
Received: August 3, 2019 133

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

A Novel Data Mining Approach for Big Data Based on Rough Sets and Fuzzy

Logic

Osama Sayed Abdelrahman1* Hesham Ahmed Hefny1

1Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt

* Corresponding author’s Email: osayed72@yahoo.com

Abstract: The term "Big Data" is a buzzword which describes new technologies that manipulate very large data sets

which are massively generated by heterogonous sources. This new term encourages data scientists to extend their

work and modify their techniques to overcome the new challenges come with big data concepts. Granular computing

has emerged as a new rapidly growing information processing paradigm inside the community of Computational

Intelligence. Theories of Fuzzy sets and Rough sets theory are considered powerful examples of granular computing

that can be applied to data mining techniques to extract nontrivial knowledge from huge data. The aim of this paper

is to introduce a data mining approach for big data based on integrating fuzzy sets and rough sets theories. The

proposed approach provides a novel granular data mining for big data that allow extracting useful knowledge and

rules from huge data to enhance the decision making process. The proposed approach has been applied on different

types of datasets. The experimental results show that our proposed approach is more efficient and robust when

dealing with very big datasets and obtained consistent classification rules with classification accuracy 100%.

Keywords: Big data, Data mining, Granular computing, Rough sets, Fuzzy sets, Hadoop, Spark, Spark SQL.

1. Introduction

 Nowadays, with the very large amount of

generated data from different sources and devices,

the process of extracting valuable information and

nontrivial knowledge from such huge sizes of data

becomes one of the important and interesting

research directions. Recently, big data analysis and

mining is attracting more attention for both

scientific and industrial areas. In the last decade,

Big Data technologies appeared as distributed

computing technologies that allow processing large

amount of data on clusters of commodity hardware.

Such a distributed and parallelized processing led to

high scalability, high efficiency, fault-tolerance and

load balancing of huge size data sets. Google Firstly

introduced MapReduce as a programming model

and Apache Hadoop from Yahoo is considered the

first implementation of MapReduce that becomes

the most popular platform of large scale distributed

data processing [1].

Granular computing has emerged as a new

rapidly growing information processing paradigm

under the umbrella of Computational Intelligence.

The basic idea of granular computing is that subsets

of a universe of discourse, or equivalent classes or a

modules of a given information system can be

viewed as granules. Granules can be considered as

interconnected information units through which the

whole universe can be handled as a whole. Such

granules can also be decomposed into smaller

granules called sub-granules. This allows

discovering various forms of rational decisions at

different levels of parameter quantization and

system variable resolutions. Such a utilization of

tolerance of imprecision leads to powerful

manipulation of uncertainty in real world decision

making problems. Fuzzy sets theory and Rough

sets theory represent two famous approaches of

granular computing that are successfully applied to

uncertain decision making problems as well as data

mining applications [2-5].

Received: August 3, 2019 134

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

 The main objective of this paper is to introduce a

novel approach for mining big data based on

integrating big data technologies with granular

computing, in particular fuzzy sets and rough sets

theories to generate fuzzy decision rules from big

data.

Such an approach helps in extracting hidden

knowledge in big data. The rest of this paper is

organized as follows. Section 2 introduces the basic

background of Granular Computing and big data

technologies. In section 3, we introduce related

work. In section 4, we propose the basic idea of

integration between granular computing and data

mining. Section 5 presents the evaluation of the

proposed approach. Finally, the paper ends with

conclusion in section 6.

2. Background

In this section, the basic concepts of granular

computing and big data technologies are introduced.

2.1 Granular computing

Granular computing can be defined as a general

problem solving theory based on various levels of

granularity and details. The term "Granular

Computing" is firstly introduced in 1997, but the

main ideas of granular computing have been studied

in many research fields with different names.

Rough sets theory, fuzzy sets theory, data analysis,

data mining, and machine learning are the most

famous names of these fields which use granular

computing principals [3].

Zadeh firstly introduced the notation of

information granulation in 1979 and he suggested

that his theory of fuzzy sets can find potential

application in this respect. In 1982, Pawlak

introduced rough sets theory which provides solid

example of granular computing [3]. In 1997, Zadeh

recalled information granulation to renew the

researcher's interest [4]. Lin was the first who

coined the buzzword "Granular Computing" for this

newly emergent research field in 1997 [5].

As a base for data mining, granular computing

can help for extracting hidden knowledge. Rules are

one of the most useful representations of knowledge

discovery from huge data. One of the most

important key notations of fuzzy sets theory is

linguistic variables which are considered fuzzy

granules and can be represented by natural language.

By using fuzzy granules, i.e. "linguistic variables",

the extracted rules become more human friendly,

more understandable and more useful since they

provide a smooth transition between member and

non-member of a set which is easily understandable

to human [4]. In order to mine more meaningful

rules we can group attribute values into granules.

On the other hand, granular computing can be

combined with various data mining methods to get

more effective and efficient methods for extracting

more useful rules from huge size of data sets.

Rough sets theory is also applied to data mining

as a strong example of granular computing. Rough

sets are considered as one of the powerful data

analysis techniques and applied successfully in

knowledge discovery and data mining [5]. We will

summarize the basic notation of rough sets as

follows [6]:

Definition 1 (Information System): Information

system is the basic notation of rough set data

analysis in which the data set is represented as a

table, where each row represents an object. Every

column represents an attribute that can be measured

for each object. Information system S = [U, A, V, f],
where U is the universe; A is a finite set of attributes,

V the domain of attribute a, f is an information

function 𝑈 × 𝐴 → V.

Definition 2 (Decision Table): An Information

System S = [U, A, V, f] is called Decision table if 𝐴

is the union set of condition attributes 𝐶 and

decision attribute 𝐷 .
Definition 3 (Equivalence Relation): An

approximation space induces a granulated view of

the universe, the equivalence relation E on U, 𝐸 ⊆
𝑈 × 𝑈 .

Definition 4 (Equivalence Class): Under an

equivalence relation, equivalence classes are the

smallest non-empty definable subsets of 𝑈. For an

object 𝑥 ∈ 𝑈 , the equivalence class containing 𝑥

is given by:

[𝑥]𝐸 = { 𝑦 | 𝑥𝐸𝑦 } (1)

Definition 5 (lower and upper approximations):

Using [x]E the equivalence class containing x we

can define the lower and upper approximations of X

by E in A as:

𝐴(𝑋) = { 𝑥 ∈ 𝑈 ∶ [𝑥]𝐸 ⊂ 𝑋 } (2)

𝐴(𝑋) = { 𝑥 ∈ 𝑈 ∶ [𝑥]𝐸 ∩ 𝑋 ≠ ∅ } (3)

The objects in 𝐴(𝑥) can be with certainty

classified as members of on the basis of knowledge

in𝑅, while the objects in 𝐴 (𝑥)can be only classified

as possible members of 𝑋on the basis of knowledge

in 𝑅 .

Definition 6 (Reducts and Core): A reduct is

subset of condition attributes that can discern all

Received: August 3, 2019 135

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

objects. The reduct set is the minimal subset of

condition attributes that has the same classification

power as the entire condition attributes. The core is

the intersection of all reducts.

2.2 Big data tools and technologies

In 2004, Google firstly introduced the

MapReduce model as a high-level programming

model for distributed computing model that deals

with large scale parallel data processing [7]. This

model introduces two main functions Map and

Reduce, the first function Map takes as input a set

of key-value pairs and groups the values according

to the key then output a set of intermediate grouped

key-value pairs. The second function Reduce takes

as input such intermediate grouped key-value pairs

and aggregates the values according to each key.

Distributed computing in turn leads to high

scalability, high efficiency, fault-tolerance, load

balancing, and automatic parallelization.

Distributed systems allow processing large amount

of data on clusters of commodity hardware.

In 2005, Yahoo introduced Apache Hadoop as

an open source MapReduce implementation [8].

The Hadoop Distributed File System (HDFS) is a

disk-based file system that spans across multi nodes

of a distributed system. HDFS automatically

divides the files into blocks; each block has many

replicas. Then, it and distributes these replicated

blocks into all local disks nodes. After Hadoop

becomes more popular and the most widely-used

platform for distributed data processing some other

open source software have been introduced to work

on top of Hadoop as Hadoop ecosystem. The main

components of Hadoop ecosystem are summarized

as follows:

Apache ZooKeeper: ZooKeeper is software for

providing group services , providing distributed

synchronization services , maintains configuration ,

and naming registry for large distributed

systems[9].

Apache Oozie: Oozie is a scalable, reliable

system for scheduling workflow to manage Hadoop

jobs. It is integrated with the other Hadoop

ecosystem by supporting different kinds of jobs [10].

Apache Flume: Flume is a reliable distributed

service for collecting and moving huge amounts of

streaming log data from different sources to a

central data store. Flume has a flexible and very

simple architecture based on streaming data flows

[11].

Apache Sqoop: Sqoop is software for

transferring bulk of structured data between

Table 1. Summary of Hadoop ecosystem functionality

Hadoop

Ecosystem
Main Function

HDFS Object Storage (Unstructured data)

HBase Table Storage (Structured data)

Cassandra Table Storage (Structured data)

Hadoop Map

Reduce (Yarn)
Distributed Data Processing

Hive Query Processing

Pig Data Analysis

Mahout Machine Learning

Sqoop
Structured Data Connector (Export

and Import Data)

Flume
Unstructured Data Transfer (ETL

Tool)

Zoo Keeper Coordination Services

Oozie
Work Flow Management and

Scheduling

relational databases and Hadoop. It can be used for

loading single table or executes SQL query. It can

be used to put data from Hadoop into a relational

database as export process. Sqoop has named after

concatenating sql-hadoop [12].

Apache Pig: Pig is software used to analyze big

data sets. It consists of a high level language very

similar to SQL to express data analysis programs. It

allows Hadoop users to write complex MapReduce

transformations using its Pig Latin language [13].

Apache HBase: HBase is a column oriented,

distributed database designed to run on top of

Hadoop Distributed File System. HBase is written

in Java and modeled after Google’s BigTable to

provide BigTable-like capabilities for Hadoop.

HBase is a NoSQL key-value data store that

provides real-time read and write access to very

large datasets [14].

Apache Cassandra: Cassandra is a distributed

database management system designed to handle

huge amounts of structured data through large

commodity servers. It provides scalability and high

availability with no single point of failure.

Cassandra provides strong support for clusters

extended over multiple datacentres [15].

Table 1 illustrates briefly the components of

Hadoop Ecosystem.

In 2010, Apache Spark has been introduced at

University of California, Berkeley by Matei Zaharia

et al. [16]. Spark supports main-memory caching

and possesses a loop-aware scheduler. Spark

provides in-memory computing capabilities to

deliver speed. Additionally, Spark as well as

Hadoop implements the MapReduce paradigm and

Received: August 3, 2019 136

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

is Java-based. These features enable users to deploy

existing Hadoop application logic in Spark via

many APIs for ease of development like Scala,

Python, and Java to support a wide variety of

applications. While MapReduce basically is

designed to develop batch processing using disks as

intermediate storage, Spark enables near-real time

development by using memory for processing and

sharing information efficiently [17].

Spark controls a set of libraries including MLlib,

Spark SQL, GraphX, Spark Streaming, and Spark R.

The basic data structure of Spark is Resilient
Distributed Data sets (RDD) which is fault tolerant

and works in parallel. Spark SQL is a Scala

implementation of big data query processing system

built on top of Spark. Spark SQL act as SQL

Interface and programmatic interface to fill the gap

between machine learning and analytics quires and

considered as Spark structured data processing

module which use a data frame [18, 19].

The key point of Spark SQL is data frames

which is a distributed collection of rows with the

same schema. Data frames are equivalent to table in

traditional database systems. Data frames can be

represented by using columnar data format which

allow to access specific column without need to

retrieve the whole data set. Spark SQL data frames

is loaded into main memory instead of reading data

from disk, so that the processing is more faster

when compare with other big data processing

systems, especially for iterative data processing. For

all these reasons Spark SQL is considered as high-

speed big data query processing system [19- 21].

3. Related work

During last decades, rough set theory is

considered a very powerful data analysis technique

and rough sets based methods have been

successfully applied in knowledge discovery and

data mining. Traditional rough sets based methods

for knowledge discovery and acquisition has

limitations to deal with the rapidly growing of data

and the recently introduced MapReduce technique

both of them pushed the researchers to pay great

attention from researchers to integrate classical

rough set theory with big data technologies and

MapReduce technique to introduce new algorithms

that overcome this rapidly growing of data. Zhang

et al. has presented a parallel rough set based

method for knowledge acquisition using

MapReduce from big data. Their proposed model

was developed on Hadoop platform which uses

disk-based computation and its performance is

limited compared with Spark in-memory

computation platform [22, 23].

Guang et al. presented a new method for

calculating reducts for condition attributes in

decision table by using SQL [24]. Jemal et al.

proposed integration between big data solutions and

classical RDMS to achieve the benefits of each one

and to introduce a new OLAP query process model

integrated with MapReduce model [25]. Fernandez

et al. provided a brief view on fuzzy systems for big

data and the challenges and the opportunities facing

this new framework. They introduced a fuzzy rule

selection algorithm and emphasized the necessity of

migrating programming towards Spark and Flink as

newest frameworks of big data analysis [26-29]. In

[30] Rochd and Hafidi presented a new approach

for mining frequent itemsts in big data based on

Hadoop by using N-List and they suggested

HPrePostPlus Algorithm for mining frequent

itemsts.

ROSETTA rough sets toolkit is considered as

one of Benchmark data analysis tools which use

rough set decision table classification and attributes

reduction. However, it has a limitation when

dealing with dataset size exceeds 30000 instances

[31, 32]. Waikato Environment for Knowledge

Analysis (WEKA) is also one of the most powerful

tools for data analysis which has rough sets based

decision table classifier but WEKA decision table

classifier has some limitation with dealing with

CSV files and big data [33]. Another powerful

benchmark data analysis tool is KNIME Analytics

Platform which has powerful interface dealing with

most data sources especially CSV files. On the

other hand, KNIME has a limitation with big

datasets. This limitation can only be solved by

increasing the CPU and RAM [34].

4. The proposed approach

In this paper we propose a novel approach for

mining big data. The basic idea behind our

proposed approach is based on the integrating

fuzzy logic concepts, rough sets theory

methodology of data mining, SQL, and big data

technologies (Hadoop, Hive, Spark, and Spark-

SQL) to generate consistent fuzzy decision rules

from big data. Such an approach helps in extracting

useful hidden knowledge in big data and supports

the decision making process for analysing big data.

The proposed approach is achieved in three

steps. The first step is to use fuzzy logic for

fuzzifying numerical attributes in the given data sets

to a set of granules, i.e. linguistic values. The

Received: August 3, 2019 137

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Figure.1 Structured diagram for our proposed approach

second step is the attribute reduction using rough

set and SQL. The third step is the integration

between rough sets data mining techniques with

Spark-SQL. Fig. 1 shows the structured diagram for

our proposed approach.

The above three step are explained in the

following sub-sections.

4.1 Fuzzification of numerical attributes of

information table

Fuzzification is the process of fuzzifying

numerical values into linguistic terms, which is

often used to reduce information overload in human

decision making process. Using linguistic terms

instead of numerical data helps in three ways; first

linguistic value is more understandable to human,

second to reduce the number of equivalence classes,

third to minimize the number of extracted rules

which helps decision maker to have a more clear

view. It is worth to mention that fuzzification is a

crucial step for our approach to enhance rule

extraction process from the decision table.

4.2 Attribute reduction using rough set and SQL

In this section, we introduce two algorithms,

inspired from [24], for rough set attributes reduction

based on SQL. The first algorithm aims to eliminate

fully functionally dependent attributes as follows:

Algorithm 1: Eliminating Attributes with full functional

dependency

Input : S = (U, A) is an information system

Output : reduced condition attributes

Method :

1- Initial condition attributes A

2- For i =1 to | condition attributes |

3- Calculate Card (ai)

4- For j = 1 to | condition attributes |

5- If ai <> aj

6- Calculate Card((ai + aj)

7- If Card (ai) = Card((ai +

aj))

8- and Card (ai) > 3 then

9- A = A – { aj }

10- End If

11- End If

12- Next j

13- Next i

The SQL Implementation of Card (ai) :

SELECT COUNT(*)

FROM (SELECT ai

 FROM T

 GROUP BY ai)

The SQL Implementation of Card (ai , aj) :

SELECT COUNT(*)

FROM (SELECT ai , aj

 FROM T

 GROUP BY ai , aj)

The second algorithm aims to find out all

reducts as follows:

Algorithm 2: Finding Reducts

Input : S = (U, A) is an information system

Output : a set of all attribute reductions REDU

Method :

1- REDU Set =

2- Run Algorithm 1 to eliminate Attributes

with complete functional dependency

3- Calculate of the power set of reduced

condition attributes = {P1, P2,…..}

Received: August 3, 2019 138

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

4- Calculate cardinality of the attribute set =

Card (A)

5- For i = 1 to | Power Set |

6- calculate cardinality of Pi = Card (Pi)

7- If Card (Pi) = Card (A) then

8- REDU Set = REDU Set { Pi }

9- Power Set = Power Set – { Pi}

10- For j = i+1 to | Power Set |

11- If Pi Pj then

12- Power Set = Power Set – {Pj}

13- End if

14- Next j

15- End if

16- Next i

The SQL Implementation of Card (A) :

SELECT DISTINCT COUNT(*)

FROM (SELECT A

 FROM T

 GROUP BY A)

The SQL Implementation of Card (ai , aj) :

SELECT DISTINCT COUNT(*)

FROM (SELECT Pi

 FROM T

 GROUP BY Pi)

4.3 Extracting fuzzy classification rules

After fuzzifying original decision table and

determining the reducts attributes, we can get fuzzy

decisions rules which help decision maker to take

the proper decision. We proposed a novel algorithm

for extracting consistent fuzzy rules from rough set

information table using SPARK-SQL and SCALA

statements as shown in algorithm 3.

Algorithm 3: Generating consistent Fuzzy Decision

Rules

Input : fuzzy decision table; REDU , MinSupport

Output : a set of all consistent fuzzy decisions rules;

Method :

1- For i = 1 to | REDU |

2- MinSupport = Min No. of rule

occurrence

3- Create TmpReductTbl

4- Create TmpReductPlusDecisionTbl

5- Rules = Ø

6- For j = 1 to | TmpReductTbl |

7- If Card (C) = Card (C+D)

8- If Support >= MinSupport

9- Rules=

Rules+EquivClassPlusD

10- End if

11- End if

12- Next j

13- Next i

We have Implemented Algorithm 3 using

Spark-SQL and SCALA statements for extracting

fuzzy rules through three main steps as follows:

1- Create temp table for equivalence classes for

current reduct

val MyRdd =

sc.textFile("/MyPath/MyDataSet.csv")

val MyDataSetRdd = MyRdd.map { line =>

val cols = line.split(";") (cols(0) ,

cols(1) , cols(2) , cols(n)) }

val MyDataSetDF =

MyDataSetRdd.toDF("Col1Name" , "

Col2Name " , " Col3Name " , " ColnName

")

MyDataSetDF.registerTempTable("TempRed

uctTable")

val TempReductTable = sql(" SELECT

 CurrentReductAttributes , COUNT

(*) As Support

FROM TmpReductTbl

GROUP BY CurrentReductAttributes ")

TempReductTable.write.mode("overwrite"

).saveAsTable("TmpReductTbl")

2- Create temp table for equivalence classes for

current reduct plus decision attribute

MyDataSetDF.registerTempTable("TmpRedu

ctPlusDecisionTbl ")

val TmpReductPlusDecisionTbl =

sql("SELECT CurrentReductAttributes ,

D , COUNT (*) As Support

FROM TmpReductPlusDecisionTbl

GROUP BY CurrentReductAttributes,D")

Received: August 3, 2019 139

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

TmpReductPlusDecisionTbl.write.mode("o

verwrite").saveAsTable("TmpReductPlusD

ecisionTbl")

3- Get consistent decision rule for each equivalence

class with given minimum support

val MyDecisionRules = sql(" SELECT

concat(' If X1 = ' , A.X1) , concat('

And X2= ' , A.X2) , concat(' And Xn=

' , A.Xn) , concat(' Then D = ' ,
A.D), A.Support

FROM TmpReductPlusDecisionTbl A ,

TmpReductTbl B

WHERE A.X1 = B. X1

AND A.X2 = B.X2

AND … A.Xn = B.Xn

AND A.Support = B.Support

AND A.Support >= @@MinSupport

ORDER BY Support Desc")

MyRules.rdd.coalesce(1,true).saveAsTex

tFile(" MyPath/MyRules")

The previous SQL Condition (A.Support =

B.Support) guarantees the consistency of the

extracted rules. In other words, the extracted

classification rules have classification accuracy

100%, So that we don’t need to construct confusion

matrix to calculate the classification accuracy.

5. Evaluation

To evaluate our proposed approach, we used

some benchmark datasets (UCI Datasets)

downloaded from the UC Irvine Machine Learning

Repository [35]. All experiments were conducted

using the benchmark applications ROSETTA

rough sets toolkit and WEKA decision table

classifier through KNIME Analytics Platform.

Our proposed approach is implemented on top

of SPARK platform using Virtual Machine with

operating system Ubuntu 16.04, CPU Intel i7 2

Cores, 4.3 GB RAM and Big Data Platform is

Hadoop 2.7 – Spark 2.0 – Hive 2.0 – Scala 2.10.4

[8, 36-38] . We evaluate our work with Weka

Decision Table Classifier through KNIME

platform as it is more flexible when dealing with

CSV files, using Physical Machine with Windows

7 CPU Intel corei7 2.67 GHz 4-cores 64-bit with 8

GB RAM.

Table 2 shows the comparisons between the

proposed approach for attributes reduction,

Table 2. UCI datasets and number of extracted reducts

Dataset Features Instances

No. of Reducts

Rosetta Weka
Proposed

Approach

Zoo 16 101 7 1 5

Yeast 8 1484 1 1 1

Abalone 8 4177 16 1 15

Car 6 1728 1 1 1

Glass 9 214 12 1 11

Adult 14 32561 1 1 1

Breast

Cancer

9 286 1 1 1

Iris 4 150 1 1 1

Nursery 8 12960 1 1 1

Balloons 4 20 1 1 1

ROSETTA’s genetic algorithm and WEKA 3.7

decision table classifier

It should be noted that instances mentioned in

Table 2 are pre-processed to remove redundancies.

So, for example, the adult data set is reduced to be

14072 instances. Also, we noticed that WEKA

decision table classifier generates only one reduct

set while our proposed approach and ROSETTA’s

genetic algorithm generate all possible reduct set

which give more variety of extracted rules.

Table 3 illustrates the comparison between the

proposed approach for rules extraction,

ROSETTA’s genetic algorithm and WEKA

decision table classifier.

Table 3. UCI datasets and number of extracted rules

Dataset

No. of Rules

Rosetta Weka
Proposed

Approach

Zoo 413 14 295

Yeast 1453 109 1453

Abalone 66827 122 62655

Car 1728 432 1728

Glass 2556 37 2343

Adult 12999 427 11926

Breast Cancer 272 33 266

Iris 147 3 147

Nursery 12960 810 12960

Balloons 16 4 16

Received: August 3, 2019 140

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Figure.2 Screenshot of sample of extracted rules for car dataset

Fig. 2 shows a screenshot of a sample of the

extracted decision rules of Car dataset using our

proposed approach.

Table 4 illustrates the comparison of the

classification accuracy between the proposed

approach, ROSETTA’s genetic algorithm and

WEKA decision table classifier. It is noted that,

our proposed approach as well as ROSETTA share

the high classification accuracy for the extracted

rules.

In order to evaluate our proposed approach with

big datasets, we used oversampled real datasets for

Egyptian Investment Companies, which describe

the companies' profile. Each instance represents one

company data such as: amount of shares, types of

shares (Egyptian shares - Foreign shares), location

(governorate - canton), activities category (sector -

subsector), legal form, working status, expansion

status. Such a huge dataset is manipulated in two

different groups of datasets as follows:

• First datasets group contain six attributes divided

as five conditional attributes namely,

Total_Shares (numeric), Sector (nominal),

Capital_Flow(nominal), Legal_Form(nominal),

Governorate (nominal), and one decision

attribute namely, Project_Status (nominal). The

reduct contains all condition attributes. We

divide this group into three granules: Crisp,

fuzzified with three linguistic values (Small,

Medium, Big), and fuzzified with five linguistic

values (Tiny, Small, Medium, Big, Huge). We

used fuzzy triangular membership function

during fuzzification process as one of the most

commonly used fuzzy membership functions.

Table 5 illustrates the properties of the first

datasets group with its twelve oversampled

versions.

• Second datasets group contain thirteen Attributes

divided as twelve conditional attributes namely,

Egy_Shares (numeric), Forign_Shares (numeric),

Total_Shares (numeric), Expansions (numeric),

Project_Status (nominal), Sector (nominal),

Sub_Sector (nominal), Capital_Flow (nominal),

Legal_Form (nominal), Operatoinal_Satus

(nominal), Governorate (nominal), Canton

(nominal), and one decision attribute namely,

Expansion_Status (nominal). The reduct contains

only ten conditional attributes with elimination of

the two attributes Sector and Canton. We divide

this group also into three granules: Crisp,

fuzzified with three linguistic values (Small,

Medium, Big), and fuzzified with five linguistic

values (Tiny, Small, Medium, Big, Huge). We

used also fuzzy triangular membership function

during Fuzzification process. Table 6 illustrates

the properties of the second datasets group with

its twelve oversampled versions.

Table 4. UCI datasets and accuracy of extracted rules

Dataset

Rosetta

(RHS

Accuracy)

Weka

(Merit

 of best

subset)

Proposed

Approach

(RHS

Accuracy)

Zoo 1 0.27 1

Yeast 1 58.29 1

Abalone 1 2.37 1

Car 1 95.25 1

Glass 1 1.17 1

Adult 1 82.63 1

Breast Cancer 1 79.72 1

Iris 1 96 1

Nursery 1 94.82 1

Balloons 1 100 1

Received: August 3, 2019 141

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Table 5. The first group datasets (6 Attributes)

NO. Dataset
No. of

Records

Size

(Mbytes)

1

Crisp_1M_6C 1,000,000 73

Fuzzy_1M_3V_6C 1,000,000 75

Fuzzy_1M_5V_6C 1,000,000 74

2

Crisp_2M_6C 2,000,000 147

Fuzzy_2M_3V_6C 2,000,000 150

Fuzzy_2M_5V_6C 2,000,000 149

3

Crisp_3M_6C 3,000,000 221

Fuzzy_3M_3V_6C 3,000,000 226

Fuzzy_3M_5V_6C 3,000,000 225

4

Crisp_4M_6C 4,000,000 294

Fuzzy_4M_3V_6C 4,000,000 301

Fuzzy_4M_5V_6C 4,000,000 299

5

Crisp_5M_6C 5,000,000 368

Fuzzy_5M_3V_6C 5,000,000 377

Fuzzy_5M_5V_6C 5,000,000 373

6

Crisp_10M_6C 10,000,000 752

Fuzzy_10M_3V_6C 10,000,000 770

Fuzzy_10M_5V_6C 10,000,000 763

7

Crisp_15M_6C 15,000,000 1,120

Fuzzy_15M_3V_6C 15,000,000 1,145

Fuzzy_15M_5V_6C 15,000,000 1,134

8

Crisp_20M_6C 20,000,000 1,487

Fuzzy_20M_3V_6C 20,000,000 1,522

Fuzzy_20M_5V_6C 20,000,000 1,507

9

*Crisp_30M_6C 30,000,000 2,240

*Fuzzy_30M_3V_6C 30,000,000 2,292

*Fuzzy_30M_5V_6C 30,000,000 2,269

10

*Crisp_40M_6C 40,000,000 2,986

*Fuzzy_40M_3V_6C 40,000,000 3,055

*Fuzzy_40M_5V_6C 40,000,000 3,025

11

*Crisp_50M_6C 50,000,000 3,727

*Fuzzy_50M_3V_6C 50,000,000 3,814

*Fuzzy_50M_5V_6C 50,000,000 3,776

12

*Crisp_60M_6C 60,000,000 4,480

*Fuzzy_60M_3V_6C 60,000,000 4,584

*Fuzzy_60M_5V_6C 60,000,000 4,539

* KNIME (WEKA decision table classifier)

conducted on 32GB RAM- CPU 6 Cores

Table 6. The second group datasets (13 Attributes)

NO. Dataset
No. of

Records

Size

(Mbytes)

1

Crisp_1M_13C 1,000,000 142

Fuzzy_1M_3V_13C 1,000,000 153

Fuzzy_1M_5V_13C 1,000,000 150

2

Crisp_2M_13C 2,000,000 284

Fuzzy_2M_3V_13C 2,000,000 306

Fuzzy_2M_5V_13C 2,000,000 299

3

Crisp_3M_13C 3,000,000 425

Fuzzy_3M_3V_13C 3,000,000 459

Fuzzy_3M_5V_13C 3,000,000 448

4

Crisp_4M_13C 4,000,000 566

Fuzzy_4M_3V_13C 4,000,000 610

Fuzzy_4M_5V_13C 4,000,000 597

5

Crisp_5M_13C 5,000,000 631

Fuzzy_5M_3V_13C 5,000,000 763

Fuzzy_5M_5V_13C 5,000,000 747

6

*Crisp_10M_13C 10,000,000 1,275

*Fuzzy_10M_3V_13C 10,000,000 1,539

*Fuzzy_10M_5V_13C 10,000,000 1,505

7

*Crisp_15M_13C 15,000,000 1,951

*Fuzzy_15M_3V_13C 15,000,000 2,344

*Fuzzy_15M_5V_13C 15,000,000 2,293

8

*Crisp_20M_13C 20,000,000 2,582

*Fuzzy_20M_3V_13C 20,000,000 3,107

*Fuzzy_20M_5V_13C 20,000,000 3,039

9

*Crisp_30M_13C 30,000,000 3,857

*Fuzzy_30M_3V_13C 30,000,000 4,646

*Fuzzy_30M_5V_13C 30,000,000 4,544

10

*Crisp_40M_13C 40,000,000 5,757

*Fuzzy_40M_3V_13C 40,000,000 6,190

*Fuzzy_40M_5V_13C 40,000,000 6,054

11

**Crisp_50M_13C 50,000,000 6,440

**Fuzzy_50M_3V_13C 50,000,000 7,755

**Fuzzy_50M_5V_13C 50,000,000 7,585

12

**Crisp_60M_13C 60,000,000 8,643

**Fuzzy_60M_3V_13C 60,000,000 9,294

**Fuzzy_60M_5V_13C 60,000,000 9,090

* KNIME (WEKA decision table classifier)

conducted on 32GB RAM- CPU 6 Cores

** KNIME (WEKA decision table classifier) failed

on 32GB RAM- CPU 6 Cores

Received: August 3, 2019 142

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Figure.3 No. of extracted rules for six attributes datasets

Figure.4 No. of extracted rules for thirteen attributes

datasets

We have evaluated our proposed approach for

these big datasets with only WEKA decision table

classifier through KNIME platform because

ROSETTA is limited to 30000 instances only.

During the reduction process for all such datasets

both of our proposed approach and WEKA decision

table classifier generate only one reduct set.

In the first group datasets (six attributes), our

proposed approach generates less number of

consistent decision rules compared with WEKA

decision table classifier rules as shown in Fig. 3 . In

addition, Fig. 3 shows clearly that the numbers of

extracted rules in both fuzzified datasets are very

small compared with crisp datasets. Moreover, the

number of extracted rules of datasets fuzzified with

three linguistic values is less than number of rules

extracted from datasets fuzzified with five linguistic

values

For the second group datasets (thirteen

attributes), Fig. 4 shows clearly the big gap between

the number of extracted rules for crisp datasets and

both fuzzified datasets. In addition, the proposed

approach generates less number of consistent

decision rules in fuzzified datasets compared with

WEKA decision table classifier rules. On the other

hand, in crisp datasets WEKA generates only two

rules which mean our proposed approach can

handle both crisp and fuzzified datasets for these

big datasets with large number of features.

Thus, the experimental results show that the

proposed approach can improve the classification

accuracy for the extracted classification rules

compared with WEKA decision table classifier in

all datasets groups because we exclude inconsistent

rules and generate only the consistent rules as we

have mentioned in section 4.3. The classification

accuracy is 100%.

The experimental analysis for the performance

of our proposed approach showed that the proposed

approach can handle very big datasets easier than

WEKA decision table classifier regarding to

execution cost and computing cost. The execution

time is reduced with 90-95% in addition the

proposed approach reduces the needed computing

resources. This improvement of performance is

mainly due to the fact that the proposed approach

uses Spark in-memory platform plus using SQL

statements for generating consistent classification

rules

It should be mentioned that, Table 5 illustrates

that KNIME Platform using WEKA decision table

classifier failed to execute more than twenty million

records on the first test environment with CPU Intel

corei7 2.67 GHz 4-cores 64-bit with 8 GB RAM,

then we conducted the rest of experiments on the

second test environment CPU Intel Xeon E5-264

2.40 GHz 6-cores 64-bit, with 32 GB RAM, see the

note below Table 5. In addition, Table 6 shows that

KNIME also failed with datasets size fifty and sixty

million and required more hardware resources than

32GB RAM. Regardless of such exceptional cases,

all our experiments conducted successfully on

Ubuntu 16.04, CPU Intel i7 2 Cores, with 4.3 GB

RAM.

For a performance comparisons based on the

execution time costs, Figs. 5 to 8 illustrate the big

gap between proposed approach and WEKA

decision table classifier.

Fig. 5 shows the comparison of execution time

between our proposed approach and WEKA

decision table classifier for first group datasets

fuzzified with three linguistic values. It is noted that

for small and medium datasets size (one million up

to five million records) the execution cost gap is not

that big, but in biggest datasets size (ten million up

to sixty million records) the execution time is

greatly reduced with 90% as shown Fig. 5.

Received: August 3, 2019 143

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Figure.5 Execution time for six attributes datasets

fuzzified with three linguistic values

Figure.6 Execution time for six attributes datasets

fuzzified with five linguistic values

Figure.7 Execution time for thirteen attributes datasets

fuzzified with three linguistic values

Fig. 6 shows the comparison of execution time

for first group datasets fuzzified with five linguistic

values. We can also see clearly the difference of

execution cost between the proposed approach and

WEKA decision table classifier especially in very

big datasets. The cost of execution time is saved up

to 90%.

Figs. 5 and 6 clearly illustrate the big gap in

execution time between our proposed approach and

WEKA decision table classifier through KNIME

Platform. In addition, WEKA decision table

classifier through KNIME Platform needed more

Figure.8 Execution time for thirteen attributes datasets

fuzzified with five linguistic values

hardware resources for some datasets , see the note

below Table 5.

Figs. 7 and 8 show the comparison of execution

time between our proposed approach and WEKA

decision table classifier for thirteen attributes

datasets fuzzified with three linguistic values and

five linguistic values respectively. It is clearly

observed from Figs. 7 and 8 that our proposed

approach has a much better performance than

WEKA. In addition, WEKA decision table

classifier through KNIME Platform failed to run

and needed more hardware resources for fifty and

sixty million records data sets size as given in the

note below Table 6. We can also clearly see that the

cost of execution time is saved up to 95% for the

second group of datasets with larger number of

features. This ensures that the proposed approach

performance is quite suitable for dealing big

datasets with larger numbers of features.

Figs. 9 and 10 illustrate sample of extracted

fuzzy rules for both datasets groups. It is noted that

these rules are more readable and more human

understandable compared with Weka extracted rules

given in Fig. 11. On the other hand, Fig. 11 shows

screenshot of KNIME Analytics Platform using

Weka Decision table classifier 3.7 and sample of its

extracted rules for six attributes dataset with one

million instances.

6. Conclusion

This paper presents a novel approach for mining

fuzzy classification rules from big data sets to

enhance knowledge extraction decision making

process. The proposed approach, integrates fuzzy

sets concepts, especially fuzzy linguistic values, and

rough sets data analysis concepts, especially

decision table, equivalence classes, and reducts with

new technologies of big data especially Spark,

Received: August 3, 2019 144

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Figure.9 Screenshot of sample of our approach extracted rules for six attributes datasets

Figure.10 Screenshot of sample of our approach extracted rules for thirteen attributes dataset

Figure.11 Screenshot of KNIME Analytics Platform and sample of extracted rules for six attributes dataset

Spark-SQL, and Hive. The proposed approach

takes advantages of both the high performance of

Spark in data analysis and granular computing.

The proposed approach is tested against

benchmark data analysis tools ROSSETA Rough

Set Toolkit for Analysis of Data and WEKA

decision table classifier through KNIME Analytics

Platform. Several experiments have been carried out

with two categories of datasets, first some

benchmark UCI datasets, and the second is

oversampled real data for Egyptian Investment

Received: August 3, 2019 145

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Companies profile divided to two groups based on

the number of conditional attributes.

The results showed that the proposed approach

works extremely faster with big datasets and

outperforms the existing data analysis tools.

According to the experimental results the execution

time of big datasets enhanced by 90% for first

group of big datasets and 95% for the second group

of big datasets. The classification accuracy for our

proposed approach is 100% which generate more

efficient, more accurate, and more human

understandable fuzzy classification rules with less

cost of execution time.

References

[1] Koliopoulos, P. Yiapanis, F. Tekiner, G.

Nenadic, and J. Keane, “A Parallel Distributed

Weka Framework for Big Data Mining using

Spark”, In: Proc. of IEEE International

Congress on Big Data, pp. 9–16, 2015.

[2] J. Yao, A. Vasilakos, and W. Pedrycz,

“Granular computing: perspectives and

challenges”, IEEE Transactions on

Cybernetics, Vol. 43, No. 6, pp. 1977–1989,

2013.

[3] Y. Yao, “Granular computing for data mining”,

In: Proc. of the SPIE Conference on Data

Mining, Intrusion Detection, Information

Assurance, and Data Networks Security, pp. 1–

12, 2006.

[4] L. Zadeh, “Towards a theory of fuzzy

information granulation and its centrality in

human reasoning and fuzzy logic”, Fuzzy Sets

and Systems, Vol. 90, pp.111-127, 1997.

[5] T. Lin, “From rough sets and neighborhood

systems to information granulation and

computing in words”, In: Proc. of European

Congress on Intelligent Techniques and Soft

Computing, pp. 1602-1607, 1997.

[6] Z. Pawlak, “Rough sets”, International Journal

of Computer and Information Sciences, Vol. 11,

No. 5, pp. 341–356, 1982.

[7] J. Dean and S. Ghemawat, “MapReduce:

simplified data processing on large clusters”,

In: Proc. of the 6th conference on Symposium

on Operating Systems Design &

Implementation, pp. 137-150, 2004.

[8] Apache Hadoop: https://hadoop.apache.org/

[9] Zoo Keeper: http://zookeeper.apache.org/

[10] Apache Oozie: https://oozie.apache.org/

[11] Apache Flume: https://flume.apache.org/

[12] Apache Sqoop: http://sqoop.apache.org/

[13] Apache PIG: http://pig.apache.org/

[14] Apache HBase: https://hbase.apache.org/

[15] Cassandra: http://cassandra.apache.org/

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica, “Spark: Cluster

computing with working sets”, In: Proc. of the

2nd USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud), 2010.

[17] N. Katsipoulakis, Y. Tian, B. Reinwald, and H.

Pirahesh, “A Generic Solution to Integrate

SQL and Analytics for Big Data”, In: Proc. of

the 18th International Conference on

Extending Database Technology, pp. 671–676,

2015.

[18] W. Alkowaileet, S. Alsubaiee, M. Carey, T.

Westmann, and Y. Bu, “Large-scale complex

analytics on semi-structured datasets using

asterixDB and spark”, In: Proc. of the VLDB

Endowment, Vol. 9, No.13, pp.1585-1588,

2016

[19] K. Park and L. Peng, “A Design of High-speed

Big Data Query Processing System for Social

Data Analysis: Using Spark SQL”,

International Journal of Applied Engineering

Research, Vol. 11, No. 14, pp. 8221-8225,

2016.

[20] K. Naacke, O. Curé, and B. Amann, “SPARQL

Query Processing with Apache Spark”,

arXiv:1604.08903 [cs.DB], pp. 10–23, 2016 .

[21] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D.

Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi, and M. Zaharia, “Spark

sql: Relational data processing in spark”, In:

Proc. of the 2015 ACM SIGMOD International

Conference on Management of Data, pp. 1383-

1394, 2015.

[22] J. Zhang, T. Li, and Y. Pan, “Parallel rough set

based knowledge acquisition using MapReduce

from big data”, In: Proc. of the 1st

International Workshop on Big Data, Streams

and Heterogeneous Source Mining: Algorithms,

Systems, Programming Models and

Applications, pp. 20–27, 2012.

[23] J. Zhang, J. Wong, T. Li, and Y. Pan, “A

comparison of parallel large-scale knowledge

acquisition using rough set theory on different

MapReduce runtime systems”, Elsevier

International Journal of Approximate

Reasoning, Vol. 55 , No. 3 , pp. 896–907, 2014.

[24] J. Guang, C. Fu-yuan, Z. Yi-chi, and G. Jia-wei,

“Method of Attribute Reduction of Rough Set

Based on SQL”, Journal of Computer

Engineering, Vol. 34, No.11, pp. 67-71, 2008.

[25] D. Jemal, R. Faiz, A. Boukorca, and L.

Bellatreche, “MapReduce-DBMS: An

Integration Model for Big Data Management

and Optimization”, Database and Expert

https://hadoop.apache.org/
http://zookeeper.apache.org/
https://oozie.apache.org/
https://flume.apache.org/
http://sqoop.apache.org/
http://pig.apache.org/
https://hbase.apache.org/
http://cassandra.apache.org/
https://arxiv.org/abs/1604.08903

Received: August 3, 2019 146

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.13

Systems Applications. Globe 2015, DEXA 2015,

Lecture Notes in Computer Science, Vol. 9262,

pp. 430-439, 2015.

[26] A. Fernandez, C. Carmona, M. del Jesus, and F.

Herrera, “A view on fuzzy systems for big

data: progress and opportunities”, International

Journal of Computational Intelligence Systems,

Vol. 9, No. 1, pp. 69–80, 2016.

[27] Fernandez, E. Almansa, and F. Herrera, “Chi-

Spark-RS: An spark-built evolutionary fuzzy

rule selection algorithm in imbalanced

classification for big data problems”, In: Proc.

of 2017 IEEE International Conference on

Fuzzy Systems, FUZZ-IEEE 2017, pp. 1-6,

2017.

[28] Fernandez, S. Rio, A. Bawakid, and F. Herrera,

“Fuzzy rule based classification systems for

big data with MapReduce: Granularity

analysis”, Advances in Data Analysis and

Classification, Vol.11 No.4 , pp. 711-730 ,

2017.

[29] Fernandez, A. Altalhi, S. Alshomrani, and F.

Herrera, “Why linguistic fuzzy rule based

classification systems perform well in big data

applications?”, International Journal of

Computational Intelligence Systems, Vol. 10,

pp. 1211–1225, 2017.

[30] Y. Rochd and I. Hafidi, “Performance

Improvement of PrePost Algorithm Based on

Hadoop for Big Data”, International Journal of

Intelligent Engineering and Systems, Vol.11,

No.5, pp. 226-235, 2018

[31] ROSETTA : http://bioinf.icm.uu.se/rosetta/

[32] A. Øhrn and J. Komorowski, “ROSETTA: A

rough set toolkit for analysis of data”, In: Proc.

of the Third International Joint Conference on

Information Sciences, Vol. 3, pp. 403–407,

1997.

[33] Weka : https://www.cs.waikato.ac.nz/ml/weka/

[34] KNIME : https://www.knime.com

[35] UC Irvine Machine Learning Repository

http://archive.ics.uci.edu/ml/index.php

[36] Apache Spark : https://spark.apache.org/

[37] Scala : https://www.scala-lang.org/download/

[38] Apache Hive : http://hive.apache.org

http://bioinf.icm.uu.se/rosetta/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.knime.com/
http://archive.ics.uci.edu/ml/index.php
https://spark.apache.org/
https://www.scala-lang.org/download/
http://hive.apache.org/

