POWER CHAINS IN A DIVISOR GRAPH

Satyanarayana Bhavanari¹, Srinivasa Devanaboina², Mallikarjuna Bhavanari³ & Abul Basar⁴

¹Department of Mathematics, Acharya Nagarjuna University, Andhra Pradesh, India
²Department of FEd, NRI Institute of Technology, Andhra Pradesh, India
³Department of Mechanical Engineering, Institute of Energy Engineering, National Central University, Jhongli, Taoyuan, Taiwan
⁴Department of Natural and Applied Science, Glocal University, Uttar Pradesh, India

Received: 07 Apr 2019 Accepted: 16 Apr 2019 Published: 27 Apr 2019

ABSTRACT

The divisor graph of an associative ring R (denoted as DG(R)) was introduced by Satyanarayana, Srinivasulu [9]. In this paper, we introduce a simple concept “Power Chain in a Divisor Graph”. We prove that if \(0 = a \in R \) is nilpotent, then the power chain starting with \(a \) is of finite length. If \(DG(R) \) (the divisor graph of \(R \)) contains a power chain starting with \(a \in R \) which is of infinite length, then \(0 = a = 1 \), \(a \) is non–idempotent and non–nilpotent element. We announce some basic results. Finally, we deduce that if \(R \) be an integral domain and \(a \in R \), then \(0 = a = 1 \) if and only if the power chain starting with \(a \) (in \(DG(R) \)) is of infinite length.

KEYWORDS: Associative Ring, Divisor Graph of a Ring, Complete Graph

Mathematics Subject Classification: 05C07, 05C20, 05C76, 05C99, 13E15

1. INTRODUCTION

Beck [2] related a commutative ring \(R \) to a graph by using the elements of \(R \) as vertices and two vertices \(x, y \) are adjacent if and only if \(xy = 0 \). Anderson and Livingston [1] proposed a modified method of associating a commutative ring to a graph by introducing the concept of a zero-divisor graph of a commutative ring. Satyanarayana Bhavanari, Syam Prasad K and Nagaraju D [26] introduced “Prime Graph” of a ring and later studied by several authors. These concepts are different bridges connecting the two theories: Ring Theory & Graph Theory.

Now we introduce a concept called “Power Chains in a divisor graph” of a ring. This idea motivates us to prove the following results: (i) \(DG(\mathbb{Z}_p) \) contains a chain of length \(p-1 \). (ii) If \(p \)-prime, then \(DG(\mathbb{Z}_p) \) contain a max chain of length \(p-1 \).

Now we review some definitions and results for the sake of completeness.

1.1 Definitions

Let \(G = (V(G), E(G)) \) be a graph where \(V(G) \) is the set of vertices of \(G \) and \(E(G) \) the set of edges of \(G \). An edge between two vertices \(x, y \in V(G) \) is denoted by \(xy \).

Impact Factor(JCC): 3.7985 - This article can be downloaded from www.impactjournals.us
A graph \(G(V, E) \) is said to be a star graph if there exists a fixed vertex \(v \) such that \(E = \{vu / u \in V \text{ and } u \neq v \} \). A star graph is said to be an \(n \)-star graph if the number of vertices of the graph is \(n \).

(Satyanarayana, Srinivasulu D & Mallikarjuna [14]): Let \(G \) be a graph. The star number of \(G \) is defined as \(\max \{ n \mid \text{there exists an } n \text{-star graph which is a subgraph of } G \text{ and } n \text{ is an integer with } n \geq 1 \} \). We denote this star number of \(G \) by \(s_n(G) \).

(Satyanarayana Bhavanari and Syam Prasad K [25]): A complete graph is a simple graph in which each pair of distinct vertices are joined by an edge. The complete graph on 'n' vertices is denoted by \(K_n \).

(Satyanarayana Bhavanari, Srinivasulu Devanaboina, AbulBasar & Mallikarjuna Bhavanari [9]): Let \(R \) be an associative ring and \(x, y \in R \). We say that \(x \) divides \(y \) (if there exists \(z \in R \) such that \(xz = y \) or \(zx = y \)). A graph \(G = (V, E) \) is said to be the divisor graph of \(R \) (denoted by \(DG(R) \)) if \(V = R \) and \(E = \{xy/xz = y \text{ or } zx = y \text{ for some } z \in R \text{ and } x = y \} \).

Power Chains in a Divisor Graph

2.1. Definition

A chain

![Figure 1](image)

is said to be a power chain starting with \(a \) if \(x_1 = a \) and \(x_n = a^{\frac{n-1}{2}} \), and \(x_{n-1} = x_n \) for all \(n \geq 1 \).

2.2. Note:

If \(a \in R \) is an idempotent then \(a = a^2 \) and so there is no edge in \(DG(R) \) between \(a \) and \(a^3 \).

2.3. Examples:

If \(R = \mathbb{Z}_2 = \{0, 1\} \) the ring of integers modulo 2, then \(V(DG(R)) = \{0, 1\} \). \(E(DG(R)) = \{11\} \). Now \(DG(R) \) is given in Figure 2.

![Figure 2](image)

If \(R = \mathbb{Z}_3 = \{0, 1, 2\} \) the ring of integers modulo 3, \(V(DG(R)) = \{0, 1, 2\} \) and \(E(DG(R)) = \{01, 02, 12\} \). Now there is only one power chain in \(DG(R) \) and it is given in Figure 3.

![Figure 3](image)
If $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$ the ring of integers modulo 4, $V(DG(R)) = \{0, 1, 2, 3\}$ and $E(DG(R)) = \{01, 02, 03, 12, 13, 23\}$. Now there exist two power chains in $DG(R)$ and are given in Figure 4.

![Figure 4](image)

If $R = \mathbb{Z}_5$, then $R = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ the ring of integers modulo 5, $V(DG(R)) = \{0, 1, 2, 3, 4\}$ and $E(DG(R)) = \{01, 02, 03, 12, 13, 23, 34\}$. Now power chains in $DG(R)$ is given in Figure 5.

![Figure 5](image)

If $R = \mathbb{Z}_6$, then $R = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ the ring of integers modulo 6, $V(DG(R)) = \{0, 1, 2, 3, 4, 5\}$ and $E(DG(R)) = \{01, 02, 03, 04, 05, 12, 13, 14, 15, 23, 24, 34\}$. Now Power chains in $DG(R)$ is given in Figure 6.

![Figure 6](image)

If $R = \mathbb{Z}_7$, then $R = \mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ the ring of integers modulo 7, $V(DG(R)) = \{0, 1, 2, 3, 4, 5, 6\}$ and $E(DG(R)) = \{01, 02, 03, 04, 05, 06, 12, 13, 14, 15, 16, 23, 24, 25, 34, 35, 36, 45, 46, 56\}$. Now Power chains in $DG(R)$ is given in Figure 7.
2.4. Results

- DG(\(\mathbb{Z}_n \)) contains a chain of length \(\varphi(n) - 1 \)
- (ii) If \(p \)-prime, then DG(\(\mathbb{Z}_p \)) contain a max chain of length \(p - 2 \)

2.5 Lemma: If \(0 = a \in R \) is nilpotent then the power chain starting with \(a \) is of finite length.

Proof: Suppose that \(a \in R \) is a nilpotent element. Then there exists a positive integer \(k \) such that \(a^k = 0 \). Let \(m \) be the least positive integer such that \(a^m = 0 \). Now write \(x_1 = a, \ x_2 = a, \ldots, x_m = 0 \).

Now is the power chain starting with ‘\(a \in R \)’ and its length is \(m \), a finite length.

2.6 Lemma: If DG (\(R \)) contains a power chain starting with \(a \in R \) which is of infinite length, then \(0 = a \neq 1 \), \(a \) is non–idempotent and non – nilpotent element.

Proof: Suppose that DG(R) contains a power chain starting with a which is of infinite length. Suppose the chain is

with \(x_1 = a \) and \(x_2 = a, (x_{m-1}) = a^m \). \(x_{m-1} = x_m \) for all \(n \).

Since \(x_1 \neq x_2 \) we have that \(\neq \neq \) and so \(a \) is not idempotent.
If \(a = 0 \) then \(a^k = 0 = a^{k+1} \), a contradiction.

Suppose \(a \) is the nilpotent element. Then by above lemma, the power chain starting with \(a \) is of finite length, a contradiction.

Therefore \(a \) cannot be a nilpotent element.

2.7 Lemma: Let \(R \) be an integral domain. If \(\mathbb{0} \neq \alpha \in R \) then \(a \) cannot be a nilpotent element.

Proof: Suppose \(a \) is nilpotent, Then there exists a positive integer such that \(a^k = 0 \) without loss of generality we assume that \(n \) is the least positive integer such that \(a^n = 0 \). Now \(a \cdot (a^{n-1}) = 0 \) and \(a \neq 0 \), \(a^{n-1} \neq 0 \), a contradiction. The proof is complete.

2.8. Theorem

Let \(R \) be an integral domain and \(a \in R \). Then \(\mathbb{0} \neq a \in R \) if and only if the power chain starting with \(a \) (in \(\text{DG}(R) \)) is of infinite length.

Proof: Suppose \(a \) is non-zero element in \(R \).

Then \(a^k = 0 \) for any positive integer. (by lemma – 2.7)

Now we prove that \(a^k \neq a^{k+1} \) for all \(k \geq 1 \). Suppose \(a^k = a^{k+1} \). Then \(a^k (1 - a) = 0 \Rightarrow (1 - a) = 0 \)

Therefore the chain given here.

\[
\begin{array}{ccccccc}
& a & a^2 & a^3 & \ldots & a^k & a^{k+1} & \ldots
\end{array}
\]

Figure 10

(that is the power chain starting with \(a \)) is an infinite chain.

Now the converse follows from Lemma 2.6.
REFERENCES

9. Satyanarayana Bhavanari, Srinivasulu Devanaboina, AbulBasar & Mallikarjuna Bhavanari “Results on the Divisor Graph of \(\mathbb{Z}_p^* \)”(Communicated)

