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Abstract: This paper develops a stochastic Bat algorithm based on Monte Carlo simulation for solving stochastic 

multi-objective problems, where model parameters are random variables follow any arbitrary continuous distribution. 

The traditional Bat algorithm requires the deterministic equivalence of the problem which is only possible if the 

random variables follow specific distributions. However, in the developed algorithm, the stochastic model is solved 

directly without obtaining the deterministic equivalence. The feasibility of the stochastic constraints is checked using 

Monte Carlo simulation, and the developed algorithm is used to obtain the optimal solution. The developed 

algorithm combined the advantageous of the Bat algorithm and Monte Carlo techniques to solve complex stochastic 

multi-objective problems without the deterministic equivalent, which is difficult in most cases, and is tested on a 

numerical example that was previously solved by other algorithms and the obtained results are compared and 

showed that the proposed algorithm is more efficient and robust. 

Keywords: Stochastic programming, Chance constraint, Continuous random variable, Monte Carlo simulation, Bat 
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1. Introduction 

In a real-world decision situation, the decision 

maker is often faced with multiple objectives under 

the problem of uncertain parameter values due to the 

imprecision in human judgments as well as the 

uncertainty in nature of the parameters involved in 

the problem. One approach for solving such 

problems is stochastic programming that handles the 

probabilistically uncertain data. Stochastic 

programming deals with situations where some or 

all of the parameters of a mathematical 

programming problem are described by stochastic 

variables rather than by deterministic values. One of 

the available techniques is the chance constrained 

programming (CCP) which can be used to solve 

problems involving chance constraints, that is, 

constraints having pre-determined level of 

probability to be attained. As such, CCP assumes 

that the stochastic system of constraints is satisfied 

at a pre-determined confidence level, 𝛼. CCP was 

initially developed by Charnes and Cooper [1], and 

today is being used intensively to model and solve 

problems in many applications of engineering, 

telecommunication, finance, etc.  

The general form for a multi-objective stochastic 

programming problem with chance constraints is as 

follows: 

 

Maximize:𝑧𝑘(𝑥) =  ∑ 𝑐𝑗
𝑘𝑥𝑗,             𝑘 = 1, 2, … , 𝐾𝑛

𝑗=1  

Subject to:  

𝑃𝑟𝑜𝑏 [∑ 𝑎𝑖𝑗𝑥𝑗 ≤  𝑏𝑖
𝑛
𝑗=1 ]  ≥  𝛼𝑖  

𝑥𝑗  ≥ 0                       𝑗 = 1, … , 𝑛 

𝛼𝑖  ∈ (0, 1)               𝑖 = 1, … , 𝑚                             (1) 

 

Where, 𝑐𝑗
𝑘 is the coefficient of decision variable 𝑥𝑗 

for the kth objective function, 𝑎𝑖𝑗  and 𝑏𝑖  are 

continuous random variables with known 

probability distributions and 𝛼𝑖 is a pre-determined 

probability (confidence) level. 



Received:  January 10, 2019                                                                                                                                                42 

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019           DOI: 10.22266/ijies2019.0831.05 

 

In many situations, it turns out to be very 

difficult and complex to get the deterministic 

equivalence of the chance constraints, especially if 

the random components cannot be separated from 

the decision variables, as in this case, the 

multivariate integration would lead to improper 

calculations. 

Metaheuristic algorithms offer successful 

methodologies to deal with complex optimization 

problems. They have two important characteristics: 

intensification and diversification. The selection 

criterion of the first characteristic, intensification, 

which is used interchangeably with exploitation, is 

mainly based on searching around its neighborhood 

from the current best solutions. While the selection 

criterion of second characteristic, diversification, 

also used interchangeably with exploration, is based 

on randomization and thus assures the effectiveness 

of the search process in the search space [2, 4]. The 

efficiency of these algorithms is due to the fact that 

they successfully simulate the naturally evolved 

characteristics in nature, especially of the biological 

systems.  

Most widely used Meta-heuristic algorithms are 

Genetic algorithm (GA), simulated annealing (SA), 

Tabu search (TS) and Particle Swarm Optimization 

(PSO). Genetic algorithm (GA) emulates the 

evolutionary process in nature, whereas Tabu search 

(TS) exploits the memory structure in living beings, 

simulated annealing (SA) imitates the annealing 

process in crystalline solids and particle swarm 

optimization (PSO) inspires social behavior of bird 

flocking or fish schooling [5]. A general drawback 

for these algorithms, with the exception of PSO, is 

the slow convergence towards the optimal solution 

and some of them have poor performance with large 

search spaces problems [6]. A crucial drawback with 

GA is its unguided mutation operator where there is 

no directed mechanism for fine tuning its parameters 

(trial and error only), thus does not guarantee 

reaching optimal solution. Although TS tries to 

avoid trapping into local optimum but it is very slow 

taking much time when performing especially with 

large space problems. SA, on the other hand, 

requires high accuracy when choosing its tuning 

parameters and its great need of computer time for 

many runs. 

With the recent developments in the field of 

metaheuristic algorithms, the Bat algorithm (BA) 

which was proposed by Yang [7]. BA is a new 

metaheuristic algorithm that simulates the 

echolocation behavior of microbats. The microbat’s 

natural phenomena of echolocation represent the 

main focus in the search process. In complete 

darkness, these bats can easily find their prey and 

even differentiate different types of other insects. 

The research studies indicated that BA is superior in 

solving nonlinear constrained optimization problems 

and showed very promising results that outperform 

many existing algorithms [8]. It has some 

advantages over other algorithms since it uses a 

fewer number of adjustable parameters. A frequency 

tuning technique is used in the BA which increases 

the diversity of the solutions in the population. 

During searching for a solution (prey), the algorithm 

automatically modifies the pulse emission rates and 

loudness of bats through an internal zooming 

technique, and thus it always achieves both the 

exploration and exploitation of solution through the 

search process. Consequently, BA has been widely 

used in many applications like engineering design 

optimization, fuzzy clustering, predictions and other 

real problems. 

In this paper, a stochastic multi-objective bat 

algorithm (SMOBA) is developed for solving 

stochastic constrained optimization problems. The 

generation of random numbers is done based on the 

given probability distributions of their continuous 

random variables. Then the Monte Carlo simulation 

technique is applied to ensure the feasibility of the 

chance constraints. Then the multi-objective Bat 

algorithm is used to obtain the optimal solution. The 

probability distributions for the random variables 

need not be the same for different constraints. 

The organization of this paper is as follows: 

Section 2 presents method of generating random 

numbers for some continuous probability 

distributions. Section 3 introduces the technique of 

Monte Carlo stochastic simulation for the chance 

constraints. Section 4 gives the working technique 

of the Bat algorithm. Section 5 discusses the 

developed algorithm (SMOBA) in details. 

Numerical example and concluding remarks are 

presented in Sections 6 and 7, respectively. 

2. Generating random numbers for certain 

probability distributions 

In this section, we will quickly give some 

algorithms for generating random numbers for some 

continuous probability distributions: 

a) Uniform Distribution: 

A random variable x has a uniform 

distribution when its probability distribution 

function (pdf) is given by: 

 

𝑓(𝑥) =  {
1

𝑏−𝑎
,      𝑎 ≤ 𝑥 ≤ 𝑏

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
}   (2) 
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The pdf is denoted as U(a, b), where a and b 

are given real numbers with a < b. Thus, to 

generate a uniformly distributed random 

number on an interval [a, b], the algorithm 

is as follows: 

 

Step 1. m = rand (). 

Step 2. Return a + m (b − a). 

 

b) Exponential Distribution: 

A random variable x has an exponential 

distribution when its pdf is given by: 

 

𝑓(𝑥) =  {
1

𝛽
 𝑒

−𝑥
𝛽⁄ ,       𝑥 > 0

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}   (3) 

 

The pdf is denoted as Exp(𝛽), where 𝛽 > 0. 

𝛽 is the mean and 𝛽2 is he variance of the 

distribution. 

To generate an exponentially distributed 

random number, the algorithm is as follows: 

Step 1. Generate m from U (0, 1). 

Step 2. Return −β ln(m). 

 

c) Gamma Distribution: 

A random variable x has a gamma 

distribution when its pdf is given by: 

 

𝑓(𝑥) =  {
𝑥𝛼−1𝑒

−𝑥
𝛽⁄

𝛽𝛼 Γ(𝛼)
 ,       𝑥 > 0

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (4) 

 

The pdf is denoted as 𝐺(𝛼, 𝛽), where 

𝛼, 𝛽 > 0 and 𝛼𝛽, 𝛼𝛽2 are the mean and 

variance of the distribution. 

To generate a Gamma distributed random 

number, the algorithm is as follows: 

Step 1. Set x = 0. 

Step 2. Generate m from EXP(1). 

Step 3. x ← x + m. 

Step 4. α ← α − 1. 

Step 5. Repeat Steps 2–4 until α = 1. 

Step 6. Return βx. 

 

d) Weibull Distribution 

A random variable x has a Weibull 

distribution when its pdf is given by: 

 

𝑓(𝑥) =  {
𝛼

𝛽𝛼 
𝑥𝛼−1𝑒

(−𝑥
𝛽⁄ )

𝛼

 ,       𝑥 > 0

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  (5) 

The pdf is denoted as 𝑊(𝛼, 𝛽) , where 

𝛼, 𝛽 > 0 . The algorithm for a Weibull 

distributed random number can be generated 

as: 

Step 1. Generate 𝑚 from EXP(1). 

Step 2. Return 𝛽𝑚
1

𝛼⁄ . 

 

e) Normal Distribution 

A random variable x has a Normal 

distribution when its pdf is given by: 

 

𝑓(𝑥) =  
1

𝜎√2𝜋
 𝑒

−
(𝑥−𝜇)2

2𝜎2 ,    (6) 

−∞ < 𝑥 < ∞ 

 

The pdf is denoted as 𝑁(𝜇, 𝜎2), where 𝜇 is 

the mean and 𝜎2 is the variance.  

To generate a Normally distributed random 

number, the algorithm is as follows: 

Step 1. Generate 𝑚1 and 𝑚2 from U(0, 1). 

Step 2. 𝑦 =  √−2ln (𝑚1) sin(2𝜋𝑚2) 

Step 3. Return (𝜇 + 𝜎𝑦). 

3. Monte Carlo stochastic simulation for the 

chance constraints 

Stochastic optimization problems are usually 

solved with the methodology of chance constrained 

programming. The problem here arises in obtaining 

the deterministic equivalent of the stochastic 

constraints so that it can be solved by any nonlinear 

programming (NLP) technique. The major challenge 

towards solving chance constrained optimization 

problems lies in the computation of the probability 

and its slopes of satisfying inequality constraints. 

In this section we will overcome this problem by 

using the Monte Carlo simulation technique. Monte 

Carlo methods are a broad class of computational 

algorithms that rely on repetitive random sampling 

to obtain numerical results. They are much dominant 

when the problem has a probabilistic interpretation 

and basic techniques become difficult to be used for 

solving [9]. 

The chance constraints in (1), 

𝑃𝑟𝑜𝑏 [∑ 𝑎𝑖𝑗𝑥𝑗 ≤  𝑏𝑖
𝑛
𝑗=1 ]  ≥  𝛼𝑖 , could be re-written 

as 𝑃𝑟𝑜𝑏 [𝑔𝑖(𝑥, 𝑟) ≤ 0]  ≥  𝛼𝑖 , 𝑖 = 1, … , 𝑚, and 𝑟 =
(𝑅1, 𝑅2, … , 𝑅𝑡) is a continuous random vector where 

each 𝑅𝑖
𝑡  has a known probability distribution. The 

Monte Carlo simulation technique is used as follows 

to check the feasibility of the above chance 

constraints.  

• Generate 𝐿  independent random vectors from 

the probability distributions of the random 
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vector component of each constraint 𝑟(𝑧) =

(𝑅1
(𝑍)

, 𝑅2
(𝑍)

, … , 𝑅𝑡
(𝑍)

) ,        𝑧 = 1, … , 𝐿  (7) 

• Count the number of times that the constraint 

𝑔𝑖(𝑥, 𝑟(𝑧)) ≤ 0 is satisfied and let it 𝐿𝑖
′  

• Then by definition of probability, the stochastic 

constraint 𝑃𝑟𝑜𝑏 [𝑔𝑖(𝑥, 𝑟) ≤ 0]  ≥  𝛼𝑖 , will hold 

only if 𝐿𝑖
′ / 𝐿 >  𝛼𝑖, 𝑖 = 1, 2, … , 𝑚 

 

Therefore, the algorithm for the stochastic 

Monte Carlo simulation of chance constraints could 

be presented as: 

Step 1. Initialize the counter, 𝐿𝑖
′ = 0,         𝑖 =

1, 2, … , 𝑚. 

Step 2. Generate random numbers from the 

probability density function of the random vector 

component 𝑅𝑡. 

Step 3. Estimate the value of constraint, 𝑔𝑖(𝑥, 𝑟). If 

𝑔𝑖(𝑥, 𝑟) is ≤ 0, then increase the counter by one, i.e., 

𝐿𝑖
′ =  𝐿𝑖

′ + 1, 𝑖 = 1, 2, … , 𝑚. 

Step 4. Repeat steps 2 and 3 𝐿 times. 

Step 5. Find the value of 𝐿𝑖
′ / 𝐿, 𝑖 = 1, 2, … , 𝑚. 

Step 6. If 
𝐿𝑖

′

𝐿
⁄  >  𝛼𝑖 , then the constraint 𝑖  is 

satisfied at the pre-determined level of probability 

𝛼𝑖. 

4. Review of some swarm algorithms 

a) Genetic Algorithms 

The Genetic Algorithm (GA) mainly is a search 

algorithm that depends on the mechanics of the 

natural selection process. Its basic idea is to mimic 

the concept of the ‘survival of the fittest’ where it 

simulates the natural processes observed in the 

system in which the strong survives while the weak 

vanishes. GA is a population-based approach in 

which members of the population are ranked based 

on the quality of their solutions which is evaluated 

in terms of their fitness. In GA, specific genetic 

operators such as crossover, reproduction, and 

mutation are used to form a new population.  

In each generation, the new chromosome (a 

member 

of the population) is formed from the fittest 

chromosomes of the previous population. GA 

generates an initial population of feasible solutions 

and merge them in a way to guide their search 

toward more promising zones of the search space. 

Each of these feasible solutions is encoded as a 

chromosome, and is evaluated through a fitness 

function (objective function). The value of fitness 

function of a chromosome determines its capability 

to produce offspring. The high fitness value 

indicates the better solution for maximization and 

the low fitness value shows the better solution for 

minimization problems. A basic GA has five main 

components: a random number generator, a fitness 

evaluation function, a reproduction operation, a 

crossover operation, and a mutation operation. 

 

b) Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an 

optimization technique that uses a simple 

mechanism that mimics swarm behavior in birds 

flocking and fish schooling to guide the particles to 

search for global optimal solutions. PSO proved to 

be an efficient optimization algorithm that searches 

the entire problem space which is high-dimensional. 

It is a robust stochastic optimization technique based 

on the movement and intelligence of swarms. It uses 

the concept of social interaction to problem solving 

and does not use the gradient of the problem being 

optimized, that’s why it does not require the 

optimization problem to be differential, as is 

required by classic optimization methods. The PSO 

algorithm starts by initializing the population first. 

Then the second step is calculating the fitness values 

of each particle, followed by updating individual 

and global best solutions. Finally, the velocity and 

the position of the particles are updated. The second 

to fourth steps are repeated until the termination 

condition is satisfied. 

 

c) Differential Evolution 

The Differential Evolution (DE) algorithm is a 

population-based algorithm that is somehow similar 

to GA as it uses crossover, mutation, and selection 

operators which are similar operators of GA. The 

main difference between DE and GA is in producing 

better solutions, where DE depends on mutation 

operation while GA depends on crossover operation. 

It uses the mutation as its basic search 

mechanism and benefits from the advantage of the 

selection operator to direct the search towards 

promising areas in the search space. 

5. Bat algorithm: background 

BA is a recent optimization algorithm based on 

swarm intelligence, basically inspired from the 

behavior of microbats, in which they use an 

echolocation which is a kind of sonar. It is a very 

useful capability that enables them to notice their 

prey, turn over obstacles, and locate their paths in 

the dark. The echo plays an important role in the 

search process, where these bats produce a very high 

sound pulse and then wait to listen for the echo that 

returns back from the neighboring objects that they 
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hit. In a magical way, they have the ability to 

determine the distance and the location of their prey 

or target.  

There are almost three essential basic rules for 

the echolocation characteristics of microbats, which 

are [10]: 

 

a) The echolocation is mainly used by all bats to 

determine the distances and location of the prey. 

Not only determining the distances, but also to 

differentiate between their prey and any other 

background surroundings. 

b) Randomly is the flying of the bats with velocity 

𝑣𝑖  and with frequency 𝑓𝑚𝑖𝑛  at the position 𝑥𝑖 , 

changing wavelength 𝜆  and loudness 𝐴0  to 

search for their prey. The wavelength of their 

emitted sounds is automatically modified by 

them and also the pulse emission rate 𝑟 𝜖 (0, 1) 

is adjusted, depending on the distance of their 

prey (target). 

c) The loudness is assumed to be changeable from 

a high positive value 𝐴0 to a low constant value 

𝐴𝑚𝑖𝑛  when finding its prey (although other 

researches could assume variations in many 

ways). 

 

During the solution process, the position and 

velocity for each bat (i) in the search space should 

be well-defined and as such updated during 

subsequent iterations. The equations for calculating 

the new position and velocity at time step t are: 

 

𝑓𝑖 =  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛)𝛽    (8) 

 

𝑣𝑖
𝑡 =  𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖     (9) 

 

𝑥𝑖
𝑡 =  𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡              (10) 

 

where, 𝛽 is in the range [0, 1] which is a random 

vector from a uniform distribution. 𝑥∗ is the current 

global best solution, which is found after the 

comparison between solutions among all the n bats 

of the whole population is done. 𝑥𝑖 is the location of 

the ith bat in the solution space. 

For carrying out the bat algorithm, it’s widely 

assumed that, 𝑓𝑚𝑖𝑛 = 0 and 𝑓𝑚𝑎𝑥 = 100, depending 

on the dimension of the current problem. At the 

beginning, a frequency, that is chosen uniformly 

from [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥], is randomly assigned to each bat 

[11]. Also, one of the basic roles in the process is 

the determination of the pulse emission rate, denoted 

by 𝑟𝑖  ∈ [0, 1]. This is done through the automatic 

zooming mechanism that the algorithm has. At each 

iteration, a random number is generated and 

compared to with 𝑟𝑖 , and if it is greater than 𝑟𝑖 , a 

better solution is chosen from among the current 

best solutions and a local search strategy, called 

random walk, is applied to generate a local new 

solution for each bat using Eq.(11). By this 

mechanism, it implements the search process and 

assuring both the global and local search, protecting 

the search process from stucking into local optima. 

 

𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 +  𝜀 𝐴𝑡              (11) 

 

where 𝜀 is a random number from [-1, 1], and 𝐴𝑡 is 

the average loudness of all bats at this current time i, 

𝐴𝑡 =  𝐴̅𝑖
𝑡. 

As soon as a bat finds its target or prey, the 

loudness decreases and the pulse emission rates 

increases. As such, the loudness could be chosen as 

any value of suitability. 𝐴0 = 1 and 𝐴𝑚𝑖𝑛 = 0 could 

be used, for simplicity. For 𝐴𝑚𝑖𝑛 = 0, indicates that 

a bat has just hit its prey and as a result stop 

producing any sound.  

On the other hand, the pulse rate should be in the 

interval [0, 1] where 0 means no pulse and 1 means 

maximum rate of pulse emission. Therefore, at each 

iteration of the algorithm, the loudness 𝐴𝑖  and the 

pulse rate emission 𝑟𝑖 have to be updated as follows 

using Eqs. (12) and (13): 

 

𝐴𝑖
𝑡+1 =  𝛼𝐴𝑖

𝑡                  (12) 

 

𝑟𝑖
𝑡+1 =  𝑟𝑖

0[ 1 − exp(−𝛾𝑡)]              (13) 

 

where 𝛼 and 𝛾 are constants [12]. For any 0 < 𝛼, 𝛾 < 

1: 𝐴𝑖
𝑡  → 0,     𝑟𝑖

𝑡  →   𝑟𝑖
0  𝑎𝑠 𝑡 →  ∞ .  

For those proposals, 𝛼 =  𝛾 = 0.9  (used in most 

Yang’s experiments for simplicity). However, at the 

beginning of the algorithm, the loudness 𝐴𝑖
0 and the 

pulse rate 𝑟𝑖
0  for each bat should be different and 

randomly chosen. They are updated only when new 

better solutions are found, which means that these 

bats are moving towards the optimal solution [13].  

For a multi-objective BA, a weighted sum 

function could be used to combine all objectives into 

a single objective. The weights are randomly 

generated from a uniform distribution but it could be 

different to guarantee the diversity of the points on 

the Pareto front [14].  

6. Stochastic multi-objective bat algorithm 

(SMOBA) 

The basic rules of the BA are used to solve 

unconstrained optimization problems. However, for 

implementation point of view, nonlinear uncertain 
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constrains should be handled. In this section, a 

stochastic multi-objective BA is proposed in which 

the Monte Carlo simulation approach is used for 

constraint handling. The proposed algorithm is 

capable of handling any constraints where the 

random variables involved in the parameters follow 

an arbitrary continuous distribution with known 

probability density functions. The stochastic 

constraints are represented as chance constraints 

with some determined level of probability. The 

feasibility of the generated solutions is checked by 

applying the technique of the stochastic Monte 

Carlo simulation discussed in section 2.  

The basic steps for the proposed stochastic 

multi-objective bat algorithm (shown in Algorithm 

1) to solve chance constrained stochastic 

programming problems are as follows: 

 

Step 1: The algorithm begins by initializing the 

values parameters of the bat algorithm, the 

minimum frequency 𝑓𝑚𝑖𝑛 , maximum frequency 

𝑓𝑚𝑎𝑥 , pop. size n, the loudness constant 𝛼 , pulse 

emission rate constant 𝛾, the initial loudness 𝐴0, the 

minimum loudness 𝐴𝑚𝑖𝑛, the initial pulse emission 

rate 𝑟0, the maximum number of iterations, and the 

counter for Monte Carlo simulation 𝐿𝑚
′ . 

 

Step 2: The initial population is randomly generated 

by finding the initial position 𝑥0  and the initial 

velocity 𝑣0 for each solution in the population and 

assigning its initial frequency 𝑓0. 

 

Step 3: Generate K weights (no. of objective 

functions) so that ∑ 𝑤𝑘
𝐾
𝑘=1 = 1. 

 

Step 4: The initial population is evaluated by 

calculating the value of the objective function for 

each solution. The values of pulse emission rate 𝑟𝑖 

and the loudness 𝐴𝑖 are initialized. 

 

Step 5: New solutions are generated to form the 

new population by adjusting the position 𝑥𝑖, velocity 

𝑣𝑖 and frequency 𝑓𝑖 for each solution using Eq. 2, 3, 

and 4. 

 

Checking the feasibility of each constraint 

Step 6: For each constraint, generate a random 

number from the probability density function of the 

stochastic random vector component. 

 

Step 7: Estimate the value of the constraint, and 

check if it is satisfied, if so, increase the counter 𝐿𝑚
′  

by one  

 

Step 8: Repeat steps 6 and 7 𝐿 times. 

 

Step 9: Find the value of 
𝐿𝑚

′

𝐿
⁄ . If it is greater than 

the pre-determined level of probability 𝛼𝑚, then the 

constraint is feasible. 

 

Step 10: Evaluate the new population by calculating 

the value of the objective function for each solution, 

and select best solution from the population 

 

Step 11: The local search method is applied using 

Eq. (11) to make fine tuning to reach best found 

solution. 

 

Step 12: The new solution is generated, and hence 

the pulse emission rate is increased and the loudness 

is decrease using Eqs. (12) and (13). 

 

Step 13: The new population is generated and 

ranked to select the best solution. 

 

In the following, the pseudo code for the above 

SMOBA algorithm is shown: 

Algorithm 1 Stochastic Multi-Objective Bat 

Algorithm (SMOBA) 

Objective functions: 𝑓1(𝑥), … , 𝑓𝐾(𝑥), 𝑥 =
(𝑥1, … , 𝑥𝑑)𝑇 

Constraints: 𝑃𝑟𝑜𝑏 [𝑔𝑚(𝑥, 𝑟𝑚) ≤ 0]  ≥  𝛼𝑚) 

Set initial values 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝛼, 𝛾, 𝐴0, 𝐴𝑚𝑖𝑛, 𝑟0, n.  

Initialize the bat population 𝑥𝑖 , 𝑖 = (1, 2, … , 𝑛) and 

𝑣𝑖 

Define pulse frequency 𝑓𝑖 at 𝑥𝑖 

Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖 

Initialize 𝐿𝑚
′ = 0, 𝑚 = (1, 2, … , 𝑀) 

For j = 1 to J (points on Pareto fronts) 

   Generate K weights 𝑤𝑘 ≥ 0 so that ∑ 𝑤𝑘
𝐾
𝑘=1 = 1 

   Form a single objective 𝑓 =  ∑ 𝑤𝑘
𝐾
𝑘=1 𝑓𝑘 

   While (t < Max number of iterations) 

Get new solutions by fine-tuning frequency, 

updating velocities and positions according 

to Eq. 2, 3, 4. 

      For h =1 to L 

                 Generate a random number according to 

the density function of the continuous 

random variables 𝑟𝑚 

           Check the value of 𝑔𝑚(𝑥, 𝑟𝑚) 

           If ( 𝑔𝑚(𝑥, 𝑟𝑚) is satisfied)  

               Increase 𝐿𝑚
′  by one 

           End If 

      End        



Received:  January 10, 2019                                                                                                                                                47 

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019           DOI: 10.22266/ijies2019.0831.05 

 

      Find the value of 𝐿𝑖
′ / 𝐿, and if it is greater 

than 𝛼𝑚, then the constraint is feasible 

Evaluate the new population by calculating 

the value of the objective function for each 

solution 

If (rand > 𝑟𝑖) 

Randomly, select a solution from 

among the best solutions  

Generate a local solution around the 

found best solution using a Random walk 

End If 

If (rand < 𝐴𝑖 & 𝑓(𝑥𝑖) <  𝑓(𝑥∗) ) 

Accept the new solutions, 

and increase 𝑟𝑖 & reduce 𝐴𝑖 

End If 

Evaluate the new population by calculating 

the value of the objective function for each 

solution 

Sort the bats and find the current best 𝑥∗ 

   End While 

   Record 𝑥∗ as a non-dominated solution 

End 

Post process results 

7. Numerical example 

In this section, a test example is presented that 

was previously solved using basic DE, PSO and GA, 

proposed in details in [15], and the results are 

compared to that obtained using the proposed 

SMOBA. The test problem invloves random 

variables that follow different types of probability 

distributions. 

 

Max 𝑧1  = 5𝑥1 + 6𝑥2 + 3𝑥3 

Max 𝑧2  =  6𝑥1 + 3𝑥2 + 5𝑥3    

Max 𝑧3  = 2𝑥1 + 5𝑥2 + 8𝑥3 

Subject to 

𝑃(3𝑥1 + 2𝑥2 + 2𝑥3 ≤  𝑏1) ≥  0.9,  

 𝑃(2𝑥1 + 8𝑥2 + 5𝑥3 ≤  𝑏2) ≥  0.98  

𝑃(5𝑥1 + 3𝑥2 + 2𝑥3 ≤  𝑏3) ≥  0.95,  

 𝑃(0.5𝑥1 + 0.5𝑥2 + 0.25𝑥3 ≤  𝑏4) ≥  0.9  

𝑃(8𝑥1 + 3𝑥2 + 4𝑥3 ≤  𝑏5) ≥  0.99  

𝑥1, 𝑥2, 𝑥3 ≥  0                   (14) 

 

Where,  𝑏1 follows Power function distribution with 

parameter 𝜆 = 10 and a = 5 ;  

𝑏2 follows Pareto distribution with parameter 𝜆 = 8 

and a = 2 ;  

𝑏3 follows Beta distribution with parameter 𝜆 = 15 

and a = 10;  

𝑏4 follows Weibull distribution with parameter 𝜃 =
1

5
 𝑎𝑛𝑑 𝑎 = 10;  

𝑏5 follws Burr type XII distribution with parameter 

𝜆 =
1

10
 , 𝜃 =

1

15
 𝑎𝑛𝑑 𝑎 =

1

5
.  

 

Using the concept of weighting characterization 

of the objective functions, the deterministic model 

for the above problem as per Charles et al. [15] is: 

 

Max 𝑧 = 𝑤1(5𝑥1 + 6𝑥2 + 3𝑥3) + 𝑤2(6𝑥1 + 3𝑥2 +
5𝑥3) + 𝑤3(2𝑥1 + 5𝑥2 + 8𝑥3) 

Subject to 

3𝑥1 + 2𝑥2 + 2𝑥3 ≤  6.3096 ,    

 2𝑥1 + 8𝑥2 + 5𝑥3 ≤  8.0812  

5𝑥1 + 3𝑥2 + 2𝑥3 ≤  4.7115 ,    

 0.5𝑥1 + 0.5𝑥2 + 0.25𝑥3 ≤  0.9379  

8𝑥1 + 3𝑥2 + 4𝑥3 ≤  10.0321  

𝑤1 + 𝑤2 + 𝑤3 = 1  

𝑤1, 𝑤2, 𝑤3 ≥ 0 ,  𝑥1, 𝑥2, 𝑥3 ≥  0             (15) 

 

This deterministic problem was solved using the 

basic DE, GA, and PSO and the results are shown in 

Table 1.  

Using the proposed SMOBA algorithm we 

solved the problem directly without converting it to 

the deterministic equivalent, in its stochastic form. It 

was run with 1000 runs of 20 bats, and hence 

performed 20,000 function evaluations with 

population size n = 20 and 𝛼 =  𝛾 = 0.9  (as 

recommended from the literature) for the loudness 

and the pulse emission rates constants. 

Comparing the results of DE, GA, and PSO with 

SMOBA in terms of best objective function value 

and optimal decision variables values, the results are 

shown in Table 1. 

It could be seen from Table 1 that SMOBA 

gives a higher value for objective function as global 

optimum, i.e. better results than all three algorithms. 

It is noticed that the global optimum for the 

SMOBA is slightly higher than that for PSO which 

is a logical justification since both algorithms have 

similar solution mechanisms, but SMOBA has the 

 
Table 1. Results of DE, GA, PSO and SMOBA 

  DE GA PSO SMOBA 

𝑧  9.48978 8.5089 12.9299 12.9311 

𝑧1  6.18688 6.4834 4.84872 6.35469 

𝑧2  9.48978 8.3125 8.0812 9.88835 

𝑧3  12.5073 10.514 12.9299 13.53224 

𝑥1  0.35214 0.3727 0 0.3012 

𝑥2  2.12E-07 0.2319 0 0 

𝑥3  1.47538 1.0761 1.61624 1.61623 

St.Dev. 2.06789 NA 3.91715 0.00173 

Avg. FE 14,691 30,720 20,573 11,430 
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Figure. 1 Performance of DE, GA, PSO and SMOBA 
 

added advantage of frequency tuning (a function of 

the BA). Nevertheless, as evident from the table, 

SMOBA results in a much lower standard deviation, 

which indicates a more efficient and robust solution 

when compared to the others. To show the 

convergence speed of the algorithms, the average 

number of functions evaluations (Avg. FE) was 

considered. In addition to efficiency and robustness, 

the percentage improved by the proposed algorithm 

in terms of avg. FE in comparison with DE, GA, and 

PSO is 77.8%, 37.2%, and 55.5% respectively. 

All this is done by SMOBA while considering 

the stochastic problem in its original stochastic form 

without the need to convert it to its deterministic 

equivalent one as needed by the other algorithms.  

Fig. 1 shows the performance of DE, GA, PSO, 

and SMOBA in terms of objective function values 

for the three objectives.  
 

8. Conclusions and future work 

In this study, the multi-objective constrained BA 

algorithm is modified to solve stochastic constraints 

optimization problems. In the proposed SMOBA, 

the feasibility of the chance constrains was checked 

using the Monte Carlo simulation approach. The 

main advantage of the proposed algorithm is that it 

does not require the deterministic equivalents of the 

chance constrains which are difficult to achieve in 

many situations. It is applicable for any stochastic 

random variables involved in the constraints. The 

numerical results showed that the proposed 

algorithm is effective in finding a robust and 

uniformly spread approximation of the Pareto 

optimal set of the multi-objective problem, when 

compared to the tested problem. Future directions of 

research are to accommodate stochastic objective 

functions rather than deterministic ones and 

incorporating more sophisticated approach to ensure 

dominance of solutions to further improve the 

convergence of the algorithm. 
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