nt(R , R2) .44046 .00192 6.77459e-06 7.76130e-49 

Nt(R , R3) 1.08374 .47986 .52961 1.02861e-25 

Nt(R , R4) .43525 .00187 6.77459e-06 7.76130e-49 

Nt(R , R5) .60647 .01031 .00014 4.25021e-36 

 

Then by table (3) variation in values of t brings change in ranking, but leaves the best choice unchanged. So R3 is the most perfectly 

alternative. 

Table 3: Computed values of relative divergence measure Nt(Ri) for i = 1,2,3,4,5 

 t=1 t=5 t=10 t=100 

     

Nt(R1) .63024 .97985 .99970 1 

Nt(R2) .62681 .97345 .99830 1 

Nt(R3) .26359 .01769 .00030 4.13199e-11 

Nt(R4) .38779 .30483 .33330 .33330 

Nt(R5) .39629 .90508 .99580 1 

 

Case study by using weight vector 

Fuzzy MCDM problems consist of m alternatives ai(i=1(1)m) such that alternative is achieved by means of n criteria bj(j=1(1)m) @ij is 

constructed by alternative ai with respect to criterion bj, are fuzzy values (FVs). Let wj 

n 

be weight of criterion such that wj 0, P wj = 1, W = (w1, w2,..., wn)T 

i=1 

It is worth mentioning that proposed method is appropriate for circum-stances where the number of decision experts is small such that 

they assess the criterion based on their experience and knowledge and the alternatives could be of any type, then these assessment of 

alternatives can be converted to FVs. 

If the information regarding the criterion weight vector is not completely known or only partially known, then this proposed method 

can used to solve the MCDM problems. This method consists of the following steps: 
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Step 1: Generate decision matrix G = (@ij)m n 

The decision experts furnish all the feasible evaluations regarding the alter-native ai with respect to criterion bj mentioned by fuzzy 

values @ij (i=1(1)m, j=1(1)n) 

Step 2: Compute PIS and NIS. 

The solution which result in optimum value for each criterion is ideal so-lution. The optimal values (PIS) for diverse criterion are 

altered and pointed out as 

8 

max  @ijf orbenif itcreterionbj 

< 

"+ = 

i=1(1)m 

(4.1)  

min  @ijf orcostcreterionbj 

i=1(1)m 

for j=1(1)n. 

and 

8 

max  @ijf orbenif itcreterionbj 

< 

"  = 

i=1(1)m 

(4.2)  

min  @ijf orcostcreterionbj 

i=1(1)m 

for j=1(1)n. 

Step 3: Compute the weight vector 

Overall performance of the alternative ai computed by given formula 

n   

kij 

  

Xj     

k(ai) =    wjkij; wherekij = 

k 

+ 

+ k 

(4.3) 

=1 ij ij   
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Apparently, the larger value of k(ai) shows the better the alternative. There-fore, all the alternatives are measured as a whole to 

construct a combined weight vector. Thus, linear programming model is demonstrated as follows: 

 

m m  n  

Xi X X  

maxk =    K(ai) = wjkij; (4.4) 

8 

w 2 W 

< 

where; n 

P 

wj = 1 

j=1 

Step 4: Compute the closeness degree of the alternatives. 

Based on (4.3), closeness degree k(ai) of each alternative ai (i=1(1)m) with respect to the ideal solution is evaluated. 

Step 5: Rank the alternatives. 

Choose the highest value, denoted by k(ai) among the values k(ai), (i=1(1)m) 

Hence ad is the optimal choice. 

Case Study Evaluation and assessments of the organizations in the nan-cial system based on nancial criteria are very indispensable. In 

this section, proposed method is implemented by via real data to the ranking of organiza-tions listed below: 

Bajaj Steel (a1), HDFC Bank (a2), Tata Steel (a3), and InfoTech Enterprises (a4) 

Four alternatives fa1, a2, a3, a4 g are considered for their performance on the basis of given inter-independent criterion set fb1, b2, b3, b4, 

b5g, b1; Earn-ings per share (EPS);2 b2: Face value; b3: P/C (Put-Call) ratio; b4 : Dividend; b5 : P/E (Price-to-earning) ratio. Out of 

these rst two are bene t criteria, i.e., higher quantity shows good growth prospects and the remaining are cost criteria, i.e., lower 

quantity shows good growth prospects. 

Actual numerical values of the alternatives with respect to criterion set are adopted from Joshi and Kumar (2014) and Mishra et al 

(2017) and their average information values are depicted in the Table 4. Based on knowledge and experience of experts regarding the 

criterion set, partial information of the weights is given by 

 

W = f(wi)T j .2  w1   .35, .1  w2   .27, .15  w3   .25, w1   .2w4, .8  w4   .15, 

n 

P 
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.2  w5   .4, w2 - w5 w3g such that wj = 1 

i=1 

Step 1: Crisp values in Table 4 are fuzzi ed by generating the form FSs for each criterion and decision matrix (Table 5) for FSs is 

constructed. 

A1 = 0.2846 / 20.5 + 0.75 /10 + 0.234 / 2.21 + 0.23 / 2 + 0.24 / 4.8, A2 = 0.318 / 23.31 + 0.248 / 2 + 0.766 / 24.7 + 0.097 / 0.67 + 0.76 

/ 27, 

Table 4: Average actual numerical value of criteria 

 b1 b2 b3 b4 b5 

a1 20.50 10.00 2.21 2.00 4.80 

a2 23.31 2.00 24.7 .67 27.00 

a3 60.06 10.00 5.65 2.92 6.5 

a4 16.86 5.00 9.70 1.25 11.40 

 

A3 = 0.759 / 60.06 + 0.75 /10 + 0.315 / 5.65 + 0.32 / 2.92 + 0.278 / 6.5, A4 = 0.241/16.86 + 0.437 / 5 + 0.41/ 9.7 + 0.155 /1.25 + 0.394 

/11.4 

 

   Table 5: Fuzzy decision matrix 

 b1 b2 b3 b4 b5  

a1 .2846 .75 .234 .23 .24  

a2 .318 .248 .766 .097 .76  

a3 .759 .75 .315 .32 .278  

a4 .241 .437 .41 .155 .394  

 

 Step 2: PIS and NIS are calculated by using (4.1) and (4.2) are as follows: 

 "+ = f0.759,0.75,0.234,0.23,0.24g   

" = f0.241,0.248,0.766,0.32,0.76g    

 Step 3: Calculating k+
ij(@ij, "+) and k ij(@ij, , " ):  

 k11 +  = 0.2919, k12
+  = 0.0000, k13

+  = 0.0000, k14
+  = 0.0000, k15

+  = 

0.0000,     

k2

+ = 0.2449, k22 
+ = 0.3369, k23 

+ = 0.3948, k24 
+ = 0.0377, k25 

+ = 0.3706, 
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1 

k3

1 + = 0.0000, k32 
+ = 0.0000, k33 

+ = 0.0084, k34 
+ = 0.0104, k35 

+ = 0.0019, 

k41 + = 0.3667, k42 
+ = 0.1151, k43 

+ = 0.0376, k44 
+ = 0.0093, k45 

+ = 0.0287 

 and     

 k11 0.0025, k12   = 0.3369, k13   = 0.3948, k14   = 0.0104, k15   = 0.3706, 

k2

1 = 0.0075, k22 = 0.0000, k23 = 0.0000, k24 = 0.0995, k25 = 0.0000, 

k3

1 = 0.3667, k32 = 0.3369, k33 = 0.2597, k34 = 0.0000, k35 = 0.3039, 

k41 = 0.0000, k42 = 0.0421, k43 = 0.1539, k44 = 0.0416, k45 = 0.1619 

 

Next, the overall performances, by using (4.3), of alternative are calculates as follows: 

 

k11 = 0.0085, k12 = 1.0000, k13 = 1.0000, k14 = 1.0000, k15 = 1.0000, k21 = 0..0297, k22 = .0000, k23 = .0000, k24 = .7252, k25 = .0000, 

k31 = 1.0000, k32 = 1.0000, k33 = 0.9687, k34 = 0.0000, k35 = 0.9938, k41 = 0.0000, k42 = 0.2678, k43 = 0.8037, k44 = 0.8173, k45 = 

0.8494 

Step 4: Construct the model and compute the weight vector. 

max k = 1.0382 w1 + 2.2678w2 + 2.7784w3 + 2.5425w4 + 2.8432w5 

 

8 

:25 w1 

 

:4; :16   w2    :27;  

:15 w3 :25; w1    :2w4;  

>      

>      

>      

>      

>      

<      

= s:t :1   w4    :18; :2   w5    :35; w2    w5    w3 (4.5) 

> n 

> 
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P 

wj = 1 

>: 

j=1 

(wj)T = (.25, .16, .165, .1, .325)T 

Step 5: Calculation of closeness degree of the alternatives. 

k(a1) = .6521, k(a2) = .0799 , k(a3) = .8928, k(a4) = .5322. 

 

Step 6: Rank the alternatives. 

a3 > a1 > a4 > a2. Hence, optimum alternative is a3. 

The ranking of four alternatives is also acquired by the TOPSIS, F-TOPSIS, intuitionistic fuzzy TOPSIS and proposed, methods and is 

compared in Table 6 given below: 

Table 6: Comparison of ranking order of alternatives from various methods 

 

Methods  Ranking Optimal alternative 

   

TOPSIS method proposed by Hwang, Yoon (1981) a3 > a4 > a1 > a2 
a3 

F-TOPSIS proposed by Chen (2001) a3 > a1 > a4 > a2 a3 

IF-TOPSIS proposed by Joshi, Kumar (2014) a3 > a1 > a4 > a2 a3 

Mishra et al method (2017) a3 > a1 > a4 > a2 a3 

D.S. Hooda mathod (2018) a3 > a1 > a4 > a2 a3 

Proposed method a3 > a1 > a4 > a2 
a3 

 

It is worth mentioning that there is no discrepancy in the ranking order of the alternatives by TOPSIS method, F-TOPSIS method, IF-

TOPSIS method, Mishra et al (2017), Hooda (2018) and proposed method. 

4.2 Pattern Recognition 

Now, we will discuss how pattern recognition become simple by demonstrating application of the proposed generalised fuzzy 

divergence measure given as be-low. 

 

Assume, we are have m known patterns P1, P2, P3,..., Pm having the clas-si cation D1, D2, D3,...., Dm: respectively. 

The Pattern are represented by the following fuzzy set in the universe of discourse K = fk1, k2, k3,.., kng: 
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Pi = fh kj, pi (kj) i/ kj 2 K g 

 

where i = 1, 2, . . ., m and j = 1, 2, . . ., n. 

Given an unknown pattern Q, represented by the fuzzy set Qi = fh kj, Qi (kj)i / kj 2 K g 

Our main motive is to classify Q to one of the classes D1, D2, D3, ...., 

Dm.The process of assigning Q to DX described below is as per the principal of minimum divergence/discrimination information 

between fuzzy sets 

X  = arg min fM(PX , Q)g. 

x 

Above algorithm, the given pattern can be recognized so that the best class can be selected. It is considered as a practical application 

of minimum diver-gence measure principal [22] for pattern recognition. 

Case Study Consider a problem having four known patterns P1, P2, P3 and P4 which have classi cations D1, D2, D3 and D4 respectively. 

These are represented by the following fuzzy sets in the universe of discourse K = fk1, k2, k3g. 

P1 = fhk1, .7i, hk2, .3i, hk3, .1ig 

P2 = fhk1, .4i, hk2, .2i, hk3, .5ig 

P3 = fhk1, .6i, hk2, .3i, hk3, .8ig 

P4 = fhk1, .7i, hk2, .5i, hk3, .8ig 

Given an unknown pattern Q, represented by the fuzzy set 

Q = fhk1,.5i, hk2,.4i, hk3,.9ig 

Table 7: Calculated numerical values of Nt(PX , Q), X = 1, 2, 3, 4 for any t 0 

 t=1 t=2 t=10 t=50 

     

Nt(P1, Q) 1.83275 3.16293 315.33686 3117982410207.97 

Nt(P2, Q) .36451 .20263 .03221 4.28174e-06 

Nt(P3, Q) .04307 .00258 1.39698e-10 1.05097e-46 

Nt(P4, Q) .07572 .00474 1.39698e-10 1.05097e-46 

 

Our aim here is to classify Q to one of the classes D1, D2, D3 and D4. From the formula (2.1) , we can compute the values of 

generalized fuzzy divergence measure Nt(Pi, Q), i = f1, 2, 3, 4g for any t 0 and are presented in Table 

(4) as follows. It is observed that Q can be classi ed to D3 correctly. 
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4.3 Medical Diagnosis 

The application of fuzzy sets theory has been found in the diagnosis of disease by many researchers. Pattern recognition algorithms is 

appropriate tool to re-solve medical diagnosis problems for recognizing disease which is a challenging research area according to 

practical point of view. 

Below example elaborate the e ciency of the proposed generalized fuzzy di-vergence measure in resolving medical diagnosis 

problems, using the algorithm given by Ohlan [17] 

Suppose that the universe of discourse X is a set of symptoms 

K = k1 (Temperature ), k2 (Headache), k3 (Stomach Pain), k4 (Cough), k5 (Chest Pain) 

Consider a set of diagnosis 

B = B1 (Viral ), B2 (Malaria), B3 (Typhoid), B4 (Stomach Problem), B5(Chest Problem) 

whose elements are presented by the following FSs, respectively, 

B1 = f<k1, 0.7>, <k2, 0.2>, <k3, 0.0>, <k4, 0.7>, <k5, 0.1>g 

B2 = f<k1, 0.4>, <k2, 0.3>, <k3, 0.1>, <k4, 0.4>, <k5, 0.1>g 

B3 = f<k1, 0.1>, <k2, 0.2>, <k3, 0.8>, <k4, 0.2> <k5, 0.2>g 

B4 = f<k1, 0.1>, <k2, 0.0>, <k3, 0.2>, <k4, 0.2>, <k5, 0.8>g 

B5 =f<k1, 0.3>, <k2, 0.6>, <k3, 0.2>, <k4, 0.2> <k5, 0.1>g 

Table 8: Calculated numerical values of Nt (P, Bi), i = f1, 2, 3, 4g for any t 0 

 t=2 t=3 t=10 t=50 

     

Nt(P, B1) 1 1 1 1 

Nt(P,B2) .45538 .41498 .52645 2.69467 

Nt(P,B3) 1.37102 1.80589 31.90312 804484348.54885 

Nt(P,B4) 1 1 1 1 

Nt(P,B5) .28844 .09772 .00014 1.38297e-18 

The aim here is to assign a patient 

P = f<k1, .8>, <k2, .2>, <k3, .6>, <k4, .6>, <k5, .1>g , to one of the above mentioned diagnosis B1, B2, B3, B4 and B5. We proceed by 

considering the criteria min Nt(P, Bi) with t 2 N 

i 

Table (5) presents the values of using Nt(P, Bi), i = f1, 2, 3, 4g for t 2 N using the measure (2.1). It has been observed that the proper 

diagnosis for patient P is B5 (Chest problem). 
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Results and Discussion 

In some engineering problems, the decision based on crisp values is not possi-ble. therefore, the use of fuzzy MCDM may be more 

bene cial. The proposed approach can be used in various decision-making problems, PR and MD. The most of the existing MCDM 

approaches do not consider the vagueness and uncertainty in the problem and fail to make a good decision. Here MCDM, PR and MD 

will consider both the gaps, it can be further used in other de-cision making problems like supplier selection, project selection, 

location, face detection, medical and other such problems. 

Conclusion 

Same techniques may be adopt for other decision-making, medical problems like supplier selection, project selection, location 

selection and others more real life problems. Proposed symmetric fuzzy divergence measure with proof of valid-ity and some more e 

cient properties of this divergence measure also proven. Thus, it is concluded that the proposed divergence measure and method of 

MCDM, PR and MD require no computation. Finally, we observe that that proposed divergence measure is very appropriate measure 

to solve real-world problems related to MCDM, PR and MD. 
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