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Abstract: Tooth component segmentation is a crucial task in computer-aided design for forensic odontology, 

especially to estimate chronological age. Tooth segmentation on radiographic data is a very challenging task 

due to noise, low contrast, and uneven illumination. The Fuzzy C-Means clustering is generally used for 

image segmentation that allow pixels to be classified into one or more clusters according to their 

membership value.  However, this clustering method still has problems associated with the shifting of cluster 

centers and sensitivity to the overlapping intensity distributions between classes. This paper proposes a 

modified strategy of the conditional spatial Fuzzy C-Means (csFCM) that incorporates global and spatial 

information into a weighted membership function by replacing the Euclidean distance with the Gaussian 

kernel distance to increase insensitivity to noise and outliers.  The aim of this paper is to divide the tooth 

into 3 components, i.e. enamel, dentine, and pulp. Therefore, this modified algorithm is preceded by dental 

X-ray image pre-processing and continued by combining each dental component clusters into one composite 

image.   The tooth image is pre-processed using Contrast Limited Adequate Histogram Equalization 

(CLAHE) and gamma adjustment to enhance the dental X-ray images quality from the non-uniform lighting.   

The Gausian kernel-based conditional spatial Fuzzy C-Means (GK-csFCM) segments the dental image into 

four class clusters, namely enamel, dentine, pulp, and background. Through iterations, the resulting cluster 

centers are more convergent with real cluster centers, thus ensuring the proposed method improves the 

drawback of inherent FCM-based methods and further promoting image segmentation performance. The 

experimental results on the real dental X-ray images showed that GK-csFCM has better performance than 

the typical FCM and csFCM clustering algorithms in terms of both qualitative and quantitative metrics, i.e. 

accuracy, specificity, sensitivity, and precision. 
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1. Introduction 

Tooth segmentation divides dental X-ray images 

into isolated parts for different purposes and 

objectives [1]. This method is widely used by 

researchers in developing computer-aided design for 

a variety of real-world problems in the field of 

dentistry, such as forensic identification of humans, 

diagnosis of dental disease, dental plaque analysis, 

age estimation, etc. [2]. 

Forensic odontologists often use the tooth 

restoration morphology, for example, enamel, pulp, 

dentine, etc., for age estimation [3]. Age estimation 

using panoramic radiography is a non-destructive 

method that plays an important role in forensic 

dentistry, which reveals properties that cannot be 
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seen by physical examination. Age estimation of 

adults is based on secondary dentine deposition, 

which occurs without interruption throughout life. 

Kvall et al. (1995) proposed a method of reducing the 

pulp area to determine the age of individuals [4]. 

Using panoramic radiographs, Drusini (2008) 

identified that a reduction in coronal pulp cavity 

correlates with chronological age. This is known as 

the tooth coronal index (TCI) method [5]. The age 

estimation methods require segmentation of tooth 

components such as enamel, dentine and pulp which 

are still done manually. The drawback of manual 

segmentation is that it is tedious, time-consuming, 

and user-dependent; for example, it takes hours to 

segment the maxillomandibular region [6]. Therefore, 

automated age estimation methods have great 

potential to increase accuracy and repeatability. 

The automatic tooth segmentation based on 

radiographic data is very challenging due to noise, 

low contrast, uneven illumination, the complexity of 

the object topology in the image, random tooth 

orientation, and the absence of a clear line of 

demarcation between the tooth and other tissues [7]. 

Dental X-ray image segmentation falls under 

machine learning theory, as application of a 

clustering technique that groups similar values into 

one group and different values into different groups 

[8].  

Clustering can be done using a hard or a fuzzy 

approach. Hard clustering is used to divide clusters 

with well-defined cluster boundaries. However, in 

real-world applications this method has difficulty 

because of overlapping cluster boundaries, which 

causes patterns to be classified incorrectly. Fuzzy 

clustering improves this by providing more 

information about the membership of these patterns 

[9]. A popular fuzzy clustering technique, developed 

by Bezdek (1981), is Fuzzy C-Means clustering 

(FCM), which groups patterns based on a fuzzy 

membership function [10]. In FCM, a pattern’s 

membership of a class cluster is based on certain 

fuzzy membership degrees [11].  

FCM is the most important method for image 

segmentation by Bezdek et al. (1993). FCM assigns 

each pixel to a labelled fuzzy cluster and allows 

pixels to be included in several clusters with various 

levels of membership [12]. Because of this flexibility, 

FCM is widely applied in medical image 

segmentation, because medical images always 

include unknown uncertainties and noise [13]. Some 

researchers have further developed the FCM method 

for medical image segmentation. Huang et al. (2015) 

proposed a neighbourhood intuitionistic fuzzy c-

means clustering algorithm with a genetic algorithm 

for magnetic resonance imaging (MRI) segmentation 

[13]. Satheesh and Raj (2017) proposed Multiple 

Kernel Fuzzy C-Means (MKFCM) clustering 

techniques for CT scan lung images [14].  Lingappa 

et al. (2018) developed Kernel Fuzzy C-means 

(KFCM) clustering to solve noise sensitivity in image 

segmentation [15].  Gaussian kernel that are induced 

in objective functions effectively increase 

insensitivity to noise in the original data space using 

simpler and more inexpensive [16,17]. 

Chuang et al. (2006) introduced the spatial FCM 

(sFCM) algorithm as a variant of FCM that adds 

spatial information to the FCM membership function 

[18]. The spatial function considers the value of the 

neighbouring pixels in the membership function. This 

spatial function produces a more homogeneous area 

and eliminates noisy spots and partially reduces 

spurious blobs. Adhikari et al. (2015) proposed the 

conditional spatial Fuzzy C-Means (csFCM) 

clustering algorithm, which incorporates local and 

global membership in the weighted membership 

function for magnetic resonance imaging (MRI) [19]. 

The benefit of the weighted membership function of 

this algorithm effectively reduces sensitivity to noise 

and intensity of inhomogeneity. However, this 

clustering method still has problems associated with 

the shifting of cluster centers and sensitivity to the 

overlapping intensity distributions between classes. 

To overcome this drawback, we propose a modified 

strategy of the csFCM by replacing the Euclidean 

distance with the Gaussian kernel distance to increase 

insensitivity to noise and outliers.  The aim of this 

paper is to divide the tooth into 3 components, i.e. 

enamel, dentine, and pulp. Therefore, this modified 

algorithm is preceded by dental X-ray image pre-

processing and continued by combining each dental 

component clusters into one composite image.   The 

tooth image is pre-processed using Contrast Limited 

Adequate Histogram Equalization (CLAHE) and 

gamma adjustment to enhance the dental X-ray 

images quality from the non-uniform lighting.   The 

Gausian kernel-based conditional spatial Fuzzy C-

Means (GK-csFCM) segments the dental image into 

four class clusters, namely enamel, dentine, pulp, and 

background. Through iterations, the resulting cluster 

centers are more convergent with real cluster centers, 

thus ensuring the proposed method improves the 

drawback of inherent FCM-based methods and 

further promoting image segmentation performance.  

The rest of this paper is organized as follows: 

Section 2 explains the background of the 

methodology for tooth component segmentation and 

related works on this subject. Section 3 explains the 

methodology of the proposed tooth component 

segmentation method for dental X-rays. Section 4 
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presents and discusses the experimental results. 

Section 5 concludes this paper.  

2. Background 

In this section, the background of the 

methodology of multi-class tooth segmentation is 

briefly reviewed.  

2.1 Contrast limited adaptive histogram 

equalization (CLAHE) 

The quality of the digital dental X-rays depends 

on various factors, such as the sensors, lighting,  noise 

and the captured area [20]. Those factors cause low 

contrast images that reduces the image quality and 

inhibit the extracting its useful information process. 

The denoising filters can reduce noise but degrade the 

image contrast [20].  Therefore, improving the gray 

levels of the image in the spatial domain becomes 

popular methods.  The CLAHE is a general contrast 

enhancement technique that is widely used due to its 

ease and speed [20-22].  The CLAHE technique and 

gamma adjustment efficiently increase low contrast 

in medical imaging, including dental X-rays [22]. 

CLAHE divides the histogram distribution evenly to 

increase the contrast of the image. By flattening the 

gray scale value, the hidden image features to become 

more visible. 

Calculation of the histogram for each region is 

done directly. In this case, the collection of pixel 

values for all gray scales is called the histogram of 

that region. This function is generally obtained by 

using CDF calculation (Cumulative Distribution 

Function). If the number of pixels and gray scales in 

each region, X and Y respectively, and hi,j(k) for k = 

0,1,2,. . . , X - 1 is the histogram of region (i,j), then 

the corresponding CDF calculation, scaled by (X - 1) 

for gray scale mapping, is: 

 

𝑓𝑖,𝑗(𝑘) =
(𝑋−1)

𝑌
 .  ∑ ℎ𝑖,𝑗(𝑘)𝑋−1

𝑘=0   (1) 

 

Function (1) is used to change the density 

function in the gray scale image. This procedure is 

called histogram equalization. The problem with this 

method is that the contrast area increases maximally. 

Limiting the value of the contrast to the desired level 

is done by limiting the maximum value slope using 

the β boundary value for the intersection of all 

histograms. This boundary value (cliplimit) can be 

related to what is called the clipfactor, α (in percent), 

as follows: 

 

𝛽 =
𝑌

𝑋
 {1 +

𝛼

100
(𝑠𝑚𝑎𝑥 − 1)}                     (2) 

 

In this case, Eq. (2) is for a clipfactor of zero 

percent, then α = 0 and the value becomes equal to 

the total image size, which results in pixel value 

mapping by distributing all region pixels over all gray 

scales evenly. No change in pixel values will occur. 

The maximum clip limit, achieved for α = 100, will 

be changed to the maximum value (smax = X / Y). This 

means that the maximum allowable slope is smax. 

2.2 Gamma adjustment 

In the context of the explorative contrast 

enhancement of an image, gamma application is used 

to set the threshold in image processing [23]. A 

gamma correction function is used to correct the 

image’s luminance to deal with incorrectly captured 

luminance. The gamma correction function is used to 

map the luminance levels to compensate the non-

linear luminance effect on display devices. Gamma 

can be any value between 0 and infinity. If gamma is 

1 (the default), the mapping is linear. If gamma is 

smaller than 1, the mapping is weighted toward 

higher (brighter) output values. If gamma is greater 

than 1, the mapping is weighted toward lower 

(darker) output values. 

2.3 Conditional spatial FCM (csFCM) 

The FCM algorithm by Bezdek [12] makes it 

possible to partition n gray value of X = {x1, x2, ..., xn} 

into c cluster by calculating the center of cluster a and 

membership matrix U = [𝜇𝑖𝑗]  using objective 

function Jm(µ,a), by which m controls the fuzziness 

of the resulting clustering as follows: 

 

𝐽𝑚(𝜇, 𝑎) = ∑ ∑ 𝜇𝑖𝑗
𝑚𝑐

𝑖=1
𝑛
𝑗=1 ‖𝑥𝑗 − 𝑎𝑖‖

2
 (3) 

 
Objective function usually uses standard Euclidian 
distance measurement that represents with ‖. ‖ . The 
minimum value is obtained if a high membership 
value is assigned when the distance of the input 
pattern is close to the nearest cluster center and a low 
membership value is assigned if they are far from the 
cluster center. Fuzzy membership function 𝜇𝑖𝑗  and 

cluster centers ai are represented in Eqs. (4) and (5): 

 

𝜇𝑖𝑗 =
‖𝑥𝑗−𝑎𝑖‖

−
2

𝑚−1

∑ ‖𝑥𝑗−𝑎𝑘‖
−

2
𝑚−1𝑐

𝑘=1

   (4) 

 

𝑎𝑖 =
∑ 𝜇𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝜇𝑖𝑗
𝑚𝑛

𝑗=1

    (5) 

 

Adhikari et al. (2015) developed conditional 

spatial Fuzzy C-Means (csFCM) that incorporated 
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spatial and global membership into weighted 

membership functions [19].  Spatial information 

considering the interaction between adjacent pixels in 

the fuzzy membership function helps to reduce the 

effects of noise and intensity of inhomogeneity in 

medical images [19]. If adjacent pixels have similar 

characteristics, then the central pixel will have a 

higher probability of being in the same group as the 

adjacent pixels. The spatial information function uij 

represents the probability of a pixel being derived 

from the global membership function as follows: 

 

 𝑢𝑖𝑗 =
ℎ𝑖𝑗‖𝑥𝑗−𝑎𝑖‖

−
2

𝑚−1

∑ ‖𝑥𝑗−𝑎𝑘‖
−

2
𝑚−1𝑐

𝑘=1

   (6) 

 

Spatial function hij defines the probability of pixel 

xj belonging to the i-th cluster by considering its 

neighborhood in the spatial domain of square window 

NB(xj) with M number of neighboring pixels. 

  

ℎ𝑖𝑗 =
∑ 𝜇𝑖𝑘𝑘∈𝑁𝐵(𝑥𝑗)

𝑀
    (7) 

 

The csFCM algorithm introduced the weighted 

membership function zij and updated cluster center wi, 

combining global membership function ij and local 

membership function uij, assuming they are 

independent of each other. 

 

𝑧𝑖𝑗 =
(𝜇𝑖𝑗)

𝑟
(𝑢𝑖𝑗)

𝑠

∑ (𝜇𝑘𝑗)
𝑟

(𝑢𝑘𝑗)
𝑠𝑐

𝑘=1

   (8) 

 

𝑤𝑖 =
∑ 𝑧𝑖𝑗

𝑚𝑥𝑗
𝑚
𝑗=1

∑ 𝑧/𝑖𝑗
𝑚𝑚

𝑗=1

    (9) 

 

Parameters r and s control the importance level of 

both the global and spatial membership functions, 

respectively.  

2.4 Gaussian kernel function 

In recent years, machine-learning researchers 

have widely used kernel methods for pattern 

recognition and function approximation, for example 

support vector machine, kernel principal component 

analysis, kernel perceptron, etc. The aim of adopting 

a kernel function is inducing a robust distance 

measure to segment images effectively, inheriting the 

simplicity of the FCM computation [17].  
FCM’s kernelization sees every centroid as a data 

point in the original space and directly transforms it 

to the feature space and carries out data sample 

clustering [17]. Let (x) is the vector x in the feature 

space F where (x)  F.   If x=[x1, x2]
T and Φ(𝑥) =

[𝑥1
2, √2𝑥1𝑥2, 𝑥2

2]
𝑇

, where xi is a component of the 

vector x. The inner product of (x) and (y) in the 

feature space F is calculated as (x)T (y) 

=[𝑥1
2, √2𝑥1𝑥2, 𝑥2

2]
𝑇

[𝑦1
2, √2𝑦1𝑦2, 𝑦2

2]=(xTy)2=K(x,y).   

The kernelizing way view every centroid as a data 

point in the original space like given samples and 

directly transform them and the data samples into the 

feature spaces, then modify objective function with 

the mapping  as follows  

 

𝐽𝑚
Φ(𝜇, 𝑎) = ∑ ∑ 𝜇𝑖𝑗

𝑚‖Φ(𝑥𝑗) − Φ(𝑎𝑖)‖
2𝑛

𝑗=1
𝑐
𝑖=1         (10) 

 

The kernel representation K(x,y) can use to compute 

the inner products in F without explicitly using 

transformation .  Thus, kernel representation K(x,a) 

of vector x and a in the d dimension vector is taken as 

the radial basis function (RBF) and polynomial 

kernels [17]: 

 

𝐾(𝑥, 𝑎) = exp (−
∑ |𝑥𝑖−𝑎𝑖|𝑑

𝑖=1

𝜎2 )  (11) 

 

Through the kernel substitution of (10) using inner 

product, we get 

 

‖Φ(𝑥𝑗) − Φ(𝑎𝑖)‖
2

= (Φ(𝑥𝑗) − Φ(𝑎𝑖))
𝑇

  

                            (Φ(𝑥𝑗) − Φ(𝑎𝑖))  

                                = Φ(𝑥𝑗)
𝑇

Φ(𝑥𝑗) − Φ(𝑎𝑖)
𝑇Φ(𝑥𝑗)       

                                    −Φ(𝑥𝑗)
𝑇

Φ(𝑎𝑖) + Φ(𝑎𝑖)
𝑇Φ(𝑎𝑖) 

                                = 𝐾(𝑥𝑗 , 𝑥𝑗)𝐾(𝑎𝑖 , 𝑎𝑖) − 2𝐾(𝑥𝑗 , 𝑎𝑖) 

                  (12) 

 

Furthermore, it is simplified for convenience of 

manipulation and robustness by using the Gaussian 

RBF kernel [16,17] as follows: 

 

𝐾(𝑥, 𝑎) = 1 − 𝐾(𝑥𝑗, 𝑎𝑖)              (13) 

 

The objective function of FCM using a kernel 

function is derived from (3) and (10): 

 

𝐽𝑆𝑚
𝑘 (𝜇, 𝑎) = ∑ ∑ 𝜇𝑖𝑗

𝑚 (1 − 𝐾(𝑥𝑗, 𝑎𝑖))𝑛
𝑗=1

𝑐
𝑖=1    (14) 

 

The equation of K(xj,ai) can be simplified as follows 

[16]: 
 

1 − 𝐾(𝑥𝑗 , 𝑎𝑖) = 1 − exp (−
‖𝑥𝑗−𝑎𝑖‖

𝜎2 )             (15) 
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Figure. 1 Steps of the tooth component segmentation process 

 

Notation 2 is a variance of the image intensity with 

mean 𝑥̅ . The variance of each sample input x is 

represented as: 

 

 𝜎2 =
∑ ‖𝑥𝑖−𝑥̅‖2𝑑

𝑖=1

𝑛
 (16) 

 

The variance 2 is calculated from the global variance 

pixels and neighborhood variance pixels. 

3. Proposed methodology 

In this section, we illustrate the steps of tooth 

component segmentation of dental X-ray images 

using GK-csFCM. The goal of the framework is 

segmentation of dental components, consisting of 

enamel, dentine, and pulp. The steps of the 

segmentation process are illustrated in Fig. 1.  

First, the original image is multiplied by the 

image mask to get the input image. The input image 

is pre-processed to enhance the contrast using 

CLAHE and gamma adjustment and image 

normalization is also carried out before the 

segmentation process. The GK-csFCM segmentation 

produces four clusters, i.e. enamel, dentine, pulp, and 

background. Then the cluster results are merged to 

produce the segmented image. The segmented image 

can be used in automatic age estimation of adults 

using standard chronological age assessment 

methods such as Kvall or TCI.  

3.1 Input image 

The input image was taken from a panoramic 

radiography image obtained from the Pramita Clinic 

Laboratory, Sidoarjo, Indonesia. The panoramic 

radiography image was cropped to leave only the 

mandible molar areas on the right and left side, as 

shown in Fig. 2. Image masking was conducted 

manually in order to separate the area of the tooth, as 

the region of interest, from the background, gum, 

tissue, bone and the teeth adjacent to it.  

 
(a) 

             
(b)                                       (c) 

Figure. 2 panoramic radiography image: (a) Panoramic 

radiography, (b) cropped mandible molar, right and left 

side, and (c) image masking 

 

The input image came from multiplication of 

the original image with image masking. The 

input image is a gray scale image denoted by 

X(i,j)[0,255] with a certain height and weight. 

3.2 Image pre-processing 

Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and gamma adjustment are 

functions that can effectively enhance the gray scale 

dental images. CLAHE performs contrast-limited 

adaptive histogram equalization. It operates on small 

data regions (tiles) rather than the entire image. Each 

tile’s contrast is enhanced so that the histogram of 

each output region approximately matches the 

specified histogram (uniform distribution by default).  

The contrast enhancement can be limited in order 

to avoid amplifying noise that may be present in the 

image. In this paper, the CLAHE method on gray 

scale dental image X used a 0.002 ‘ClipLimit’ factor 

to prevent oversaturation of the image, specifically in 

 

Original Image 

Masking 

Input Image 

Pre-processing: 

• CLAHE 

• Gamma Adjustment 

• Normalization 

Multi-class using GK - 

csFCM 

The cluster results Output Image 

Class merging 

Adjustment image 

Multiply 
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(a)             (b) 

Figure. 3 Image enhancement result: (a) Input image and 

(b) image after enhancement 

 

 
(a)                       (b)                     (c) 

  
(d)                      (e)                     (f) 

Figure. 4 GK-csFCM clustering image: (a) pre-processed 

image, (b) background cluster, (c) enamel cluster, (d) 

dentine cluster, (e) pulp cluster, and (f) merged cluster 

 

homogeneous areas and ‘rayleigh’ distribution to 

specify the distribution that is used as the basis for 

creating the contrast transform function. 

Gamma adjustment increases the contrast of the 

image by mapping the values of the input image 

intensity to new values such that, by default, 1% of 

the data is saturated at low and high intensities of the 

input data. To effectively adjust the contrast of a 

dental gray scale image, a gamma value 0.5 was used 

(less than 1). The image enhancement result can be 

seen in Fig. 3. Normalization of the gray scale data 

into X(i,j)[0,1] is useful for the segmentation 

process. 

3.3 Gaussian kernel-based conditional spatial 

fuzzy c-means (GK-csFCM) clustering algorithm 

The pre-processed dental X-ray image was 

segmented using the Gaussian Kernel-based 

Conditional Spatial Fuzzy C-Means (GK-csFCM) 

clustering algorithm and divided into four clusters, 

respectively representing enamel, dentine, pulp, and 

background. 

The proposed method replaces the Euclidian 

distance of csFCM with the Gaussian RBF kernel, 

thus the objective function JSm
k was modified using 

Eq. (11). Therefore it derives membership function μij 

and cluster center ai as follows:  

 

𝜇𝑖𝑗 =
(1−𝐾(𝑥𝑗,𝑎𝑖))

−
2

𝑚−1

∑ (1−𝐾(𝑥𝑗,𝑎𝑘))
−

2
𝑚−1𝑐

𝑘=1

              (17) 

 

𝑎𝑖 =
∑ 𝜇𝑖𝑗

𝑚𝐾(𝑥𝑗,𝑎𝑖)𝑥𝑗
𝑚
𝑗=1

∑ 𝜇𝑖𝑗
𝑚𝐾(𝑥𝑗,𝑎𝑖)𝑚

𝑗=1

                       (18) 

 

This also affects the membership of spatial 

information function uij, which represents the 

probability of the neighboring pixels. The new 

membership function for the spatial information 

function is derived from Eq. (6): 

 

𝑢𝑖𝑗 =
ℎ𝑖𝑗(1−𝐾(𝑥𝑗,𝑎𝑖))

−
2

𝑚−1

∑ (1−𝐾(𝑥𝑗,𝑎𝑘))
−

2
𝑚−1𝑐

𝑘=1

              (19) 

 

The use of the Gaussian kernel on the global and 

spatial membership functions leads to better 

identification of the similarity between the whole 

image and the neighboring pixels, making the 

algorithm more robust for dental X-ray data that are 

low contrast and inhomogeneity, while handling 

noise and pixel outliers. The proposed GK-csFCM 

clustering algorithm consists of the following steps: 

 
Input: Specify the values for number of clusters c, 
degrees of fuzziness m, r, s, NB, and error ε. 

Step 1: Randomly initialize the centers of clusters ai
(0) 

and the center of joint cluster wi
(0) 

Step 2: For t = 1, 2, …, tmax do 

a) calculate membership value U(t) using Eq. (17) 
b) calculate conditional spatial membership value  

uij 
(t) using Eq. (19) 

c) calculate weighted membership value zij
(t) using 

Eq. (8) 
d) update the center of joint cluster wi

(t) using Eq. (9) 
e) update centers ai

(t) using Eq. (18) 

f) if ‖𝑎𝑖
𝑡 − 𝑎𝑖

𝑡−1‖ < 𝜀 then stop 

 
Step 3: Return the center of joint cluster wi and the 
weighted membership value zij; i = 1, 2, . . ., c; k = 1, 
2, . . ., n. 

The parameters used in this study consisted of the 
number of clusters c = 4, degree of fuzziness m = 2, 
probability level of global membership function r = 2 
[19], probability level of spatial membership function 
s = 2 [19], spatial window NB = 3 × 3 [19] and error 
ε = 0.001. 

The GK-csFCM clustering algorithm produces 4 
clusters from the pre-processed image in Fig. 4 (a) 
with unsorted cluster values between enamel, dentine, 
pulp and background clusters, as shown in Fig. 4 (b)-
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(d). Each image cluster class produces a graylevel 
membership value, where white (the highest 
membership value of gray scale intensity) states the 
resulting cluster. In the first cluster, Fig. 4 (a) the 
highest intensity membership value is in the 
background area. In the second cluster, Fig. 4 (b) the 
highest intensity membership value is in the enamel 
area. In the third cluster Fig. 4 (c) the highest intensity 
membership value is in the dentine area. And in the 
fourth cluster Fig 4 (d) the highest intensity 
membership value is in the pulp area. 

3.4 Class merging 

Tooth component segmentation with the GK-

csFCM clustering algorithm is used to obtain the 

tooth components enamel, dentine, and pulp, which 

can be used for measurement in an automatic age 

estimation process. GK-csFCM produces four 

clustered tooth components, i.e. background (Fig. 

4(b)), enamel (Fig. 4(c)), dentine (Fig.4 (d)) and pulp 

(Fig.4 (e)). The final step is merging the fourth cluster 

based on the cluster center value, as shown in Fig. 

4(f). The merged image indicates each highest 

intensity of a cluster with a graded color. This aims 

to distinguish each tooth component by giving them 

separate gray scale values, i.e. 255 for enamel, 105 

for dentine, 46 for pulp, and 0 for the background. 

The algorithm for merging the 4 clusters into one 

image is as follows:  

1. Prepare Y result image where Y  [0,255] 

2. Give index I to each center value of cluster a, 

with the smallest index as the smallest cluster 

center value and the largest index as the largest 

cluster center value. 

3. Each cluster index I provides 0, 46, 105 and 255 

gray scale aI =[0,46,105,255] in ascending order. 

4. To each pixel Y(i, j) with the zij membership value 

in the aI cluster, which is 1 value, will be given 

the corresponding gray scale index I value. 

4. Result and discussion 

This section describes the experimental results on 

12 real dental X-rays that had different gray scale 

contrast intensities. Molar images were selected from 

panoramic radiography which were seen the 

boundaries of enamel, dentin and pulp according to 

the dental forensic standard by the forensic expert. 

Each image had 258 × 258 pixels and contained the 

original gray scale image and the masking image. We 

compared the results of the GK-csFCM clustering 

algorithm with FCM [12] and csFCM [19]. Note that 

all images were also pre-processed and after the 

segmentation process merged in the same way for all 

 

     

     

     
(a)      (b)              (c)              (d)              (e) 

Figure. 5 Segmentation result of tooth component 

segmentation using different methods: (a) three input 

dental X-rays with different contrast, (b) ground truth, (c) 

segmentation result of the FCM, (d) segmentation result 

of the csFCM algorithm, and (e) segmentation result of 

the GK-csFCM algorithm  

 

algorithms. The ground truth images were veryfied 

and validated by the dental forensic expert.  

Fig. 5 shows a comparison of the tooth component 

segmentation results on the dental X-ray images 

using FCM, csFCM and the proposed GK-csFCM 

clustering algorithms. For the comparison, three 

input dental X-ray images of teeth with different 

contrasts and ground truths were taken, as shown in 

Fig. 5 columns (a)-(b). Fig. 5 columns (c)-(d) show 

the results of segmentation by the FCM algorithm 

[12] and the csFCM algorithm [19], respectively. Fig. 

5 column (e) shows the segmentation result of the 

GK-csFCM algorithm. As can be seen from Fig. 5, in 

the segmentation results of the FCM and csFCM 

algorithms some pixels were grouped together 

incorrectly, and there is noise in improper areas of the 

tooth components and in the boundary area between 

adjacent clusters. Compared to the two methods 

above, the GK-csFCM algorithm can classify dental 

components better. 

Pre-processing of the data, consisting of CLAHE 

and gamma adjustment, greatly affects the results of 

segmentation, as shown by the dental images that 

have low contrast in the second and third rows. The 

second row of dental images (Image 10 in Tables 1, 

2 and 3) produced an FCM accuracy of 93.3%, a 

csFCM accuracy of 93.5% and a GK-csFCM 

accuracy of 93.7%. The third row of dental images 

(Image 11 in Tables 1, 2 and 3) resulted in an FCM 

accuracy of 91.2%, a csFCM accuracy of 91.3% and 

a GK-csFCM accuracy of 91.5%. All of the 

segmentation results had accuracy greater than 90%. 

To analyze the connectivity of the segmented 

results, details of the tooth parts were extracted to see 

the segmented tooth components more clearly, as 

shown in Fig. 6. Fig. 6(a)-(c) show the segmented 
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dental X-ray images from FCM, csFCM and the 

proposed GK-csFCM algorithm, respectively. 

Compared with FCM and csFCM, the proposed GK-

csFCM algorithm produced better clusters and 

reduced the miss-classification, especially in the area 

around the boundary between the enamel and the 

background, between the enamel and the dentine area, 

and also between the pulp and the dentine area.  

The performance evaluation of the proposed GK-

csFCM segmentation used four clustering metrics, i.e. 

accuracy, sensitivity, specificity, and precision. 

These measurements can evaluate the different 

characteristics of the tooth component segmentation 

results. Accuracy defines the ratio between the 

correctly classified enamel, dentine, pulp, not-enamel, 

not-dentine and not-pulp pixels and the total number 

of pixels. Sensitivity defines the number of pixels 

correctly classified as enamel, dentine and pulp 

divided by the number of enamel, dentine, and pulp 

pixels of the ground truth. Specificity defines the 

ratio between the number of pixels correctly 

classified as background pixels and the number of 

background pixels of the ground truth. Precision 

defines the ratio between the pixels correctly 

classified as enamel, dentine, or pulp and the total 

number of pixels classified as enamel, dentine, or 

pulp.  

A comparison of accuracy, sensitivity, specificity, 

and precision of the segmentation of 12 dental X-ray 

images can be seen in Tables 1, 2, 3 and 4. Tables 1, 

2 and 3 respectively show the performance results of 

the segmentation of the dental X-ray images with the 

FCM, csFCM and GK-csFCM algorithms. In Tables 

1, 2 and 3, it can be seen that GK-csFCM provides 

high accuracy, sensitivity, specificity, and precision 

compared to the other, unsupervised algorithms for 

all input images. Table 4 shows the average matrix of 

accuracy, sensitivity, specificity and precision, 

according to which the proposed GK-csFCM 

algorithm also performed better than the FCM and 

csFCM algorithms. 

The experimental results show that the proposed 

GK-csFCM algorithm can segment all tooth 

components accurately, reaching an average 

accuracy of 93.3%, average sensitivity of 58.1%, 

average specificity of 95.2% and average precision of 

39.6%. These percentages are higher than for FCM 

and csFCM. The main advantage of the proposed 

method is that the GK-csFCM algorithm can classify 

enamel, dentine, and pulp better than the two other 

algorithms. 

The analysis of the segmented results image 

(qualitative) and performance results of the 

quantitative metrics, i.e. accuracy, sensitivity, 

specificity, and precision show the effectiveness of 

the proposed method GK-csFCM compared with 

FCM and csFCM for tooth component segmentation 

such as enamel, dentine and pulp. 

 

 

   
(a)                          (b)                           (c) 

Figure. 6 Tooth areas of the segmented images: (a) 

segmentation result of FCM algorithm, (b) segmentation 

result of csFCM algorithm, and (c) segmentation result of 

GK-csFCM algorithm  

 

 
Table 1. FCM segmentation performance 

No FCM Performance 

Accuracy Sensitivity Specificity Precision 

1 0.936 0.572 0.955 0.390 

2 0.930 0.539 0.950 0.360 

3 0.938 0.579 0.956 0.400 

4 0.943 0.585 0.960 0.403 

5 0.929 0.551 0.949 0.364 

6 0.930 0.556 0.950 0.376 

7 0.921 0.538 0.943 0.350 

8 0.914 0.525 0.938 0.344 

9 0.943 0.587 0.959 0.388 

10 0.933 0.553 0.952 0.368 

11 0.912 0.518 0.937 0.341 

12 0.923 0.588 0.944 0.399 

 

 

Table 2. csFCM segmentation performance 

No csFCM Performance 

Accuracy Sensitivity Specificity Precision 

1 0.936 0.566 0.955 0.386 

2 0.932 0.549 0.951 0.369 

3 0.939 0.583 0.957 0.402 

4 0.944 0.590 0.961 0.408 

5 0.929 0.555 0.949 0.368 

6 0.929 0.555 0.950 0.375 

7 0.920 0.531 0.942 0.344 

8 0.913 0.517 0.937 0.338 

9 0.945 0.606 0.961 0.406 

10 0.935 0.568 0.953 0.382 

11 0.912 0.518 0.937 0.341 

12 0.921 0.572 0.942 0.384 
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Table 3. GK-csFCM proposed method segmentation 

performance 

No GK-csFCM Performance 

Accuracy Sensitivity Specificity Precision 

1 0.940 0.596 0.958 0.413 

2 0.933 0.558 0.952 0.377 

3 0.943 0.6112 0.960 0.431 

4 0.949 0.623 0.964 0.441 

5 0.934 0.582 0.952 0.393 

6 0.932 0.571 0.951 0.390 

7 0.926 0.567 0.946 0.376 

8 0.916 0.533 0.939 0.352 

9 0.948 0.628 0.963 0.428 

10 0.937 0.586 0.955 0.398 

11 0.915 0.532 0.939 0.354 

12 0.923 0.588 0.944 0.399 

 
Table 4. Average of FCM, csFCM and GK-csFCM 

segmentation performance 

 FCM csFCM GK-csFCM 

Accuracy 0.929 0.930 0.933 

Sensitivity 0.557 0.559 0.581 

Specificity 0.949 0.950 0.952 

Precision 0.373 0.375 0.396 

5. Conclusion 

Accurate segmentation of tooth components 

(enamel, dentine, and pulp) plays an important role in 

computer-aided design for automatic age estimation. 

The analysis qualitative show the proposed GK-

csFCM algorithm produced better clusters and 

reduced the miss-classification, especially in the area 

around the boundary between the enamel and the 

background, between the enamel and the dentine area, 

and also between the pulp and the dentine area.  The 

quantitative results showed that the proposed GK-

csFCM algorithm segmented enamel, dentine, and 

pulp better results, i.e. accuracy, sensitivity, 

specificity, and precision of 39.6% for 12 input 

images. In the future, the results of this segmentation 

will be used for an automatic feature extraction that 

calculates coronal height and the height of the coronal 

cavity pulp for dental age assessment based on tooth 

coronal index method [5]. 
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