KINEMATIC ANALYSIS OF A MECHANISM, WITH ARTICULATED PRECOMPACTION BARS, OF MUNICIPAL SOLID WASTE COLLECTING MACHINES

INMATIC ANALIZĂ A UNUI MECANISM, CU BARE ARTICULATE DE PRECOMPACTARE, AL MAŞINILOR DE COLECTAT DEŞEURI MENAJERE

Voicu Gh,1), Moise V,2), Popa L., Lazrea M.,3), Tudor P.,4), Niculae L.,5), Polena A. 1

1) University Politehnica of Bucharest / Romania; 2) National Institute of Research – Development for Machines and Installations Designed to Agriculture and Food Industry –INMA Bucharest / Romania; 3) CCR Romania

*) Corresponding author: Tel: 0753044289; E-mail: mircealazea2005@yahoo.com
DOI: 10.35633/INMATEH-59-10

Keywords: municipal waste, garbage truck, precompacting mechanism, kinematic analysis

ABSTRACT
In this paper, the structural and kinematic analysis of the mechanism of a municipal waste pressing system is made. The mechanism works in four phases. Two of the phases represent the operation itself, and two phases are for bringing the mechanism into pressing position. For the modules of which the actuation mechanism is constituted, kinematic calculation procedures have been drawn up, procedures that have been accessed by a main computing program. The results obtained were transposed graphically in the form of diagrams to give a clearer picture of the kinematic parameters of the mechanism elements.

INTRODUCTION
The transport of residues is the second operation of the organized evacuation process, linked to the collection operation, as an inseparable part of it, after pre-collection at the level of economic agents and housing assemblies. There are very varied types of machines which, in addition to transport, allow easier loading of residues in the collector's bins (Voicu Gh., 2007). The basic condition of the transport economy is the compaction degree of municipal solid waste in the garbage trucks, correlated with the loading to its useful capacity (Voicu Gh., 2007).

Fig. 1 - Garbage truck for collecting and transporting municipal solid waste with hydraulic compaction (Voicu Gh., 2007)
The fast displacement of the material from the loading area to the front side of the collector container and its uniform filling is a requirement that has been solved differently for different types of municipal waste trucks. Most municipal waste collection and transport machines are today with transshipment compaction. In these, the collection container has parallelepiped shape, inside which a compaction and unloading plate moves from one end to the other. At the back of the machine is located the system of pickup and lifting of waste in the collection container, which effectively closes the collection container. The supply of the container is made through the scraping system mechanism, which has different constructions. Compaction is progressively achieved between the compaction plate in the container and the inclined plate of the scraping and lifting system as the waste is raised in the container (Voicu Gh., 2007; Voicu Gh., Lazea M., Zabava B.S. et al., 2019; Voicu Gh., Lazea M., Tudor P. et al., 2019).

MATERIALS AND METHODS

In figure 2 is presented, the kinematic scheme of a mechanism for the scraping and precompaction of the residual material from the collecting and transporting truck for municipal solid waste.

The displacement trajectory of the tracer T point is shown in figure 3. It should be noted that the tracer T point is the tip of the collection and lifting plate of the machine, pos. 4, while the bare, pos. 7, represents the precompaction plate of the pickup and precompaction mechanism.

![Figure 2](image-url)
Fig. 2 – Kinematic scheme of the scraping and precompaction mechanism

A,F,D,H – fixed cylindrical joints; C,E,G – mobile cylindrical joints; B,I – hydraulic cylinders; 1,4,7,8 – fixed length bars; 2-3 and 5-6 – hydraulic cylinders

![Figure 3](image-url)
Fig. 3 – Tracer T point displacement diagram
Phase 1, trajectory ab:
s23(1) ∈ [s230, s230+course23];
s56(1) = s560;
Phase 2, trajectory bc:
s23(1) = s230+course23;
s56(1) ∈ [s560, s560+course56];
Phase 3, trajectory cd:
s23(1) ∈ [s230+course23, s230];
s56(1) = s560+course56;
Phase 4, trajectory da:
s23(1) = s230;
s56(1) ∈ [s560+course56, s560];
To determine the kinematic parameters of the mechanism elements, theoretical research regarding the structural analysis must first be carried out (Artobolevski I.I., 1977; Demidovitch B., Maron I., 1987; Duca C., Buium Fl., Părăoaui G., 2003; Moise V., Maican E., Moise Şt. I., 2003).

To determine the kinematic parameters of the mechanism elements, the procedures used were A2APVA and D1PVA, drawn up by the authors (Moise V., Simionescu I., Ene M., et al. 2008; Moise V., Simionescu I., Ene M., Rotaru Al., 2015; Moise V., Simionescu I., Ene M., 2018; Simionescu I., Moise V., 1999).

1. Structural analysis of the mechanism

If the relative movements between the elements are taken into account, it is noted that the mechanism has following kinematic joints: A(3R0), B(2T3), C12(1R2), C14(1R4), C17(1R7), E(7R8), F(8R0), G(4R5), E(3R8), F(4R7), I(7T8).

The number of upper couplings is zero.

The mobile elements of the mechanism are: 1(A,B,C14,C17), 2(B,C12), 3(C12,D), 4(C14,G), 5(G,I), 6(H,I), 7(C17,E), 8(E,F).

Considering the number of mobile elements and the number of kinematic joints, the mobility of the mechanism is: M=2.

The structural scheme of the mechanism is shown in figure 4 a. The multipolar scheme and structural relationship of the mechanism are presented in the figure 4 b and figure 4 c.

![Fig. 4 – Structural and multipolar schemes of the mechanism as the structural relationship](image)

From the structural scheme, it is noted that the mechanism consists of the base Z(0), the motor groups RRTaR(1,2,3), RRTaR(4,5,6) and dyad of appearance 1, RRR(7,8).

During the technological process, the mechanism in figure 2 has a variable structure, due to the fact that hydraulic cylinders 2-3 and 5-6 do not work simultaneously.

Therefore, if the hydraulic cylinder 5-6 (fig.2) is blocked, which means that the motor coupling I is canceled, elements 5 and 6 form a rigid, denoted by 5. In this case, the kinematic scheme of the mechanism is shown in figure 5.

Structural and multipolar schemes, as well as the structural relationship, are shown in figure 6.

From figures 5 and 6, it is noted that the mechanism consists of Z base (0), RRTaR(1,2,3), motor groups and dyads RRR(7,8) and RRR(4,5).

![Fig. 5 - The kinematic scheme of the mechanism for the ab and cd trajectory of the diagram in figure 3](image)
Observation. On the ab and cd branches of the diagram in figure 3, the mechanism can be studied from kinematic and kinetostatic standpoint even if it considered the constant length of the hydraulic cylinder consisting of elements 5 and 6 so, the relative velocity between these elements equals zero.

When the tracer T is moving on the branches of bc and da of the diagram in figure 3, it cancels the motor coupling B, and elements 2 and 3 form a rigid, denoted by 2. As a result of the triangle formed by points A, C and D, elements 1,2,7 and 8 form a rigid, fixed at the base. The kinematic, structural and multipolar schemes as well as the structural relationship are presented in figure 7.

From figure 7, it is noted that the mechanism is composed of the base Z(0) and the motor group RRR(4,5,6)

2. Kinematic analysis of the mechanism

The kinematic analysis of the mechanism consists in determining the parameters of positions, speeds and accelerations, corresponding to all its elements.

Figure 8 presents the kinematic scheme of the mechanism, with the position parameters. For the kinematic analysis of the mechanism there are several stages, namely:

a) elaboration of the calculation program for the determination of the kinematic parameters of the mechanism elements, considering the four phases of a kinematic and dynamic cycle.

b) tabular presentation of the angles values made by vectors \overrightarrow{AC}, \overrightarrow{DC}, \overrightarrow{CG}, \overrightarrow{HG}, \overrightarrow{CE} and \overrightarrow{FE} corresponding to the elements of the mechanism, with the positive meaning of the axis AX.

c) drawing the diagrams of variation of angles, velocities and angular accelerations of the mechanism elements, depending on the position of the mechanism.

d) drawing of velocities and accelerations hodographs corresponding to the tracer T point.
RESULTS

The theoretical investigations presented in the previous chapter were used, taking into account the constructive elements of the mechanism that equipped the machine, to obtain concrete results regarding the kinematics of the mechanism.

For the analysis of the mechanism, they are known:

a) The kinematic scheme of the mechanism (Fig.3);

b) The position of the coupling adjacent to the base and dimension of the elements as follows: \(XA = 0\) m, \(YA = 0\) m, \(XD = 1.000\) m, \(YD = -0.733\) m, \(XF = 0.800\) m, \(YF = -0.270\) m, \(XH = 1.100\) m, \(YH = -0.800\) m, \(CE = 0.770\) m, \(CD = 0.870\) m, \(EF = 0.900\) m; \(CG = 0.330\) m;

c) Phase working times: \(t_1 = 5\) sec, \(t_2 = 5\) sec, \(t_3 = 5\) sec, \(t_4 = 5\) sec;

d) Initial positions of the mechanism: \(S_{230} = 0.833\) m, \(S_{560} = 0.667\) m;

e) Hydraulic cylinder piston work strokes: \(\text{Stroke}_{23} = 0.600\) m, \(\text{Stroke}_{56} = 0.400\) m;

f) Transmission function used for hydraulic cylinder actuation: sinusoidal function (reduced acceleration is of sinusoidal type)
Figure 10 shows the variation diagram of the angles ϕ_1, ϕ_2, ϕ_3, ϕ_4, ϕ_7 and ϕ_8.

![Variation Diagram](image)

Fig. 10 – The diagram of variation of angles ϕ_1, ϕ_2, ϕ_3, ϕ_4, ϕ_7 and ϕ_8

Figure 11 shows the diagrams of the angular velocities of the mechanism elements and in figure 12, the diagrams of the corresponding angle accelerations.

![Angular Velocities Diagram](image)

Fig. 11 - The diagram of the angular velocities of the mechanism elements

From the analysis of the angular velocities hodographs (fig.11) of the working element 4 (fig.8) it is observed that this follows a cyclical variation with maximum values (about 0.5 rad / s) for positions 30 and 70 respectively of the driving element (i.e. the hydraulic drive cylinder), on the pushing stroke, respectively on the retraction stroke.

The same cyclical variation is also observed for the angular acceleration of the working element 4 (see fig. 12), maximum values for this being noted for four positions of the mechanism (respectively of the hydraulic actuating cylinder).

The maximum values of the angular acceleration, for the working element of the mechanism, are around 0.35 rad / s\(^2\), for positions 23-24, respectively 63-64, slightly higher for positions 37-38 and 77-78 respectively.
Fig. 12 - The diagram of the angular accelerations of the mechanism elements

Table 1 shows the numerical values of the kinematic parameters of positions for the mechanism elements.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ϕ_1</th>
<th>ϕ_3</th>
<th>ϕ_4</th>
<th>ϕ_6</th>
<th>ϕ_7</th>
<th>ϕ_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.3369</td>
<td>-2.9437</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>1</td>
<td>-3.0385</td>
<td>-1.4086</td>
<td>-0.3366</td>
<td>-2.9431</td>
<td>1.8538</td>
<td>-3.3507</td>
</tr>
<tr>
<td>2</td>
<td>-3.0346</td>
<td>-1.4088</td>
<td>-0.3347</td>
<td>-2.9388</td>
<td>1.8553</td>
<td>-3.3465</td>
</tr>
<tr>
<td>3</td>
<td>-3.0244</td>
<td>-1.4093</td>
<td>-0.3297</td>
<td>-2.9277</td>
<td>1.8593</td>
<td>-3.3355</td>
</tr>
<tr>
<td>4</td>
<td>-3.0055</td>
<td>-1.4100</td>
<td>-0.3204</td>
<td>-2.9071</td>
<td>1.8667</td>
<td>-3.3152</td>
</tr>
<tr>
<td>5</td>
<td>-2.9764</td>
<td>-1.4103</td>
<td>-0.3061</td>
<td>-2.8753</td>
<td>1.8778</td>
<td>-3.2842</td>
</tr>
<tr>
<td>24</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.0358</td>
<td>-2.1222</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>25</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.0935</td>
<td>-2.1095</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>26</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.1695</td>
<td>-2.0958</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>27</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.2618</td>
<td>-2.0836</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>28</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.3671</td>
<td>-2.0749</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>29</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.4819</td>
<td>-2.0713</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>30</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.6023</td>
<td>-2.0732</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>31</td>
<td>-2.3151</td>
<td>-1.2802</td>
<td>-0.7241</td>
<td>-2.0803</td>
<td>2.1090</td>
<td>-2.6285</td>
</tr>
<tr>
<td>70</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-1.0760</td>
<td>-2.7729</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>71</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.9535</td>
<td>-2.7820</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>72</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.8326</td>
<td>-2.7978</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>73</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.7171</td>
<td>-2.8198</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>74</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.6106</td>
<td>-2.8465</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>75</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.5169</td>
<td>-2.8752</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>76</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.4402</td>
<td>-2.9023</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>77</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.3847</td>
<td>-2.9239</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>78</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.3520</td>
<td>-2.9373</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>79</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.3388</td>
<td>-2.9429</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
<tr>
<td>80</td>
<td>-3.0390</td>
<td>-1.4085</td>
<td>-0.3369</td>
<td>-2.9437</td>
<td>1.8536</td>
<td>-3.3513</td>
</tr>
</tbody>
</table>

CONCLUSIONS

From the analysis of numerical data, as well as the distribution diagrams of angles, speeds and accelerations, conclusions can be drawn on the driveline operation of the mechanism. Based on this data, it can be interfered with improving the performance of the mechanism. To improve the performance of the mechanism, different transmission functions may be used to actuate hydraulic cylinders 2-3 and 5-6.
After the cinematic analysis of the mechanism, we passed to its kinetostatic analysis (determination of the forces and moments acting on the elements of the mechanism).

ACKNOWLEDGEMENT

Part of this paper has been funded by the European Social Fund from the Sectoral Operational Programme Human Capital 2014-2020, through the Financial Agreement with the title "Scholarships for entrepreneurial education among doctoral students and postdoctoral researchers (Be Antreprenor!)", Contract no. 51680/09.07.2019 - SMIS code: 124539.

REFERENCES