
Received: January 10, 2019 41

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

Monte Carlo Simulation-Based Bat Algorithm for Solving Stochastic Multi-

Objective Optimization Problems

Marwa Mostafa Sabry1* Assem Tharwat2 Ihab El-Khodary1

1Faculty of Computers and Information, Cairo University, Egypt

2College of Business Administration, American University in the Emirates, UAE
* Corresponding author’s Email: m.sabry@fci-cu.edu.eg

Abstract: This paper develops a stochastic Bat algorithm based on Monte Carlo simulation for solving stochastic

multi-objective problems, where model parameters are random variables follow any arbitrary continuous distribution.

The traditional Bat algorithm requires the deterministic equivalence of the problem which is only possible if the

random variables follow specific distributions. However, in the developed algorithm, the stochastic model is solved

directly without obtaining the deterministic equivalence. The feasibility of the stochastic constraints is checked using

Monte Carlo simulation, and the developed algorithm is used to obtain the optimal solution. The developed

algorithm combined the advantageous of the Bat algorithm and Monte Carlo techniques to solve complex stochastic

multi-objective problems without the deterministic equivalent, which is difficult in most cases, and is tested on a

numerical example that was previously solved by other algorithms and the obtained results are compared and

showed that the proposed algorithm is more efficient and robust.

Keywords: Stochastic programming, Chance constraint, Continuous random variable, Monte Carlo simulation, Bat

algorithm.

1. Introduction

In a real-world decision situation, the decision

maker is often faced with multiple objectives under

the problem of uncertain parameter values due to the

imprecision in human judgments as well as the

uncertainty in nature of the parameters involved in

the problem. One approach for solving such

problems is stochastic programming that handles the

probabilistically uncertain data. Stochastic

programming deals with situations where some or

all of the parameters of a mathematical

programming problem are described by stochastic

variables rather than by deterministic values. One of

the available techniques is the chance constrained

programming (CCP) which can be used to solve

problems involving chance constraints, that is,

constraints having pre-determined level of

probability to be attained. As such, CCP assumes

that the stochastic system of constraints is satisfied

at a pre-determined confidence level, 𝛼. CCP was

initially developed by Charnes and Cooper [1], and

today is being used intensively to model and solve

problems in many applications of engineering,

telecommunication, finance, etc.

The general form for a multi-objective stochastic

programming problem with chance constraints is as

follows:

Maximize:𝑧𝑘(𝑥) = ∑ 𝑐𝑗
𝑘𝑥𝑗, 𝑘 = 1, 2, … , 𝐾𝑛

𝑗=1

Subject to:

𝑃𝑟𝑜𝑏 [∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1] ≥ 𝛼𝑖

𝑥𝑗 ≥ 0 𝑗 = 1, … , 𝑛

𝛼𝑖 ∈ (0, 1) 𝑖 = 1, … , 𝑚 (1)

Where, 𝑐𝑗
𝑘 is the coefficient of decision variable 𝑥𝑗

for the kth objective function, 𝑎𝑖𝑗 and 𝑏𝑖 are

continuous random variables with known

probability distributions and 𝛼𝑖 is a pre-determined

probability (confidence) level.

Received: January 10, 2019 42

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

In many situations, it turns out to be very

difficult and complex to get the deterministic

equivalence of the chance constraints, especially if

the random components cannot be separated from

the decision variables, as in this case, the

multivariate integration would lead to improper

calculations.

Metaheuristic algorithms offer successful

methodologies to deal with complex optimization

problems. They have two important characteristics:

intensification and diversification. The selection

criterion of the first characteristic, intensification,

which is used interchangeably with exploitation, is

mainly based on searching around its neighborhood

from the current best solutions. While the selection

criterion of second characteristic, diversification,

also used interchangeably with exploration, is based

on randomization and thus assures the effectiveness

of the search process in the search space [2, 4]. The

efficiency of these algorithms is due to the fact that

they successfully simulate the naturally evolved

characteristics in nature, especially of the biological

systems.

Most widely used Meta-heuristic algorithms are

Genetic algorithm (GA), simulated annealing (SA),

Tabu search (TS) and Particle Swarm Optimization

(PSO). Genetic algorithm (GA) emulates the

evolutionary process in nature, whereas Tabu search

(TS) exploits the memory structure in living beings,

simulated annealing (SA) imitates the annealing

process in crystalline solids and particle swarm

optimization (PSO) inspires social behavior of bird

flocking or fish schooling [5]. A general drawback

for these algorithms, with the exception of PSO, is

the slow convergence towards the optimal solution

and some of them have poor performance with large

search spaces problems [6]. A crucial drawback with

GA is its unguided mutation operator where there is

no directed mechanism for fine tuning its parameters

(trial and error only), thus does not guarantee

reaching optimal solution. Although TS tries to

avoid trapping into local optimum but it is very slow

taking much time when performing especially with

large space problems. SA, on the other hand,

requires high accuracy when choosing its tuning

parameters and its great need of computer time for

many runs.

With the recent developments in the field of

metaheuristic algorithms, the Bat algorithm (BA)

which was proposed by Yang [7]. BA is a new

metaheuristic algorithm that simulates the

echolocation behavior of microbats. The microbat’s

natural phenomena of echolocation represent the

main focus in the search process. In complete

darkness, these bats can easily find their prey and

even differentiate different types of other insects.

The research studies indicated that BA is superior in

solving nonlinear constrained optimization problems

and showed very promising results that outperform

many existing algorithms [8]. It has some

advantages over other algorithms since it uses a

fewer number of adjustable parameters. A frequency

tuning technique is used in the BA which increases

the diversity of the solutions in the population.

During searching for a solution (prey), the algorithm

automatically modifies the pulse emission rates and

loudness of bats through an internal zooming

technique, and thus it always achieves both the

exploration and exploitation of solution through the

search process. Consequently, BA has been widely

used in many applications like engineering design

optimization, fuzzy clustering, predictions and other

real problems.

In this paper, a stochastic multi-objective bat

algorithm (SMOBA) is developed for solving

stochastic constrained optimization problems. The

generation of random numbers is done based on the

given probability distributions of their continuous

random variables. Then the Monte Carlo simulation

technique is applied to ensure the feasibility of the

chance constraints. Then the multi-objective Bat

algorithm is used to obtain the optimal solution. The

probability distributions for the random variables

need not be the same for different constraints.

The organization of this paper is as follows:

Section 2 presents method of generating random

numbers for some continuous probability

distributions. Section 3 introduces the technique of

Monte Carlo stochastic simulation for the chance

constraints. Section 4 gives the working technique

of the Bat algorithm. Section 5 discusses the

developed algorithm (SMOBA) in details.

Numerical example and concluding remarks are

presented in Sections 6 and 7, respectively.

2. Generating random numbers for certain

probability distributions

In this section, we will quickly give some

algorithms for generating random numbers for some

continuous probability distributions:

a) Uniform Distribution:

A random variable x has a uniform

distribution when its probability distribution

function (pdf) is given by:

𝑓(𝑥) = {
1

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
} (2)

Received: January 10, 2019 43

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

The pdf is denoted as U(a, b), where a and b

are given real numbers with a < b. Thus, to

generate a uniformly distributed random

number on an interval [a, b], the algorithm

is as follows:

Step 1. m = rand ().

Step 2. Return a + m (b − a).

b) Exponential Distribution:

A random variable x has an exponential

distribution when its pdf is given by:

𝑓(𝑥) = {
1

𝛽
 𝑒

−𝑥
𝛽⁄ , 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (3)

The pdf is denoted as Exp(𝛽), where 𝛽 > 0.

𝛽 is the mean and 𝛽2 is he variance of the

distribution.

To generate an exponentially distributed

random number, the algorithm is as follows:

Step 1. Generate m from U (0, 1).

Step 2. Return −β ln(m).

c) Gamma Distribution:

A random variable x has a gamma

distribution when its pdf is given by:

𝑓(𝑥) = {
𝑥𝛼−1𝑒

−𝑥
𝛽⁄

𝛽𝛼 Γ(𝛼)
 , 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (4)

The pdf is denoted as 𝐺(𝛼, 𝛽), where

𝛼, 𝛽 > 0 and 𝛼𝛽, 𝛼𝛽2 are the mean and

variance of the distribution.

To generate a Gamma distributed random

number, the algorithm is as follows:

Step 1. Set x = 0.

Step 2. Generate m from EXP(1).

Step 3. x ← x + m.

Step 4. α ← α − 1.

Step 5. Repeat Steps 2–4 until α = 1.

Step 6. Return βx.

d) Weibull Distribution

A random variable x has a Weibull

distribution when its pdf is given by:

𝑓(𝑥) = {
𝛼

𝛽𝛼
𝑥𝛼−1𝑒

(−𝑥
𝛽⁄)

𝛼

 , 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (5)

The pdf is denoted as 𝑊(𝛼, 𝛽) , where

𝛼, 𝛽 > 0 . The algorithm for a Weibull

distributed random number can be generated

as:

Step 1. Generate 𝑚 from EXP(1).

Step 2. Return 𝛽𝑚
1

𝛼⁄ .

e) Normal Distribution

A random variable x has a Normal

distribution when its pdf is given by:

𝑓(𝑥) =
1

𝜎√2𝜋
 𝑒

−
(𝑥−𝜇)2

2𝜎2 , (6)

−∞ < 𝑥 < ∞

The pdf is denoted as 𝑁(𝜇, 𝜎2), where 𝜇 is

the mean and 𝜎2 is the variance.

To generate a Normally distributed random

number, the algorithm is as follows:

Step 1. Generate 𝑚1 and 𝑚2 from U(0, 1).

Step 2. 𝑦 = √−2ln (𝑚1) sin(2𝜋𝑚2)

Step 3. Return (𝜇 + 𝜎𝑦).

3. Monte Carlo stochastic simulation for the

chance constraints

Stochastic optimization problems are usually

solved with the methodology of chance constrained

programming. The problem here arises in obtaining

the deterministic equivalent of the stochastic

constraints so that it can be solved by any nonlinear

programming (NLP) technique. The major challenge

towards solving chance constrained optimization

problems lies in the computation of the probability

and its slopes of satisfying inequality constraints.

In this section we will overcome this problem by

using the Monte Carlo simulation technique. Monte

Carlo methods are a broad class of computational

algorithms that rely on repetitive random sampling

to obtain numerical results. They are much dominant

when the problem has a probabilistic interpretation

and basic techniques become difficult to be used for

solving [9].

The chance constraints in (1),

𝑃𝑟𝑜𝑏 [∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1] ≥ 𝛼𝑖 , could be re-written

as 𝑃𝑟𝑜𝑏 [𝑔𝑖(𝑥, 𝑟) ≤ 0] ≥ 𝛼𝑖 , 𝑖 = 1, … , 𝑚, and 𝑟 =
(𝑅1, 𝑅2, … , 𝑅𝑡) is a continuous random vector where

each 𝑅𝑖
𝑡 has a known probability distribution. The

Monte Carlo simulation technique is used as follows

to check the feasibility of the above chance

constraints.

• Generate 𝐿 independent random vectors from

the probability distributions of the random

Received: January 10, 2019 44

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

vector component of each constraint 𝑟(𝑧) =

(𝑅1
(𝑍)

, 𝑅2
(𝑍)

, … , 𝑅𝑡
(𝑍)

) , 𝑧 = 1, … , 𝐿 (7)

• Count the number of times that the constraint

𝑔𝑖(𝑥, 𝑟(𝑧)) ≤ 0 is satisfied and let it 𝐿𝑖
′

• Then by definition of probability, the stochastic

constraint 𝑃𝑟𝑜𝑏 [𝑔𝑖(𝑥, 𝑟) ≤ 0] ≥ 𝛼𝑖 , will hold

only if 𝐿𝑖
′ / 𝐿 > 𝛼𝑖, 𝑖 = 1, 2, … , 𝑚

Therefore, the algorithm for the stochastic

Monte Carlo simulation of chance constraints could

be presented as:

Step 1. Initialize the counter, 𝐿𝑖
′ = 0, 𝑖 =

1, 2, … , 𝑚.

Step 2. Generate random numbers from the

probability density function of the random vector

component 𝑅𝑡.

Step 3. Estimate the value of constraint, 𝑔𝑖(𝑥, 𝑟). If

𝑔𝑖(𝑥, 𝑟) is ≤ 0, then increase the counter by one, i.e.,

𝐿𝑖
′ = 𝐿𝑖

′ + 1, 𝑖 = 1, 2, … , 𝑚.

Step 4. Repeat steps 2 and 3 𝐿 times.

Step 5. Find the value of 𝐿𝑖
′ / 𝐿, 𝑖 = 1, 2, … , 𝑚.

Step 6. If
𝐿𝑖

′

𝐿
⁄ > 𝛼𝑖 , then the constraint 𝑖 is

satisfied at the pre-determined level of probability

𝛼𝑖.

4. Review of some swarm algorithms

a) Genetic Algorithms

The Genetic Algorithm (GA) mainly is a search

algorithm that depends on the mechanics of the

natural selection process. Its basic idea is to mimic

the concept of the ‘survival of the fittest’ where it

simulates the natural processes observed in the

system in which the strong survives while the weak

vanishes. GA is a population-based approach in

which members of the population are ranked based

on the quality of their solutions which is evaluated

in terms of their fitness. In GA, specific genetic

operators such as crossover, reproduction, and

mutation are used to form a new population.

In each generation, the new chromosome (a

member

of the population) is formed from the fittest

chromosomes of the previous population. GA

generates an initial population of feasible solutions

and merge them in a way to guide their search

toward more promising zones of the search space.

Each of these feasible solutions is encoded as a

chromosome, and is evaluated through a fitness

function (objective function). The value of fitness

function of a chromosome determines its capability

to produce offspring. The high fitness value

indicates the better solution for maximization and

the low fitness value shows the better solution for

minimization problems. A basic GA has five main

components: a random number generator, a fitness

evaluation function, a reproduction operation, a

crossover operation, and a mutation operation.

b) Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an

optimization technique that uses a simple

mechanism that mimics swarm behavior in birds

flocking and fish schooling to guide the particles to

search for global optimal solutions. PSO proved to

be an efficient optimization algorithm that searches

the entire problem space which is high-dimensional.

It is a robust stochastic optimization technique based

on the movement and intelligence of swarms. It uses

the concept of social interaction to problem solving

and does not use the gradient of the problem being

optimized, that’s why it does not require the

optimization problem to be differential, as is

required by classic optimization methods. The PSO

algorithm starts by initializing the population first.

Then the second step is calculating the fitness values

of each particle, followed by updating individual

and global best solutions. Finally, the velocity and

the position of the particles are updated. The second

to fourth steps are repeated until the termination

condition is satisfied.

c) Differential Evolution

The Differential Evolution (DE) algorithm is a

population-based algorithm that is somehow similar

to GA as it uses crossover, mutation, and selection

operators which are similar operators of GA. The

main difference between DE and GA is in producing

better solutions, where DE depends on mutation

operation while GA depends on crossover operation.

It uses the mutation as its basic search

mechanism and benefits from the advantage of the

selection operator to direct the search towards

promising areas in the search space.

5. Bat algorithm: background

BA is a recent optimization algorithm based on

swarm intelligence, basically inspired from the

behavior of microbats, in which they use an

echolocation which is a kind of sonar. It is a very

useful capability that enables them to notice their

prey, turn over obstacles, and locate their paths in

the dark. The echo plays an important role in the

search process, where these bats produce a very high

sound pulse and then wait to listen for the echo that

returns back from the neighboring objects that they

Received: January 10, 2019 45

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

hit. In a magical way, they have the ability to

determine the distance and the location of their prey

or target.

There are almost three essential basic rules for

the echolocation characteristics of microbats, which

are [10]:

a) The echolocation is mainly used by all bats to

determine the distances and location of the prey.

Not only determining the distances, but also to

differentiate between their prey and any other

background surroundings.

b) Randomly is the flying of the bats with velocity

𝑣𝑖 and with frequency 𝑓𝑚𝑖𝑛 at the position 𝑥𝑖 ,

changing wavelength 𝜆 and loudness 𝐴0 to

search for their prey. The wavelength of their

emitted sounds is automatically modified by

them and also the pulse emission rate 𝑟 𝜖 (0, 1)

is adjusted, depending on the distance of their

prey (target).

c) The loudness is assumed to be changeable from

a high positive value 𝐴0 to a low constant value

𝐴𝑚𝑖𝑛 when finding its prey (although other

researches could assume variations in many

ways).

During the solution process, the position and

velocity for each bat (i) in the search space should

be well-defined and as such updated during

subsequent iterations. The equations for calculating

the new position and velocity at time step t are:

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (8)

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖 (9)

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 (10)

where, 𝛽 is in the range [0, 1] which is a random

vector from a uniform distribution. 𝑥∗ is the current

global best solution, which is found after the

comparison between solutions among all the n bats

of the whole population is done. 𝑥𝑖 is the location of

the ith bat in the solution space.

For carrying out the bat algorithm, it’s widely

assumed that, 𝑓𝑚𝑖𝑛 = 0 and 𝑓𝑚𝑎𝑥 = 100, depending

on the dimension of the current problem. At the

beginning, a frequency, that is chosen uniformly

from [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥], is randomly assigned to each bat

[11]. Also, one of the basic roles in the process is

the determination of the pulse emission rate, denoted

by 𝑟𝑖 ∈ [0, 1]. This is done through the automatic

zooming mechanism that the algorithm has. At each

iteration, a random number is generated and

compared to with 𝑟𝑖 , and if it is greater than 𝑟𝑖 , a

better solution is chosen from among the current

best solutions and a local search strategy, called

random walk, is applied to generate a local new

solution for each bat using Eq.(11). By this

mechanism, it implements the search process and

assuring both the global and local search, protecting

the search process from stucking into local optima.

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀 𝐴𝑡 (11)

where 𝜀 is a random number from [-1, 1], and 𝐴𝑡 is

the average loudness of all bats at this current time i,

𝐴𝑡 = 𝐴̅𝑖
𝑡.

As soon as a bat finds its target or prey, the

loudness decreases and the pulse emission rates

increases. As such, the loudness could be chosen as

any value of suitability. 𝐴0 = 1 and 𝐴𝑚𝑖𝑛 = 0 could

be used, for simplicity. For 𝐴𝑚𝑖𝑛 = 0, indicates that

a bat has just hit its prey and as a result stop

producing any sound.

On the other hand, the pulse rate should be in the

interval [0, 1] where 0 means no pulse and 1 means

maximum rate of pulse emission. Therefore, at each

iteration of the algorithm, the loudness 𝐴𝑖 and the

pulse rate emission 𝑟𝑖 have to be updated as follows

using Eqs. (12) and (13):

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡 (12)

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)] (13)

where 𝛼 and 𝛾 are constants [12]. For any 0 < 𝛼, 𝛾 <

1: 𝐴𝑖
𝑡 → 0, 𝑟𝑖

𝑡 → 𝑟𝑖
0 𝑎𝑠 𝑡 → ∞ .

For those proposals, 𝛼 = 𝛾 = 0.9 (used in most

Yang’s experiments for simplicity). However, at the

beginning of the algorithm, the loudness 𝐴𝑖
0 and the

pulse rate 𝑟𝑖
0 for each bat should be different and

randomly chosen. They are updated only when new

better solutions are found, which means that these

bats are moving towards the optimal solution [13].

For a multi-objective BA, a weighted sum

function could be used to combine all objectives into

a single objective. The weights are randomly

generated from a uniform distribution but it could be

different to guarantee the diversity of the points on

the Pareto front [14].

6. Stochastic multi-objective bat algorithm

(SMOBA)

The basic rules of the BA are used to solve

unconstrained optimization problems. However, for

implementation point of view, nonlinear uncertain

Received: January 10, 2019 46

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

constrains should be handled. In this section, a

stochastic multi-objective BA is proposed in which

the Monte Carlo simulation approach is used for

constraint handling. The proposed algorithm is

capable of handling any constraints where the

random variables involved in the parameters follow

an arbitrary continuous distribution with known

probability density functions. The stochastic

constraints are represented as chance constraints

with some determined level of probability. The

feasibility of the generated solutions is checked by

applying the technique of the stochastic Monte

Carlo simulation discussed in section 2.

The basic steps for the proposed stochastic

multi-objective bat algorithm (shown in Algorithm

1) to solve chance constrained stochastic

programming problems are as follows:

Step 1: The algorithm begins by initializing the

values parameters of the bat algorithm, the

minimum frequency 𝑓𝑚𝑖𝑛 , maximum frequency

𝑓𝑚𝑎𝑥 , pop. size n, the loudness constant 𝛼 , pulse

emission rate constant 𝛾, the initial loudness 𝐴0, the

minimum loudness 𝐴𝑚𝑖𝑛, the initial pulse emission

rate 𝑟0, the maximum number of iterations, and the

counter for Monte Carlo simulation 𝐿𝑚
′ .

Step 2: The initial population is randomly generated

by finding the initial position 𝑥0 and the initial

velocity 𝑣0 for each solution in the population and

assigning its initial frequency 𝑓0.

Step 3: Generate K weights (no. of objective

functions) so that ∑ 𝑤𝑘
𝐾
𝑘=1 = 1.

Step 4: The initial population is evaluated by

calculating the value of the objective function for

each solution. The values of pulse emission rate 𝑟𝑖

and the loudness 𝐴𝑖 are initialized.

Step 5: New solutions are generated to form the

new population by adjusting the position 𝑥𝑖, velocity

𝑣𝑖 and frequency 𝑓𝑖 for each solution using Eq. 2, 3,

and 4.

Checking the feasibility of each constraint

Step 6: For each constraint, generate a random

number from the probability density function of the

stochastic random vector component.

Step 7: Estimate the value of the constraint, and

check if it is satisfied, if so, increase the counter 𝐿𝑚
′

by one

Step 8: Repeat steps 6 and 7 𝐿 times.

Step 9: Find the value of
𝐿𝑚

′

𝐿
⁄ . If it is greater than

the pre-determined level of probability 𝛼𝑚, then the

constraint is feasible.

Step 10: Evaluate the new population by calculating

the value of the objective function for each solution,

and select best solution from the population

Step 11: The local search method is applied using

Eq. (11) to make fine tuning to reach best found

solution.

Step 12: The new solution is generated, and hence

the pulse emission rate is increased and the loudness

is decrease using Eqs. (12) and (13).

Step 13: The new population is generated and

ranked to select the best solution.

In the following, the pseudo code for the above

SMOBA algorithm is shown:

Algorithm 1 Stochastic Multi-Objective Bat

Algorithm (SMOBA)

Objective functions: 𝑓1(𝑥), … , 𝑓𝐾(𝑥), 𝑥 =
(𝑥1, … , 𝑥𝑑)𝑇

Constraints: 𝑃𝑟𝑜𝑏 [𝑔𝑚(𝑥, 𝑟𝑚) ≤ 0] ≥ 𝛼𝑚)

Set initial values 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝛼, 𝛾, 𝐴0, 𝐴𝑚𝑖𝑛, 𝑟0, n.

Initialize the bat population 𝑥𝑖 , 𝑖 = (1, 2, … , 𝑛) and

𝑣𝑖

Define pulse frequency 𝑓𝑖 at 𝑥𝑖

Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖

Initialize 𝐿𝑚
′ = 0, 𝑚 = (1, 2, … , 𝑀)

For j = 1 to J (points on Pareto fronts)

 Generate K weights 𝑤𝑘 ≥ 0 so that ∑ 𝑤𝑘
𝐾
𝑘=1 = 1

 Form a single objective 𝑓 = ∑ 𝑤𝑘
𝐾
𝑘=1 𝑓𝑘

 While (t < Max number of iterations)

Get new solutions by fine-tuning frequency,

updating velocities and positions according

to Eq. 2, 3, 4.

 For h =1 to L

 Generate a random number according to

the density function of the continuous

random variables 𝑟𝑚

 Check the value of 𝑔𝑚(𝑥, 𝑟𝑚)

 If (𝑔𝑚(𝑥, 𝑟𝑚) is satisfied)

 Increase 𝐿𝑚
′ by one

 End If

 End

Received: January 10, 2019 47

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

 Find the value of 𝐿𝑖
′ / 𝐿, and if it is greater

than 𝛼𝑚, then the constraint is feasible

Evaluate the new population by calculating

the value of the objective function for each

solution

If (rand > 𝑟𝑖)

Randomly, select a solution from

among the best solutions

Generate a local solution around the

found best solution using a Random walk

End If

If (rand < 𝐴𝑖 & 𝑓(𝑥𝑖) < 𝑓(𝑥∗))

Accept the new solutions,

and increase 𝑟𝑖 & reduce 𝐴𝑖

End If

Evaluate the new population by calculating

the value of the objective function for each

solution

Sort the bats and find the current best 𝑥∗

 End While

 Record 𝑥∗ as a non-dominated solution

End

Post process results

7. Numerical example

In this section, a test example is presented that

was previously solved using basic DE, PSO and GA,

proposed in details in [15], and the results are

compared to that obtained using the proposed

SMOBA. The test problem invloves random

variables that follow different types of probability

distributions.

Max 𝑧1 = 5𝑥1 + 6𝑥2 + 3𝑥3

Max 𝑧2 = 6𝑥1 + 3𝑥2 + 5𝑥3

Max 𝑧3 = 2𝑥1 + 5𝑥2 + 8𝑥3

Subject to

𝑃(3𝑥1 + 2𝑥2 + 2𝑥3 ≤ 𝑏1) ≥ 0.9,

 𝑃(2𝑥1 + 8𝑥2 + 5𝑥3 ≤ 𝑏2) ≥ 0.98

𝑃(5𝑥1 + 3𝑥2 + 2𝑥3 ≤ 𝑏3) ≥ 0.95,

 𝑃(0.5𝑥1 + 0.5𝑥2 + 0.25𝑥3 ≤ 𝑏4) ≥ 0.9

𝑃(8𝑥1 + 3𝑥2 + 4𝑥3 ≤ 𝑏5) ≥ 0.99

𝑥1, 𝑥2, 𝑥3 ≥ 0 (14)

Where, 𝑏1 follows Power function distribution with

parameter 𝜆 = 10 and a = 5 ;

𝑏2 follows Pareto distribution with parameter 𝜆 = 8

and a = 2 ;

𝑏3 follows Beta distribution with parameter 𝜆 = 15

and a = 10;

𝑏4 follows Weibull distribution with parameter 𝜃 =
1

5
 𝑎𝑛𝑑 𝑎 = 10;

𝑏5 follws Burr type XII distribution with parameter

𝜆 =
1

10
 , 𝜃 =

1

15
 𝑎𝑛𝑑 𝑎 =

1

5
.

Using the concept of weighting characterization

of the objective functions, the deterministic model

for the above problem as per Charles et al. [15] is:

Max 𝑧 = 𝑤1(5𝑥1 + 6𝑥2 + 3𝑥3) + 𝑤2(6𝑥1 + 3𝑥2 +
5𝑥3) + 𝑤3(2𝑥1 + 5𝑥2 + 8𝑥3)

Subject to

3𝑥1 + 2𝑥2 + 2𝑥3 ≤ 6.3096 ,

 2𝑥1 + 8𝑥2 + 5𝑥3 ≤ 8.0812

5𝑥1 + 3𝑥2 + 2𝑥3 ≤ 4.7115 ,

 0.5𝑥1 + 0.5𝑥2 + 0.25𝑥3 ≤ 0.9379

8𝑥1 + 3𝑥2 + 4𝑥3 ≤ 10.0321

𝑤1 + 𝑤2 + 𝑤3 = 1

𝑤1, 𝑤2, 𝑤3 ≥ 0 , 𝑥1, 𝑥2, 𝑥3 ≥ 0 (15)

This deterministic problem was solved using the

basic DE, GA, and PSO and the results are shown in

Table 1.

Using the proposed SMOBA algorithm we

solved the problem directly without converting it to

the deterministic equivalent, in its stochastic form. It

was run with 1000 runs of 20 bats, and hence

performed 20,000 function evaluations with

population size n = 20 and 𝛼 = 𝛾 = 0.9 (as

recommended from the literature) for the loudness

and the pulse emission rates constants.

Comparing the results of DE, GA, and PSO with

SMOBA in terms of best objective function value

and optimal decision variables values, the results are

shown in Table 1.

It could be seen from Table 1 that SMOBA

gives a higher value for objective function as global

optimum, i.e. better results than all three algorithms.

It is noticed that the global optimum for the

SMOBA is slightly higher than that for PSO which

is a logical justification since both algorithms have

similar solution mechanisms, but SMOBA has the

Table 1. Results of DE, GA, PSO and SMOBA

 DE GA PSO SMOBA

𝑧 9.48978 8.5089 12.9299 12.9311

𝑧1 6.18688 6.4834 4.84872 6.35469

𝑧2 9.48978 8.3125 8.0812 9.88835

𝑧3 12.5073 10.514 12.9299 13.53224

𝑥1 0.35214 0.3727 0 0.3012

𝑥2 2.12E-07 0.2319 0 0

𝑥3 1.47538 1.0761 1.61624 1.61623

St.Dev. 2.06789 NA 3.91715 0.00173

Avg. FE 14,691 30,720 20,573 11,430

Received: January 10, 2019 48

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

0

5

10

15

DE GA PSO SMOBAO
b

je
ct

iv
e

Fu
n

ct
io

n
 V

al
u

e

Algorithms

z1

z2

z3

Figure. 1 Performance of DE, GA, PSO and SMOBA

added advantage of frequency tuning (a function of

the BA). Nevertheless, as evident from the table,

SMOBA results in a much lower standard deviation,

which indicates a more efficient and robust solution

when compared to the others. To show the

convergence speed of the algorithms, the average

number of functions evaluations (Avg. FE) was

considered. In addition to efficiency and robustness,

the percentage improved by the proposed algorithm

in terms of avg. FE in comparison with DE, GA, and

PSO is 77.8%, 37.2%, and 55.5% respectively.

All this is done by SMOBA while considering

the stochastic problem in its original stochastic form

without the need to convert it to its deterministic

equivalent one as needed by the other algorithms.

Fig. 1 shows the performance of DE, GA, PSO,

and SMOBA in terms of objective function values

for the three objectives.

8. Conclusions and future work

In this study, the multi-objective constrained BA

algorithm is modified to solve stochastic constraints

optimization problems. In the proposed SMOBA,

the feasibility of the chance constrains was checked

using the Monte Carlo simulation approach. The

main advantage of the proposed algorithm is that it

does not require the deterministic equivalents of the

chance constrains which are difficult to achieve in

many situations. It is applicable for any stochastic

random variables involved in the constraints. The

numerical results showed that the proposed

algorithm is effective in finding a robust and

uniformly spread approximation of the Pareto

optimal set of the multi-objective problem, when

compared to the tested problem. Future directions of

research are to accommodate stochastic objective

functions rather than deterministic ones and

incorporating more sophisticated approach to ensure

dominance of solutions to further improve the

convergence of the algorithm.

Compliance with Ethical Standards

Human and animal participation: This is a

theoretical research therefore there is no human nor

animal subjects is involved.

Disclosure of potential conflicts of interest: The

authors declare that they have no conflict of interest.

Informed consent: Informed consent was obtained

from all individual participants included in the study.

References

[1] A. Charnes and W. Cooper, “Chance-

constrained programming”, Management

Science, Vol. 6, No. 1, pp.73-79, 1959.

[2] D. Kalyanmoy, “Multi objective optimization

using evolutionary algorithms”, John Wiley and

Sons, pp. 124-124, 2001.

[3] C. Coello, G. Lamont, and D. Van

Veldhuizen, Evolutionary algorithms for

solving multi-objective problems, Vol. 5,

Springer, New York, N.Y.2007.

[4] H. Mete and Z. Zabinsky, “Multiobjective

interacting particle algorithm for global

optimization”, INFORMS Journal on

Computing, Vol. 26, No. 3, pp. 500-513, 2014.

[5] G. Said, A. Mahmoud, and E. El-Horbaty, “A

comparative study of meta-heuristic algorithms

for solving quadratic assignment

problem”, International Journal of Advanced

Computer Science and Applications, Vol. 5, No.

1, pp. 1-6, 2014.

[6] M. Ab Wahab, S. Nefti-Meziani, and A. Atyabi,

“A comprehensive review of swarm

optimization algorithms”, PLoS One, Vol. 10,

No. 5, 2015.

[7] X.S. Yang, “A new metaheuristic bat-inspired

algorithm”, Nature Inspired Cooperative

Strategies for Optimization, Vol. 284, pp. 65-74,

2010.

[8] X.S. Yang and X. He, “Bat algorithm: literature

review and applications”, International Journal

of Bio-Inspired Computation, Vol. 5, No. 3, pp.

141-149, 2013.

[9] R.K. Jana and M.P. Biswal, “Stochastic

simulation-based genetic algorithm for chance

constraint programming problems with

continuous random variables”, International

Journal of Computer Mathematics, Vol.81, No.

9, pp.1069-1076, 2004.

Received: January 10, 2019 49

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.05

[10] A.H. Gandomi, X.S. Yang, A.H. Alavi, and S.

Talatahari, “Bat algorithm for constrained

optimization tasks”, Neural Computing and

Applications, Vol. 22, No. 6, pp.1239-1255,

2013.

[11] X.S. Yang and A. H. Gandomi, “Bat algorithm:

a novel approach for global engineering

optimization”, Engineering Computations, Vol.

29, No. 5, pp. 464-483, 2012.

[12] J. Senthilnath, S. Kulkarni, J.A. Benediktsson,

and X.S. Yang, “A novel approach for

multispectral satellite image classification

based on the bat algorithm”, IEEE Geoscience

and Remote Sensing Letters, Vol. 13, No. 4, pp.

599-603, 2016.

[13] T. Jayabarathi, T. Raghunathan, and A.H.

Gandomi, “The Bat Algorithm, Variants and

Some Practical Engineering Applications: A

Review”, Nature-Inspired Algorithms and

Applied Optimization, pp. 313-330, 2018.

[14] X.S. Yang, “Bat algorithm for multi-objective

optimization”, International Journal of Bio-

Inspired Computation, Vol. 3, No. 5, pp. 267-

274, 2011.

[15] V. Charles, S.I. Ansari, and M.M. Khalid,

"Multi-objective stochastic linear programming

with general form of distributions", Int. J. Oper.

Res. Optim., Vol. 2, No. 2, pp.261-278, 2011.

