It is important to distinguish methods and rules of economic activity from the tools to manage the data. From the first sight it might seem that methods that define methodology of any process and tools of this process are closely related and can be hardly separated. In reality they are easy to distinguish from each other. Methods and rules of economic activity are not material substance, whilst tools have their materialized essence. For example, to manage an economic system I recommend use methods of the mathematical economic, systemic, comprehensive, commercial, dynamic approach. Methods of price-formation, prediction, economic-mathematical analysis, economic stimulation, etc. are widely used in economic practice. What is the instrument? The tool has a material substance; it is a material object, a mechanism or machine. For example, an algorithm of comparing and evaluating data, matrix of data synthesis and transformation, machine for situational correction of data, materialized in process of implementing a certain invention. Thus, the tool is a material object, with help of which control the output data of the product offerings.

In process of developing a claim for invention: 
“System controlling a plurality of variable data of consumer indexes of products in order to optimize them considering temporary and spatial parameters», innovation are designed in two aspects. On the one hand, model was described by a scheme and included its own interrelated list of sequences was generated, and it includes 6 stages of the object, we are dealing with a system. As a result, a system consists of totality of mutually-related elements, and sum of their characteristics does not equal to sum Characteristics of the object, we are dealing with a system. As a result, a list of sequences was generated, and it includes 6 stages of the object. The system process a plurality of variable data, due to increasing number of possible solution variants as well as by increasing the speed, accuracy, efficiency, economy of choosing the optimal solution. The invention has a scientific novelty, since the author has described the technical product form of a digital model.

During the modeling process of data management each element was presented as a multiplicity of related system values. It is appropriate to recall definition of a system. If an object consists of totality of mutually-related elements, and sum of their characteristics does not equal to sum Characteristics of the object, we are dealing with a system. As a result, a list of sequences was generated, and it includes 6 stages of the object. The system process a plurality of variable data, due to increasing number of possible solution variants as well as by increasing the speed, accuracy, efficiency, economy of choosing the optimal solution. The invention has a scientific novelty, since the author has described the technical product form of a digital model.

The invention opens up broad horizons for the formulation and real current product strategy (stage 4); block of forming the products programs that generates multiplicity of output data within strategic development program (stage 5); block of transformation, an situational data correction, that generates output data of current programs, but within limits defined by strategic development program (stage 6).

At each stage, generated special tools for data management. A database is a tool of storing and systematizing data. Object-relational model is a tool to establish relationships between different databases. Graphs of dynamic prediction are tools of defining supporting data of demand for a product during its life cycle. Graphical informational models are tools of forming a block of strategies. The constructed algorithms are tools of comparing, evaluating data, and selecting optimal variants of data correction. Graphs of multi-dimensional modeling are tools of finding solution variants considering optimization of several parameters. Matrices are tools for optimization, balancing, planning and maneuver a plurality of variable data, as well as the machines of their situational adjustments in order to find the best synergistic effect. It is recommended constitute different variants of the matrix not only in terms of price, quality, volume goods positioning, but also in terms of time and spatial parameters for further selection of an optimal variant. The matrices allow us to establish a balance on many parameters between supply and demand is largely due to synchronization of time cycles and to maneuvering on the market of the segments of the product positioning. Thus, on the one hand, each tool was created and materialized at the recommended system generating data, and on the other hand, each of them on his stage of the process is a tool effects on the data in order to generate a plurality of output data of the final document – situational-strategic product program. All of the listed tools of systematizing, predicting, planning, synthesizing, and transforming data are based on the use of IBM for information processing that increases efficiency, speed of data procession, and allows developing and evaluating a greater number of solution combinations.

Technical result of an invention consist in such basically new content and sequence list of the modeled system and materialized tool of data management, which allows to find the best synergistic result, achieve greater than that of all known analogues of accuracy, reliability of the output data of strategic and situational (current) product programs, and also to provide greater speed and effectiveness of program documents formation. With the use of matrices that are reflected on the interactive display with replaceable panels will be possible to correct data of the current program in real time but within limits, defined by strategic development program. The invention has great practical significance. An invention can be in demand by various sectors of national economy, but mostly by industrial enterprises.

The invention opens up broad horizons for the formulation and real current product strategy (stage 4); block of forming the products programs that generates multiplicity of output data within strategic development program (stage 5); block of transformation, an situational data correction, that generates output data of current programs, but within limits defined by strategic development program (stage 6).