Determination of nutritional potential of five important wild edible fruits traditionally used in Western Himalaya

Rana YS, Tiwari OP*, Krishan R and Sharma CM

Department of Botany, HNB Garhwal University, Srinagar Garhwal, Uttarakhand -246174, India
*Corresponding author Email: omtiwari99@gmail.com

Manuscript details:
Received: 05.10.2017
Accepted: 11.01.2018
Published: 24.02.2018

Editor: Dr. Arvind Chavhan

Cite this article as: Rana YS, Tiwari OP, Krishan R and Sharma CM (2018) Determination of nutritional potential of five important wild edible fruits traditionally used in Western Himalaya, Int. J. of. Life Sciences, Volume 6(1): 79-86.

Wild edible fruiting plants sustain numerous organic phytochemicals and significantly contribute to the nutritional security of mankind that have been linked to the promotion of good health. However, the detailed analysis of health promoting organic compounds and nutritive minerals present in these fruits were explored very little in the Himalayan region. In the present investigation, nutritional potential of five wild edible fruits of the plant species like Rubus ellipticus Smith, Rubus paniculatus Smith, Benthamidia capitata Willichex. Roxb, Coriaria nepalensis Willich and Pyracantha crenulata D.don. were evaluated by determining proximate nutrient and mineral analysis. This study indicated that highest carbohydrates (80.71g/100g) and protein (10.49g/100g) was recorded in P. crenulata and C. nepalensis respectively, however, fat (4.56g/100g), sugar (27.95g/100g) and energy value (373.28 Cal/100g) were recorded maximum in R. paniculatus. Contrary to this the mineral composition in all fruits varied greatly and maximum nitrogen value (1.67%) was found in C. nepalensis, whereas minimum (1.35%) in P. crenulata. The Phosphorous was recorded highest (56.83%) in R. ellipticus and lowest (30.55%) in C. nepalensis. However, the Calcium was found greater (63.76 mg/100g) in R. paniculatus while lower (53.06mg/100g) in R. ellipticus fruit. The study revealed that these wild fruits exhibited high nutritional composition therefore, could be used as supplementary diet in mountain region and should be promoted to conserved and enhance their genetic diversity.

Key words: Organic phytochemical; nutritional potential; Energy value; Supplementary diet

INTRODUCTION

Garhwal Himalaya is characterized by a rich heritage of wild edible plants and is the precious gift from nature to the ethnic communities. It is better income source to the tribal people, as they collect wild edible fruits for selling as well as for their own use. Carbohydrate, fats and proteins consti-
The wild edible fruits are one of the important groups of non-timber forest products (NTFPs) that played a significant role in uplifting the socio-economy of tribal and rural communities (Maikhuri and Ramakrishnan, 1992; Maikhuri et al., 2004; Dhyani et al., 2007). Fruiting plants are not only supplement food quantity but also an important option during starvation for survival and thus make significant contribution to the human nutrition. The wild edible plants diversity are widely distributed in mountain forest and are valuable source of food and medicines for domestic and commercial purposes. Additionally, these plants also provide some useful products like fiber, fodder, tannin, resin and dyes etc. (Kayang, 2007). However, some wild fruits have been identified to have better nutritional value than cultivated fruits (Eromosele et al., 1991; Maikhuri et al., 1994). Wild fruits provide nutrition for forest dwellers and many of the marginalized rural communities since the common cultivated fruits are less familiar and not reachable for them. Contrary to this, the wild fruits used by tribal are not much familiar to the urban communities. The rich ethnic communities of Garhwal Himalaya have immense traditional knowledge on the utilization of forest and plant parts especially as fruit in multi varied ways of application (Sundriyal et al., 1998).

The Himalaya, one amongst the biodiversity rich area, supports over 675 species of wild edible plants for their seeds, fruits, seed oil, vegetable, tuber, rhizome and roots (Samant and Dhar, 1997). The extreme diversity of wild edible fruits plants in the Indian Himalayan Region (IHR) has traditionally been known to play crucial role in meeting nutritional, minerals and antioxidant requirement of indigenous communities (Maikhuri et al., 2004; Andola et al., 2008; Rawat et al., 2011). However, the systemic investigation on nutritional and antioxidant potential of the wild edibles in the region are meagre (Sundriyal and Sundriyal, 2001; Badhani et al., 2015; Belwal et al., 2016). These wild fruiting trees/shrubs grow abundantly across an altitudinal gradient of the Himalaya and majority of these bear fruit during summer. These plants are precious individually and their genetic diversity should be conserved and enhanced. In addition, many of these used locally, but are not yet popular. There are number of wild edible fruiting plants species in Garhwal Himalaya but in spite of this, these plants have not been well explored so far for their nutritive values. This study explores the nutritional status of five wild edible fruits of Garhwal Himalaya by profiling their biochemical attributes i.e., moisture, fat, protein, carbohydrate, sugars and micronutrient.

MATERIALS AND METHODS

Plant Material

A reconnaissance survey of nearby forests in Bhagirathi Catchment area of Tehri district of Uttarakhand was done and five nutrient rich wild edible fruits viz., *Rubus ellipticus* Smith. (Rosaceae), *Rubus paniculatus* Smith. (Rosaceae), *Benthamidia capitata* Wallich ex Roxb. (Cornaceae), *Coriaria nepalensis* Wallich. (Coriariaceae), *Pyracantha crenulata* D. Don. (Rosaceae) were selected from different localities for their biochemical analysis. Every effort was made to collect these plants in both flowering and fruiting conditions for the correct scientific identification. Moreover, each plant voucher was brought to laboratory and identified with the help of available flora of the district Garhwal North West Himalaya (Gaur, 1999), existing taxonomic literature and Herbarium of HNB Garhwal University Srinagar (GIH). Fresh, healthy and disease free ripened fruits (approximate 500 g) from four to five plants of each species were collected in polythene/sample bag. All samples were washed thoroughly to remove any attached soil and other impurities and external moisture wiped out with a smooth dry cloth. Further, the sampled fruits were dried under shade conditions so decomposition of available content/minerals could be prevented. The fully dried fruit sample/material of each species were then powdered in blender and used for
further biochemical nutritional and mineral analysis. The blender was washed thoroughly before using for next fruit to avoid mixing of samples/powdered.

Proximate nutrient and mineral biochemical Analysis

Moisture content
The moisture content for fruit samples of each species was estimated as per AOAC (2000). Ten gram of sample was taken in a flat-bottom dish and kept overnight in an air oven and dried at 100–105°C. The initial weight (saturated weight) and dried weight were noted and calculated as:

\[
\text{Moisture contents (％) = } \frac{\text{Fresh weight – dry weight}}{\text{Fresh weight}} \times 100
\]

Acidity
The acidity of fruit was determined by titration of a known weight of sample with NaOH using Phenolphthalein indicator. The value was calculated with reference to percent tartaric acid (Rangana, 1979).

Estimation of total carbohydrate, Protein and Fat
For the quantitative analysis of Carbohydrate, the sample extract was prepared by hydrolyzing the test sample in 2.5N HCl for three hours in boiling water bath, followed by neutralizing it with sodium carbonate. It was then centrifuged and the supernatant was collected for analysis. The analysis was carried out using method proposed by Hedge and Hofreiter (1962). The protein was estimated by the folin-ciocalteu reagent method following by Lowry *et al.* (1951). The fat was extracted from 1 gm aliquots by heating in alcoholic HCl, followed by the addition of 95% ethanol. The sample was allowed for cooling, further, ether and sodium sulphate was added and the sample was shaken properly. After a while, petroleum ether was added and sample was shaken again. The acidic ethanol layer was re-extracted twice more with a mixture of petroleum ether. The combined, recovered supernatants were allowed to evaporate in a ventilated area and any trace of moisture was eliminated by drying in a forced air oven (100 °C, 1.5 h) prior to gravimetric determination as per modified AOAC method 14.019 (Conway and Adams, 1975).

Total sugar (TS) and Reducing Sugar (RS)
The total sugar was estimated using anthrone’s reagent (Rangana, 1979). 1 ml of alcoholic extract was taken in a test tube and chilled. After few minutes 4 ml of anthrone’s reagent was carefully run down the walls of the test tube. The test tubes were thereafter immersed in ice water. The tubes were brought to ambient temperature and boiled in water bath for 10 minute. After proper cooling, the absorbance was measured on spectrophotometer wavelength at 625nm. The reducing sugar was estimated using Dinitrosalicylic acid (DNS) reagent (Miller, 1972). 3 ml of DNS reagent was added to 3 ml of sample in a lightly capped test tube. The mixture was heated at 90°C for 5-15 minutes to attain a red brown color. Then 1 ml of Rochelle’s salt solution was added to stabilize the colour. After cooling to room temperature in cold water bath, absorbance was recorded at 575 nm.

Total Energy/Nutritive value
The nutritive value was calculated as: Nutritive value = 4 × Percentage of protein + 9 × Percentage of fat + 4 × Percentage of carbohydrate following Indrayan *et al.* (2005) and Nwabueze (2006).

Nitrogen, Phosphorus and Calcium
The Nitrogen percentage was estimated by using Micro-Kjeldahl digestion and distillation technique. The sample was digested by boiling with concentrated Sulfuric acid in the presence of catalyst Copper Sulfate. The digestion converts all the nitrogen to ammonia, and trapped as ammonium sulfate. On completion of the digestion stage is generally recognized by the formation of the clear solution. The ammonia was released by the addition of excess sodium hydroxide and was removed by steam distillation. Further, it was collected in boric acid and titrated with standard hydrochloric acid using methylene blue as an indicator. Available phosphorus content was estimated colorimetrically by treating the digested sample with ammonium molybdate and freshly prepared ascorbic acid. Spectrophotometer apparatus was used to measure the absorbance at 880 nm. Calcium in fruit samples were determined by EDTA (the disodium salt of ethylene-diamine-tetra-acetic acid) titration method (Allen, 1989; Anderson and Ingram, 1993; Rangana, 1979).

Statistical Analysis
A two tailed Pearson correlation was conducted between various nutritional constituents of selected wild fruits using SPSS.

RESULTS AND DISCUSSION
All recorded species were extensively distributed from lower dry tropical to middle moist temperate forests of Garhwal Himalaya and generally grow in the association
of Oaks (Quercus spp.). Somewhere, they were noticed in association with Pinus roxburghii forests. The fruits are considered to be the richest source of carbohydrates, either monosaccharide or polysaccharides such as cellulose and starch (Demir and Ozcan, 2001; Ozcan and Haciseferogullari, 2007). The ethnomedicinal importance of studied wild fruits is given in Table 1. In this study the edible part of fresh plant material of species such as Rubus ellipticus Smith (Rosaceae), Rubus paniculatus Smith (Rosaceae), Benthamidia capitata Wallich ex Roxb. (Cornaceae), Coriaria nepalensis Wallich. (Coriariaceae) and Pyracantha crenulata D. Don. (Rosaceae) contained relatively high moisture content compared to other nutritive values like protein, fat, and carbohydrate (Figure 1 and Table 2). The available mineral like calcium, phosphorus and nitrogen were found varied in concentration (Table 3).

The percent values of moisture content in all fruits were oscillated between 70.33% (Benthamidia capitata) and 84.0% (Rubus paniculatus). The fruits of other species have comparatively lower moisture values. The recorded moisture percent values were found similar to the values (55.11 to 87.41%) reported by Mahapatra et al. (2012). The greater moisture in these fruit samples may be due to growing in moist habitat along a riverine system of Garhwal Himalaya. The acidity percent existed highest (1.87%) in Coriaria nepalensis, whereas lowest (1.47%) in Rubus ellipticus. The detailed values of acidity and moisture content are presented in Figure 1. The illustrated photo graphs of all species as identified are given in figure 2. The Coriaria nepalensis have comparatively higher protein content value (10.49g/100g) with moderate (77.30g/100g) carbohydrates. However, Pyracantha crenulata accounted lower (8.47g/100g) protein with high (80.71g/100g) total carbohydrates. The carbohydrate in Pyracantha crenulata was found similar to the values for fruits like Mangifera sylvatica Rox. (80.81%) and Terminellia chebulla Retz. (80.61%) from Himalayan region (Sundriyal and Sundriyal, 2001), while higher than the range (7.20 to 22.30%) reported.

Table 1: Medicinal uses of selected wild edible fruits

<table>
<thead>
<tr>
<th>SN</th>
<th>Species</th>
<th>VN</th>
<th>Family</th>
<th>Medicinal uses</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rubus ellipticus</td>
<td>Hissar/Hinsar</td>
<td>Rosaceae</td>
<td>Whole plant used to cure dihorrea, root paste applied on skin disease and used in Stomach-ache</td>
<td>Kapakoti et al. (2014), Bisht et al. (2013), Gaur and Jyotsna (2011)</td>
</tr>
<tr>
<td>2.</td>
<td>R. Paniculatus</td>
<td>Kalahinsar</td>
<td>Rosaceae</td>
<td>Fruit Syrup used for cold and cough</td>
<td>Chakraborty et al. (2017)</td>
</tr>
<tr>
<td>5.</td>
<td>Pyracantha crenulata</td>
<td>Ghangaroo</td>
<td>Rosaceae</td>
<td>Powdered of dried fruit used with yoghurt to cure bloody dysentery, leaf paste applied on burns</td>
<td>Arora and Pandey (1996), Bisht et al. (2013), Uniyal and Slava (2005)</td>
</tr>
</tbody>
</table>

Table 2: Important nutritional content in some wild edible fruits

<table>
<thead>
<tr>
<th>Species</th>
<th>R. ellipticus</th>
<th>R. paniculatus</th>
<th>C. nepalensis</th>
<th>B. capitata</th>
<th>P. crenulata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat (g/100g)</td>
<td>2.86</td>
<td>4.56</td>
<td>1.37</td>
<td>0.71</td>
<td>0.54</td>
</tr>
<tr>
<td>Protein (g/100g)</td>
<td>8.83</td>
<td>8.77</td>
<td>10.49</td>
<td>8.51</td>
<td>8.47</td>
</tr>
<tr>
<td>Total Carbohydrate (g/100g)</td>
<td>77.77</td>
<td>74.29</td>
<td>77.3</td>
<td>78.51</td>
<td>80.71</td>
</tr>
<tr>
<td>Sugar (g/100g)</td>
<td>24.4</td>
<td>27.95</td>
<td>21.13</td>
<td>23.49</td>
<td>7.16</td>
</tr>
<tr>
<td>Reducing sugar (g/100g)</td>
<td>4.14</td>
<td>4.56</td>
<td>3.91</td>
<td>3.68</td>
<td>2.29</td>
</tr>
<tr>
<td>Energy value Cal/100g</td>
<td>372.14</td>
<td>373.28</td>
<td>363.49</td>
<td>354.47</td>
<td>361.58</td>
</tr>
</tbody>
</table>

Table 3: Mineral content values of some important wild edible fruits

<table>
<thead>
<tr>
<th>Species</th>
<th>N %</th>
<th>P %</th>
<th>Ca (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubus ellipticus</td>
<td>1.40</td>
<td>56.83</td>
<td>53.06</td>
</tr>
<tr>
<td>Rubus paniculatus</td>
<td>1.39</td>
<td>44.44</td>
<td>63.76</td>
</tr>
<tr>
<td>Coriaria nepalensis</td>
<td>1.67</td>
<td>30.55</td>
<td>53.87</td>
</tr>
<tr>
<td>Benthamidia capitata</td>
<td>1.36</td>
<td>49.41</td>
<td>59.00</td>
</tr>
<tr>
<td>Pyracantha crenulata</td>
<td>1.35</td>
<td>45.26</td>
<td>54.50</td>
</tr>
</tbody>
</table>
Determination of nutritional potential of five important wild edible fruits traditionally used in Western Himalaya

Table 4: Two tailed Pearson correlation among various nutritive constituents of different wild edible fruits

<table>
<thead>
<tr>
<th>Constituents</th>
<th>M</th>
<th>A</th>
<th>F</th>
<th>Pr</th>
<th>C</th>
<th>S</th>
<th>RS</th>
<th>EV</th>
<th>N</th>
<th>P</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist (M)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acidity (A)</td>
<td>-.493</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat (F)</td>
<td>.847</td>
<td>-.311</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein (Pr)</td>
<td>-.307</td>
<td>.354</td>
<td>-.047</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates (C)</td>
<td>-.581</td>
<td>-.152</td>
<td>-.882</td>
<td>-.233</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar (S)</td>
<td>.903*</td>
<td>-.337</td>
<td>.982**</td>
<td>-.222</td>
<td>-.824</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing Sugar (RS)</td>
<td>.326</td>
<td>.100</td>
<td>.777</td>
<td>.275</td>
<td>-.908*</td>
<td>.683</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Value (EV)</td>
<td>.831</td>
<td>-.636</td>
<td>.885*</td>
<td>.061</td>
<td>-.634</td>
<td>.842</td>
<td>.556</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>-.337</td>
<td>.377</td>
<td>-.080</td>
<td>.999**</td>
<td>-.210</td>
<td>-.254</td>
<td>-.254</td>
<td>.025</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorous (P)</td>
<td>.208</td>
<td>-.618</td>
<td>.181</td>
<td>-.798</td>
<td>.144</td>
<td>.274</td>
<td>.037</td>
<td>.181</td>
<td>.807</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>.513</td>
<td>.385</td>
<td>.554</td>
<td>-.344</td>
<td>-.668</td>
<td>.636</td>
<td>.446</td>
<td>.140</td>
<td>-.350</td>
<td>.019</td>
<td>1</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

![Fig. 1. Moisture and Acidity percent in different wild edible fruits.](image)

by Gopalan et al. (2004) for some commercially cultivated fruits, (3.1 to 19.01%) from deciduous forest by Maha-patra et al. (2012) and 4.37±0.52% (Rubus ellipticus) by Ahmad et al. (2005). The protein content in Rubus spp. ranged between 8.77 g/100g and 8.83g/100g. Our values are higher than the value (3.68±0.04%) reported by Saklani et al. (2012) and existed in the range 1.25 to 10.32g/100g reported by Sundriyal and Sundriyal (2001) for 19 wild edibles fruits from Indian Himalayan region. Carbohydrates are the important component of storage and structural material in the plants and animals. They existed in the form of sugar and polysaccharides. Consequently, due to rich quantity of proteins and carbohydrates, the edible fruits selected in this study may be recommended as supplementary food material for future generation in many ways. The total fat content was varied from 0.54g/100g (Pyracantha crenulata) to 4.54g/100g (Rubus paniculatus). The recorded fat content values were lower than previously reported range (0.10 to 64.80%) by Gopalan et al. (2004) for many commercial fruits, 0.05 to 30.50% by Sundriyal and Sundriyal (2001) for fruits collected from Himalayan region and 2.6 to 4.0% by Andola et al. (2011) for Berberis species of Western Himalaya.

In this study, the total sugar content found to be highest (27.95g/100g) in Rubus paniculatus, followed by Rubus ellipticus (24.40g/100g) and Benthamidia capitata (23.49g/100g). However, Pyracantha crenulata contain lowest sugar content (7.16g/100g) (Table 2). The higher sugar content in fruits of Rubus species i.e., Rubus ellipticus and Rubus paniculatus likely due to lower acidity. The Pyracantha crenulata may be recommended as supplementary food material for the diabetic patients due to adequate protein and carbohydrates and lower sugar content. It could be taken in powder as well as converted into juice form. As shown in Table 2, the gross nutritive value was highest in Rubus paniculatus (373.28 Cal/100g), followed by Rubus ellipticus (372.14 Cal/100g), whereas Benthamidia capitata has least (354.47 Cal/100g) nutritive value.

The mineral composition of five wild fruits plants are given in Table 3. Mineral elements play an important role in regulating many vital physiological processes in the human body such as enzyme regulation, skeletal structure, neuromuscular irritability and clotting of blood (Kalita et al., 2006). Sankran et al. (2006) have suggested that human diet should provide a sufficient nutrient for maintenance of growth and proper body functions. Consequently, lack of adequate quantities of mineral in the diet may affect growth and cause irrecoverable deficiency. In this study, the nitrogen...
percent was maximum for *Coriaria nepalensis* (1.67%), followed by *Rubus ellipticus* (1.40%), *Rubus paniculatus* (1.39%), *Benthamidia capitata* (1.36%) and *Pyracantha crenulata* (1.38%). Our values were found higher than the values (0.02 to 0.09%) reported by Saha *et al.* (2014) from different places of Arunachal Pradesh. However, they have maintained some higher values for fruits such as *Amanita* spp. (4.22%), *Auricularia auricular-judae* (Bull) J. Schort (2.45%), *Laetiporus sulphureus* (Bull) Murrill (3.36%), *Pleurotus sajor-caju* (Fr.) Singer (3.36%) and *Prasiola crispa* f. (6.06%). The phosphorus percent was oscillated between 30.55% (*Coriaria nepalensis*) and 6.83% (*Rubus ellipticus*). A significant variation was noticed in phosphorus content among all species. Phosphorus regulates various endo-physiological functions including skeletal development, metabolization of mineral, transfer of energy through mitochondrial metabolism, cell signaling and aggregation of blood platelets. Maikhuri (1991) had defined that due presence of phosphorous, normal homeostasis maintained serum concentration between 2.5 to 4.5 mg/dl.

Fig. 2. Photo plats of some studied wild edible fruiting plants (A) *Rubus ellipticus* (B) *Rubus paniculatus* (C) *Coriaria nepalensis* (D) *Benthamidia capitata* (E) *Pyracantha crenulata*
In this study we have recorded high calcium value (63.76 mg/100g) in *Rubus paniculatus*, whereas lower (53.06 mg/100g) in *Rubus ellipticus*. The recorded calcium in selected wild fruits was higher to earlier reported values for some important commercial fruits viz., Apple, Chestnut, Litchi, Mango and Papaya by Gopalan *et al.* (2004). Calcium is an important mineral of human body which constitutes a major proportion of bone, human blood and extracellular fluid. It is necessary for the normal functioning of cardiac muscles, blood coagulation and regulation of cellular permeability. Calcium also plays a crucial role in nerve-impulse transmission and in the mechanism of neuromuscular system.

The Pearson correlation details are presented in Table 4. This study has indicated that the carbohydrates was negatively (-0.882) and significantly correlated with fat. Similarly, reducing sugar was found negatively (-0.908) and significantly correlated with carbohydrates. However, sugar content indicated a positive (0.903) and significant correlation with moisture. Moreover, sugar (0.982) and energy value (0.885) have also shown a positive and significant correlation with total fat.

CONCLUSION

The study showed that wild fruits of Himalayan region are found to be nutritious and available mainly during summer season. The local inhabitants have immense knowledge of wild edible food plants to ensure food security either in dried form or through storage method along with their traditional medicinal utility. *R. ellipticus* and *R. paniculatus* were rich in protein, carbohydrates, fat, sugar, energy value and mineral contents such as nitrogen, phosphorus and calcium. These fruits might be an alternative as they contained high nutritional and mineral to the food industries as new food ingredient for food supplement. Some artificial propagation methods should be adopted to increase the population which ultimately promoted the production of raw material at commercial level. Genetically superior varieties of such species may be evolved through various breeding methods to increase their fruit size.

Acknowledgements

Authors are thankful to Parishil Laboratory, Ahmedabad, India for providing analytical facilities. We are also thankful to Department of Science and Technology, Govt. of India for providing the financial assistance to this study vide its project no. SERB/ST/SO/PS/14/2010.

Conflict of interest

The authors declares that they have no conflict of interest.

REFERENCES

