Diversity of Indian fermented foods is related to incomparable food culture of each community. Various types of Indian ethnic fermented foods and beverages are produced either naturally or by adding mixed starter cultures using traditional or scientific knowledge of food fermentation (Sekar and Mariappan, 2007). In India, particularly in its hilly states, fermented foods are regularly being consumed by the people since ages (Kore et al., 2012). These traditional fermented foods are untapped treasure hunts for rare Lactic Acid Bacteria (LAB) with immense health benefits. LAB play an important role in the traditional fermentation processes by their functional properties such as biopreservation, bioenrichment of nutritional value, bioavailability of minerals, production of antioxidants, antimicrobial activities, and probiotic properties (Akbar et al., 2016; Gautam and Sharma, 2015). Also, it has been shown that LAB may cause anti-allergic effects in the consumers (Ai et al., 2016; Cross and Gill, 2001; Taghavi et al., 2014). Till date, so many rare traditional/local food items have been selected by many researchers around the globe to isolate LAB with novelty; however, many potential LAB are still unexplored.

Diverse indigenous Indian foods have also been reported in literature for isolation process of bacteriocin producing LAB. Sepu vari, Dangal vari, Chur saag, Salori, Nashasta, Chaang (fermented wheat), Chaang (fermented rice) are common local fermented Indian food products. The use of LAB and its antimicrobial compounds is a promising ongoing development in food preservation. So far, many LAB have been isolated from Indian traditional fermented food and beverages, such as Lactococcus lactis, L. brevis, L. acidophilus, Pediococcus sp., L. spicheri, L. plantarum, L. fermentum, and L. curvatus (Gautam and Sharma, 2009a,b; Gautam and Sharma, 2015). All these reported lactic acid bacteria have tremendous potential to inhibit growth of spoilage causing and food-borne pathogenic bacteria viz., Listeria monocytogenes, Clostridium perfringens, C. botulinum, Staphylococcus aureus, Bacillus cereus, L. plantarum, Leuconostoc mesenteroides, Enterococcus faecalis, Salmonella sp., Vibrio cholera, V. parahaemolyticus, and Aeromonas hydrophila. Isolation and screening of lactic acid bacteria from naturally occurring food sources have been proven to be a good source of food grade lactic acid bacteria with probiotic potential and bacteriocin producing capabilities. The use of lactic acid bacteria and its antimicrobial compounds especially bacteriocins is a promising ongoing development in food preservation (Akbar et al., 2016; Gautam and Sharma, 2009a,b). Bacteriocin production has been reported to be affected by several factors, including fermentation conditions, such as pH, temperature, and inoculum size. The increasing of bacteriocin production and improving its activity has economical importance due to reduction of production cost. Beside use of only one of the metabolite i.e. bacteriocin, the use of whole LAB cells (probiotics) have also been established to enhance immunity as well as to cure many ailments in human beings (Sourabh et al.,...
2010). Also, there is a plentiful prospect available for microbiologists to explore the Indian fermented foods for the isolation of new LAB strains for their potential role to improve food quality and control food hazard.

References


