SPECTRAL PROPERTIES OF SELF-ADJOINT LINEAR OPERATORS

GEZAHEGN ANBERBER TADESSE
Lecturer, Dilla University, South Region, Ethiopia

ABSTRACT

The spectral theory mainly deals with a systemic study of inverse operators, their general properties and their relation to the original operators.

Operators on Hilbert space is a basis for a comprehensive study of the spectral theory. In particular, the hermitian or self-adjoint operators are very important in many applications. In this paper, we have generalized this idea by showing that the spectrum of a self-adjoint operator on a Hilbert space also consists entirely of real values.

KEYWORDS: Spectral Theory, Self Adjoint, Hilbert Space, Inverse Operator, Projection

1. INTRODUCTION

While solving the system of linear algebraic equations, differential equations or integral equations, we come across the problem related to inverse operation. Spectral theory is concerned with such inverse problem.

In chapter one we discuss the preliminary concepts which are frequently used in the project work. In chapter Two we discuss the spectral theory of bounded self-adjoint linear operator and in chapter Three we discuss Projection operators. The definition of projection is suitable for spectral family. Projections are always positive operators.

In Chapter Four we discuss spectral family. The spectral family of a bounded self-adjoint linear operator at points of the resolvent set, at eigen values and at the point of continuous spectrum.

The spectral projection are the given, as in the bounded case, by defining E_λ to be the orthogonal projection on the null space of $(T - \lambda I)^+$ for all real λ. If the two sets are vector spaces, we can introduce the concept of a linear operator, if the sets are normed spaces, we can construct a theory of bounded linear operators on such spaces. Operators that map members of a specified space into the real or complex numbers are called functional. We shall also discuss the Hilbert-adjoint operators as well as the self-adjoint, unitary and normal operators. Finally, we shall look at the spectral family of the Hermitian (self-adjoint) operators which is an important aspect of functional analysis.

2. PRELIMINARY CONCEPT

2.1 Basic Definition

Norm: Let X be a vector space over a field K. Then a mapping $||.||: X \rightarrow [0, \infty)$ is said to be a norm on X if for each $x, y \in X, \lambda \in K$

- $||x|| \geq 0$ and $||x|| = 0$ if and only if $x = 0$ (positive definiteness)
- $||\lambda x|| = |\lambda||x||$ (Homogeneity)
- $||x + y|| \leq ||x|| + ||y||$ (triangle inequality).
If norm is defined on a vector space X, then X is said to be a **normed space**.

Linear Functional: A linear functional on Hilbert space H is a linear map from H to \mathbb{C}. That is $\varphi: H \rightarrow \mathbb{C}$.

Bounded Linear Functional: A linear functional φ is bounded or Continuous, if there exists a constant k such that

$$|\varphi(x)| \leq k\|x\|$$

The norm of a bounded linear functional is

$$\|\varphi\| = \sup_{\|x\|=1} |\varphi(x)|$$

If $y \in H$, then $\varphi_y(x) = \langle y, x \rangle$ is a bounded linear functional on H, with $\|\varphi_y\| = \|y\|$

Continuous Operator

An operator T from a normed space V into another normed space W is continuous at a point $x \in D(T)$ if for any $\varepsilon > 0$ there is a $\delta > 0$, such that $\|Tx - Ty\| < \varepsilon$ for all $y \in D(T)$ whenever $\|x - y\| < \delta$ then T is continuous, if its continuous at all points of $D(T)$.

Let X be a vector space over K and let $\langle \cdot, \cdot \rangle: X \times X \rightarrow K$, where for all $x, y, z \in X$

- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ (*linearity*)
- $\langle ax, y \rangle = a \langle x, y \rangle$ (*Homogeneity*)
- $\langle x, y \rangle = \langle y, \overline{x} \rangle$ (*conjugate symmetry*)
- $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \iff x = 0$ (*positive definiteness*).

Then the pair $(X, \langle \cdot, \cdot \rangle)$ is said to be an **inner product space**. Hilbert space is a complete inner product space. If $T: X \rightarrow X$ is a linear operator on linear space X, then $\lambda \in K$ is called **eigen value** of T, if there exist an non-zero $x \in X$ then

$$Tx = \lambda x$$

Resolvent Set: Let H be a Hilbert space and let $T: D(T) \rightarrow H$ be a linear operator with domain $D(T) \subseteq H$. For any $\lambda \in \mathbb{C}$, we define the operator $T_\lambda = \lambda I - T$, then λ is said to be a **regular value** if R_λ is inverse operator. That is λ is regular if provided,

- R_λ exists
- R_λ is a bounded linear operator;
- R_λ is defined on a dense subspace of H

The resolvent set of T is the set of all regular values of T

$$\rho(T)=\{\lambda \in \mathbb{C}: \text{\lambda is a regular value of } T\}$$

Spectrum. The set $\sigma(T) = \mathbb{C} - \rho(T)$

The spectrum of an operator T is usually divided into three disjoint unions.
Spectral Properties of Self-Adjoint Linear Operators

- Point spectrum $\sigma_p(T)$.
- Continuous spectrum $\sigma_c(T)$.
- Residual spectrum $\sigma_r(T)$.

Where

$$\sigma_p(T) = \{\lambda \in \sigma(T): \ker (\lambda I - T) \neq \{0\}\}$$

$$\sigma_c(T) = \{\lambda \in \sigma(T): (\lambda I - T)^{-1} \text{ is densely defined but not bounded}\}$$

$$\sigma_r(T) = \{\lambda \in \sigma(T): R(\lambda I - T) \text{ is not dense in } H\}$$

Elements of $\sigma_p(T)$ are called eigenvalues.

Orthogonality

Two vectors x and y in inner product space are said to be orthogonal if $\langle x, y \rangle = 0$.

Orthonormality

The set containing those vectors x, y such that $\langle x, y \rangle = 0$ and $\|x\|=1$ is said to be orthonormal set.

Orthogonal Complement

For non-empty subset S of Hilbert space we define the orthogonal complement to S, denoted by S^\perp.

$$S^\perp = \{y \in H: \langle x, y \rangle = 0 \text{ for all } x \in S\}$$

Convergence of Sequence of Operator

Let X and Y be normed space. A Sequence (T_n) of operators $T_n \in B(X,Y)$ is said to be:

- **Uniformly Operator Convergent:** If (T_n) converges in the norm of $B(X,Y)$ to $T \in B(X,Y)$

 i.e $\|T_n - T\| \to 0$

- **Strongly Operator Convergent:** If $(T_n x)$ converges strongly in Y for every $x \in X$

 $\|T_n x - Tx\| \to 0$

Unitary Operator: A bounded linear operator $T: H \to H$ on Hilbert space H is said to be unitary if T is bijective and

$$T^* = T^{-1}$$

Normal Operator: A bounded linear operator $T: H \to H$ on a Hilbert space is said to be normal

if $TT^* = T^*T$

2.2. BASIC THEOREMS
Theorem (Cauchy-Schwarz Inequality):- If X is inner product space then
$$|\langle x, y \rangle| \leq \langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}$$
This equality holds if and only if x and y are linearly dependent.

Proof. Continuity of Inner Product: If in an inner product $x_n \rightarrow x$ and $y_n \rightarrow y$. Then $\langle x_n, y_n \rangle \rightarrow \langle x, y \rangle$

Reiszre-Presentation Theorem: Let φ be a continuous linear functional on a Hilbert space H. Then there is a unique $z \in H$ such that $\varphi(x) = \langle x, z \rangle$ for all $x \in H$

Bounded Inverse Theorem: Let $T: V \rightarrow W$ be a bounded, linear and bijective operator from Banach space V into Banach space W then the inverse operator $T^{-1}: W \rightarrow V$ is also bounded.

Principle of Uniform Boundness: Let (T_n) be sequence of bounded, linear operator $T_n: X \rightarrow Y$ from a Banach space X into a normed space Y such that is bounded for every $x \in X$, say
$$\|T_n x\| \leq C_n \quad n = 1, 2$$
Where C_n is real number, then the sequence of the norms $\|T_n\|$ is bounded, that is there is C a such that $\|T_n\| \leq C$

Weierstress Approximation Theorem (Polynomial): The set of all polynomials W with real coefficient is dense in real space $C[a, b]$. Hence for every $x \in C[a, b]$ and given $\epsilon > 0$ there exist a polynomial P such that $|x(t) - P(t)| < \epsilon$ for all $t \in C[a, b]$

Proof in [1], [2] and [3]

3. SPECTRAL THEORY OF BOUNDED SELF-ADJOINT LINEAR OPERATORS

3.1. Spectral Properties of Bounded Self-Adjoint Linear Operators

3.1.1. Definition

Let H_1 and H_2 be complex Hilbert spaces and $T: H_1 \rightarrow H_2$ bounded linear operator. Then the Hilbert-adjoint operator $T^*: H_2 \rightarrow H_1$ defined to be the operator satisfying.
$$\langle Tx, y \rangle = \langle x, T^*y \rangle \text{ for all } x, y \in H$$

3.1.1. Theorem

If $(H_1 = H_2 = H)$, then T^* exists as bounded linear operator of norm
$$\|T^*\| = \|T\| \text{ and is unique.}$$

Proof. Let H be complex Hilbert spaces and T^* be operator we need to show:

- T^* bounded.
- T^* linear operator
- T^* is unique.

Take $y \in H$ and $T \in B(H)$. We define a bounded linear functional X' on H by $x'(x) = \langle Tx, y \rangle \quad \forall x, y \in H \Rightarrow X'$
bounded since $| x'(x) | = |(Tx, y)| \leq \| Tx \| \| y \|$.

By Riesz-representation theorem there is unique $z \in H$ such that $x'(x) = (x, z)$ for all $x \in H$. Here we observe that y and z must have a certain relation so we can define an operator $T^*y = z$ satisfying $(Tx, y) = (x, T^*y)$ for all $x \in H$.

Now let’s see T^* Linear. Let $y_1, y_2 \in H$ and $\alpha, \beta \in C$, so $\forall x \in H$

$$(x, T^*(\alpha y_1 + \beta y_2)) = (Tx, \alpha y_1 + \beta y_2) = (Tx, \alpha y_1) + (Tx, \beta y_2)$$

$$= \overline{\alpha}(Tx, y_1) + \overline{\beta}(Tx, y_2) = (x, \alpha T^*y_1) + (x, \beta T^*y_2) = (x, \alpha T^*y_1 + \beta T^*y_2)$$

$$\Rightarrow T^*(\alpha y_1 + \beta y_2) = \alpha T^*y_1 + \beta T^*y_2.$$

∴ T^* Linear operator.

We want show that the uniqueness of $\| T^* \| = \| T \|.$ Let $y \in H$

$$\| T^*y \|^2 = (T^*y, T^*y) = (y, TT^*y) \leq \| y \| \| T \| \| T^* \| \| T^*y \|$$

$$\Rightarrow \| T^*y \| \leq \| y \| \| T \|,$$ This shows that T^* is bounded

$$\Rightarrow \| T^* \| \leq \| T \|$$ (1)

Similarly, let $x \in H$

$$\| Tx \|^2 = (Tx, Tx) = (x, T^*Tx) \leq \| x \| \| T^* \| \| Tx \| \leq \| x \| \| T^* \| \| T \| \| x \|$$

$$\Rightarrow \| T \| \leq \| T^* \|$$ (2)

Combining (1) and (2) we get

$$\| T^* \| = \| T \|. \blacksquare$$

3.1.2. Definition

A bounded linear operator $T: H \rightarrow H$ on a complex Hilbert space H is said to be self-adjoint or hermitian, if $T = T^*$. Equivalently, a bounded linear operator T is said to be self-adjoint, if $(Tx, y) = (x, Ty)$ $\forall x, y \in H$.

3.1.2. Theorem

Let $T: H \rightarrow H$ be a bounded linear operator on a Hilbert space H. Then

- If T is self-adjoint, then (Tx, x) is real for all $x \in H$

- If H is complex and (Tx, x) is real for all $x \in H$, then the operator T is self-adjoint

Proof. 1. If T is self-adjoint, then for all x

$$(Tx, x) = (x, Tx)$$ (1)

By definition $(Tx, y) = (x, T^*y)$ and since T is self-adjoint, we have:

$$(Tx, x) = (x, Tx)$$ (2)

Combining equation (1) and (2) gives
\(\langle Tx, x \rangle = \langle Tx, x \rangle \)

Hence \(\langle Tx, x \rangle \) is equal to its complex conjugate which implies that it is real. If \(\langle Tx, x \rangle \) is real for all \(x \in H \), then:

\[
\langle Tx, x \rangle = \overline{\langle Tx, x \rangle} = \langle T^*x, x \rangle = \langle T^*x, x \rangle .
\]

Hence \(0 = \langle Tx, x \rangle - \langle T^*x, x \rangle = (\langle T - T^* \rangle x, x) \). Thus, \(T - T^* = 0 \).

Therefore \(T = T^* \).

Remark 1: If \(T \) is self-adjoint or unitary, then \(T \) is normal; in general the converse is not true.

Example 1: If \(I: H \rightarrow H \) is the identity operator, then \(T = 2iI \) is normal, since \(T^* = -2iI \), so that \(TT^* = T^*T = 4I \)

but \(T \neq T^* \) and \(T^* \neq T^{-1} = -\frac{1}{2}iI \)

3.1.3. Theorem

Let \(T: H \rightarrow H \) be a bounded self-adjoint linear operator on complex Hilbert space \(H \). Then:

- All the eigenvalue of \(T \) are real.
- Eigenvectors corresponding to distinct eigenvalue of \(T \) are mutually orthogonal.

Proof. a): Let \(\lambda \) be any eigenvalue of \(T \) and \(x \) a corresponding eigenvectors. Then \(x \neq 0 \ & \& Tx = \lambda x \Rightarrow \lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle \), using the self-adjointness of \(T \).

\[
\Rightarrow \lambda \langle x, x \rangle - \overline{\lambda} \langle x, x \rangle = 0
\]

\[
\Rightarrow (\lambda - \overline{\lambda}) \langle x, x \rangle = 0 . \text{ Here } \langle x, x \rangle = \|x\|^2 \neq 0
\]

\[
\therefore \lambda = \overline{\lambda}
\]

- Let \(\lambda \& \mu \) be eigenvalues of \(T \) and let \(x \) and \(y \) be corresponding eigenvectors. Then \(Tx = \lambda x \) and \(Ty = \mu y \) since \(T \) is self-adjoint and \(\mu \) real.

\[
\lambda \langle x, y \rangle = \langle \lambda x, y \rangle = \langle Tx, y \rangle = \langle x, T^*y \rangle = \langle x, \mu y \rangle = \mu \langle x, y \rangle
\]

\[
\Rightarrow \lambda \langle x, y \rangle - \mu \langle x, y \rangle = 0
\]

\[
\Rightarrow (\lambda - \mu) \langle x, y \rangle = 0, \lambda \neq \mu
\]

\[
\therefore \langle x, y \rangle = 0 \ i.e \ x \perp y
\]

Example 4: \(T = \begin{pmatrix} 2 & 1 - i \\ 1 + i & 1 \end{pmatrix} \)

Spectrum of \(\langle \lambda \rangle = \{0,3\} \) distinct real numbers with eigenvectors.

\[
x_1 = \begin{pmatrix} -1 + i \\ 2 \end{pmatrix} \text{ and } x_2 = \begin{pmatrix} 1 - i \\ 1 \end{pmatrix} \text{ respectively}
\]

Finally \(\langle x_1, x_2 \rangle = x_1^T \overline{x_2} = [-1 + i 2] \begin{pmatrix} 1 + i \\ 1 \end{pmatrix} = 0 \). So the eigenvectors are orthogonal.

3.1.4. Theorem
Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a $c > 0$ such that for every $x \in H$
\[\|T_\lambda x\| \geq c\|x\| \quad T_\lambda = T - \lambda I \]

Proof: \(\Rightarrow\) Suppose that $\lambda \in \rho(T)$, $R_\lambda = T^{-1}\lambda: H \to H$ exists and is bounded set $\|R_\lambda\| = k$ where $k > 0$, since $R_\lambda \neq 0$ now $I = R_\lambda T_\lambda$, so that for every $x \in H$
\[T_\lambda x = \gamma, \Rightarrow x = T^{-1}\lambda y, \text{ since } R_\lambda = T^{-1}\lambda \]
\[x = R_\lambda T_\lambda x \]
\[\Rightarrow \|x\| = \|R_\lambda T_\lambda x\| \leq \|R_\lambda\| \|T_\lambda x\| = k\|T_\lambda x\| \]
\[\Rightarrow \|x\| \leq k\|T_\lambda x\| \]
\[\Rightarrow \|T_\lambda x\| \geq \frac{k}{k}\|x\|, \text{ where } c = \frac{1}{k} \]
\[\therefore \|T_\lambda x\| \geq c\|x\| \]

3.1.5. Theorem

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H is real.

Proof: By theorem 2.1.5 we show that a $\lambda = \alpha + i\beta \ (\alpha, \beta \ real)$ with $\beta \neq 0$ which belongs to $\rho(T)$ so that $\sigma(T) \subset \mathbb{R}$.
\[\langle T_\lambda x, x \rangle = \langle Tx, x \rangle - \lambda \langle x, x \rangle \text{ for all } x \in H \quad (1) \]

Since $\langle Tx, x \rangle$ and $\langle x, x \rangle$ are real
\[\overline{\langle T_\lambda x, x \rangle} = \langle Tx, x \rangle - \overline{\lambda} \langle x, x \rangle, \text{ here } \overline{\lambda} = \alpha - i\beta \quad (2) \]

Subtract equation (2) from (1)
\[\langle T_\lambda x, x \rangle - \langle T_\lambda x, x \rangle = (\lambda - \overline{\lambda}) \langle x, x \rangle = 2i\beta \|x\|^2 \]
So that
\[-2i\text{Im}(T_\lambda x, x) = 2i\beta \|x\|^2 \]
\[-\text{Im}(T_\lambda x, x) = \beta \|x\|^2 \]
\[|\beta| \|x\|^2 = |\text{Im}(T_\lambda x, x)| \leq \|T_\lambda x\| \|x\| \]
\[|\beta| \|x\| \leq \|T_\lambda x\|, \text{ for } \|x\| \neq 0. \]
If $\beta \neq 0$, then $\lambda \in \rho(T)$. Hence for $\lambda \in \sigma(T)$ we must have $\beta = 0$, i.e λ is real

3.2 Further Spectral Properties of Bounded Self-Adjoint Linear Operators
3.2.1 Theorem

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H lies in the closed interval $[m,M]$ on the real axis, where

$$m = \inf_{\|x\|=1}\langle Tx, x \rangle M = \sup_{\|x\|=1}\langle Tx, x \rangle$$

Proof: $\sigma(T)$ lies on the real axis. We show that any real $\lambda = M + c$ with $c > 0$ belongs to the resolvent set $\rho(T)$. For every $x \neq 0$ and $v = \|x\|^{-1}x$ we have $x = \|x\|v$ and

$$\langle Tx, x \rangle = \|x\|^2\langle Tv, v \rangle \leq \|x\|^2\sup_{\|v\|=1}(T\overline{v}, \overline{v}) = \langle x, x \rangle M$$

Hence $-\langle Tx, x \rangle \geq -(x, x)M$ and by Cauchy-Schwartz inequality we obtain

$$\|T_{x}x\| \|x\| \geq -(T_{x}x, x) = -(Tx, x) + \lambda(x, x) = -(x, x)M + \lambda(x, x)$$

$\geq (-M + \lambda)(x, x) = C\|x\|^2$

$\Rightarrow \|T_{x}x\| \|x\| \geq C\|x\|^2$, $\|x\| \neq 0$

$$\|T_{x}x\| \geq C\|x\|$$

$\therefore \lambda \in \rho(T)$

3.2.2 Theorem

For any bounded self-adjoint linear operator T on a complex Hilbert space H we have:

$$\|T\| = \max(|m|, |M|) = \sup_{\|x\|=1}\langle Tx, x \rangle$$

Proof. By the Cauchy-Schwarz inequality

$$\sup_{\|x\|=1}\langle Tx, x \rangle \leq \sup_{\|x\|=1}\|Tx\| \|x\| = \|T\|$$

We want show $\|T\| \leq K$. If $Tz = 0$, then $0 \leq K\|z\|^2 \Rightarrow \|Tz\| \leq K \forall z \in H$, $\|z\| = 1$. Otherwise $Tz \neq 0$ for any z of norm 1. $v = \|Tz\|^{-1}z$ and $w = \|Tz\|^{-\frac{1}{2}}Tz$. Now set $y_1 = v + w$ and $y_2 = v - w$. T is self-adjoint

$$\langle Ty_1, y_1 \rangle - \langle Ty_2, y_2 \rangle = 2(\langle Tv, w \rangle + \langle Tw, v \rangle)$$

$$= 2(\langle Tz, Tz \rangle + \langle T^2z, z \rangle)$$

$$= 2(\langle Tz, Tz \rangle + \langle Tz, Tz \rangle)$$

$$= 2(2\langle Tz, Tz \rangle) = 4\langle Tz, Tz \rangle = 4\|Tz\|^2$$

(1)

Now for every $y \neq 0$ and $x = \|y\|^{-1}y$ we have $y = \|y\|x$ and

$$\langle Ty, y \rangle = \|y\|^2\langle Tx, x \rangle \leq \|y\|^2\sup_{\|x\|=1}\langle T\overline{x}, \overline{x} \rangle = K\|y\|^2$$

so that by the triangle inequality.

$$\langle Ty_1, y_1 \rangle - \langle Ty_2, y_2 \rangle \leq \langle Ty_1, y_1 \rangle + \langle Ty_2, y_2 \rangle$$

$$\leq K\|y_1\|^2 + \|y_2\|^2 \leq 2K(\|v\|^2 + \|w\|^2) = 4K\|Tz\|^2$$

(2)

Combining (1) and (2) we get

NAAS Rating: 3.00- Articles can be sent to editor@impactjournals.us
4\|Tz\|^2 \leq 4K\|Tz\|, \|Tz\| \neq 0

\|Tz\| \leq K by taking supremum over all z of norm 1. \|T\| \leq K and K \leq \|T\|

\|T\| = K = \max(|m|, |M|) = \sup_{\|x\|=1}\langle Tx, x \rangle \quad \blacksquare

3.2.3 Theorem.

The residual spectrum \(\sigma_r(T) \) of a bounded self-adjoint linear operator \(T: H \to H \) on a complex Hilbert space \(H \) is empty

Proof. Suppose not \(\sigma_r(T) \neq \emptyset \). Let \(\lambda \in \sigma_r(T) \). By definition of \(\sigma_r(T) \), the inverse of \(T_\lambda \) exists but its domain \(\mathcal{D}(T^{-1}_\lambda) \) is not dense in \(H \). Hence, by the projection theorem there is a \(y \neq 0 \in H \) which is orthogonal to \(\mathcal{D}(T^{-1}_\lambda) \), but \(\mathcal{D}(T^{-1}_\lambda) \) is a range of \(T_\lambda \), hence, \(\langle T_\lambda x, y \rangle = 0, \forall x \in H \). Since \(\lambda \) is real and \(T \) self-adjoint, we obtain \(\langle x, T_\lambda y \rangle = 0 \ \forall x \). Taking \(x = T_\lambda y \) we get \(\|T_\lambda y\|^2 = 0 \), so that \(T_\lambda y = Ty - \lambda y = 0 \), since \(y \neq 0 \). This shows that \(\lambda \) is an eigenvalue of \(T \), but \(\lambda \neq \sigma_r(T) \). Therefore \(\sigma_r(T) = \emptyset \). \(\blacksquare \)

3.3 Positive Operators

In this section we can see the definition of partial order is a binary relation “\(\leq \)” over a set \(P \) which is reflexive, antisymmetric, and transitive i.e \(\forall a, b, c \in P \). We have that:

- \(a \leq a \) (Reflexive)
- \(if \ a \leq b \ and \ b \leq a \ then \ a = b \) (Antisymmetric)
- \(if \ a \leq b \ and \ b \leq c \ then \ a \leq c \) (Transitive)

3.3.1 Definition.

A bounded linear operator \(T: H \to H \) is called a positive operator if and only if \(T \) self-adjoint and \((Tx, x) \geq 0 \) for all \(x \in H \). A bounded linear operator \(T: H \to H \) is said to be **positive**, written

\(T \geq 0 \) if and only if \((Tx, x) \geq 0 \) for all \(x \in H \)

Remark 2: The sum of positive operators is positive. Every positive operator on a complex Hilbert space is self-adjoint.

The following theorem is like the familiar statement about real numbers which says that when you multiply two non-negative real numbers the result is a non-negative real numbers.

3.3.1 Theorem

Let \(S \) and \(T \) be a positive and self-adjoint such that \(ST = TS \). Then their product \(ST \) is also self-adjoint and positive.

Proof. Since \((ST)^\star = T^\star S^\star = TS \) we see that \(ST \) is self-adjoint if and only if \(ST = TS \). We show that \(ST \) is positive. This is true for \(n = 0 \). Assume it is true for any \(n \). We consider

\[S_n = \frac{1}{\|S\|} S_n S_{n+1} = S_n - S_n^2 \quad (n = 1, 2, 3 \ldots \ldots) \quad (*) \]
and prove by induction such that $0 \leq S_n \leq I$ (**)

- For $n = 1$ the inequality (**) holds. Indeed, the assumption $0 \leq S$ implies $S_1 \leq I$ is obtained by application of the Schwarz inequality $\|Sx\| \leq \|s\|\|x\|

$$\langle S_1x, x \rangle = \frac{1}{2\|S\|} \langle Sx, x \rangle \leq \frac{1}{2\|S\|} \|sx\|\|x\| \leq \|x\|^2 = \langle lx, x \rangle$$

$\Rightarrow S_1 \leq I.$

Suppose (**) holds for any k that is $0 \leq S_k \leq I$. Thus, $0 \leq I - S_k \leq I$.

Since S_k is self-adjoint, for every $x \in H$ & $y = S_kx$, we obtain

$$\langle S_k^2(I - S_k)x, x \rangle = \langle (I - S_k)S_kx, S_kx \rangle = \langle (I - S_k)y, y \rangle \geq 0.$$

By definition this proves $S_k^2(I - S_k) \geq 0$. Similarly, $S_k(I - S_k)^2 \geq 0$.

Since S_k is self-adjoint. It is clear that from remark (2) sum of positive operator is positive.

$0 \leq S_k^2(I - S_k) + S_k(I - S_k)^2 = S_k - S_k^2 = S_{k+1}.$

Hence $0 \leq S_{k+1}$ and $S_{k+1} \leq I$ follows from $S_k^2 \geq 0$ and $I - S_k \geq 0$

- We now show that $\langle STx, x \rangle \geq 0$ for all $x \in H$. Form (**) we obtain successively

$$S_1 = S_1^2 + S_2, S_2 = S_2^2 + S_3, S_3 = S_3^2 + S_4, S_4 = S_4^2 + S_5 + S_6, \ldots,$$

$$S_n = S_n^2 + S_{n+1} + S_{n+2} + \ldots + S_{n+2} + S_{n+3} + \ldots + S_{n+2} + S_{n+1}$$

Since $S_{n+1} \geq 0$ this implies

$$S_1^2 + S_2^2 + S_3^2 + S_4^2 + \ldots + S_n^2 = S_1 - S_{n+1} \leq S_1$$

By the definition of \leq and self-adjointness of S_j’s

$$\sum_{j=1}^{n} \|S_jx\|^2 = \sum_{j=1}^{n} \langle S_jx, S_jx \rangle = \sum_{j=1}^{n} \langle S_j^2x, x \rangle \leq \langle S_1x, x \rangle$$

Since n is arbitrary, the infinite series $\|S_1x\|^2 + \|S_2x\|^2 + \ldots$

$$\lim_{n \to \infty} \sum_{j=1}^{n} \|S_jx\|^2 = \|S_1x\|^2.$$

Hence $\lim_{n \to \infty} S_nx = Sx(\sum_{j=1}^{n} S_j^2)x = (S_1 - S_{n+1})x \to S_1x$

$$\lim_{n \to \infty} \sum_{j=1}^{n} \langle S_jx, S_jx \rangle = \lim_{n \to \infty} \sum_{j=1}^{n} \langle S_jx, S_jx \rangle = \lim_{n \to \infty} \sum_{j=1}^{n} \langle S_jx, S_jx \rangle = \|S\| \lim_{n \to \infty} \sum_{j=1}^{n} \langle T_jx, T_jx \rangle = \|S\| \lim_{n \to \infty} \sum_{j=1}^{n} \langle T_jy, y_j \rangle \geq 0$$

$\therefore \langle STx, x \rangle \geq 0$, then ST are positive. \blacksquare

3.3.2. Definition

A monotone sequence (T_n) of self-adjoint linear operators T_n on Hilbert space H is a sequence (T_n) which is either
monotone increasing, that is,
\[T_1 \leq T_2 \leq T_3 \leq \cdots \]
Or monotone decreasing, that is,
\[T_1 \geq T_2 \geq T_3 \geq \cdots \]

The following theorem is a generalization of the familiar fact that if you have an increasing sequence of real numbers which is bounded above, then the sequence converges.

3.3.2. Theorem

Let \((T_n)\) be a sequence of bounded self-adjoint linear operators on a complex Hilbert space \(H\) such that
\[T_1 \leq T_2 \leq T_3 \leq \cdots \]

Where \(K\) is bounded self-adjoint linear operator on \(H\). Suppose that any \(T_j\) commutes with \(K\) and with every \(T_m\). Then \((T_n)\) is strongly operator convergent (\(T_nx \to Tx\) for all \(x \in H\)) and limit operator \(T\) is linear, bounded and self-adjoint and satisfies \(T \leq K\).

Proof. We consider \(S_n = K - T_n\). The sequence \(\{(S_n^2x, x)\}\) converges \(\forall x \in H; T_nx \to Tx\), where \(T\) is linear, self-adjoint and bounded by uniform boundedness theorem \((S_n^2x, x) = (S_nx, S_nx) = (x, S_n^2x)\). Therefore, \(S_n\) is self-adjoint?

\[S_n^2 = S_nS_n = (S_n - S_n)S_n = (T_n - T_n)(k - T_m). \]

Let \(m < n\). Then \(T_n - T_m\) and \(K - T_m\) are positive by \((*)\), since these operators commute, their product is positive. Hence on the left \(S_m^2 - S_nS_m \geq 0\), that is \(S_m^2 \geq S_nS_m\) for \(m < n\).

Similarly \(S_nS_m - S_n^2 = S_n(S_m - S_n) = (k - T_m)(T_n - T_m) \geq 0\). So that \(S_nS_m \geq S_n^2\), together \(S_m^2 \geq S_nS_m \geq S_n^2, m < n\). By definition, using the self-adjointness of \(S_n\)

\[(S_n^2x, x) \geq (S_nS_mx, x) \geq (S_n^2x, x) = (S_nx, S_nx) = ||S_nx||^2 \geq 0. (**\)

This show that \(\{(S_n^2x, x)\}\) with fixed \(x\) is a monotone decreasing sequence of non-negative numbers. Hence, \(\{(S_n^2x, x)\}\) converges \(\forall x \in H\).

We show that \(T_nx \to Tx\) is converges. By assumption, every \(T_n\) commute with every \(T_m\) and with \(K\). Hence the \(S_j's\) all commute. These operators are self-adjoint, since \(-2(S_nS_mx, x) \leq -2(S_n^2x, x)\) by \((*)\) where \(m < n\)

\[||S_mx - S_nx||^2 = (S_m - S_n)x, (S_m - S_n)x) \]
\[= (S_m^2 - S_n^2)x, x) \]
\[= (S_m^2x, x) - 2(S_mS_mx, x) + (S_n^2x, x) \]
\[\leq (S_n^2x, x) - (S_m^2x, x). \]

Since \((S_nx)\) is Cauchy sequence in \(H\) is completes. We show that \(T\) is self-adjoint because \(T_n\) is self-adjoint and the inner product is continuous.

\[(Tx, x) = \lim_{n \to \infty}(T_nx, x) = \lim_{n \to \infty}(x, T_nx) = (x, Tx). \]
We show that T is bounded. Now we must show that T is bounded and (T_nx) converges to it $\text{sup}_n \|T_nx\|$ must be finite for every x, there is M such that $M > 0$.

$\Rightarrow \|T_n\| \leq M, \forall n$

$\Rightarrow \|T_nx\| \leq M\|x\|$

$\Rightarrow \lim_{n \to \infty} \|T_nx\| \leq M\|x\| \text{ this implies } \|Tx\| \leq M\|x\|.$

Hence T is bounded, by uniform boundness theorem. Finally $(Tx, x) = \lim_{n \to \infty} (T_nx, x) \leq (Kx, x)$. Therefore $T \leq K$ \blacksquare

3.4. Square Roots of Positive Operators

3.4.1. Definition

Let $T: H \to H$ be positive bounded self-adjoint linear operator on complex Hilbert space H. Then a bounded self-adjoint operator A is called a square root of T if, $A^2 = T$. In addition, $A \geq 0$, then A is called a positive square root of T and is denoted by $A = T^{\frac{1}{2}}$ exists and unique.

3.4.1. Theorem

Every positive bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H has a positive square root A, which is unique. This operator A commutes with every bounded linear operator on H which commutes with T.

Proof. a) We show that if the theorem holds under the additional assumption $T \leq I$ it also holds without that assumption. If $T = 0$, we can take $A = T^{\frac{1}{2}} = 0$. Let $T \neq 0$ by Cauchy-Schwarz inequality.

$\langle Tx, x \rangle \leq \|Tx\|\|x\| \leq \|T\|\|x\|^2 = \langle Ix, x \rangle$

$(\frac{T}{\|T\|}x, x) = \langle Ix, x \rangle, \text{ since } \|T\| \neq 0 \text{ set } Q = (\frac{1}{\|T\|})$. We obtain

$\langle Qx, x \rangle \leq \|x\|^2 = \langle Ix, x \rangle \text{ that is } Q \leq I$.

Assuming that Q has a unique positive square root. $B = Q^{\frac{1}{2}}$ we have $B^2 = Q$ and $T = \|T\|Q \Rightarrow T^{\frac{1}{2}} = \|T\|^\frac{1}{2}Q^{\frac{1}{2}} = T^{\frac{1}{2}}B = \|T\|B^2 = \|T\|Q = T$. Hence if we prove the theorem under the additional assumption $T \leq I$.

- We obtain the existence of the operator $A = T^{\frac{1}{2}} \text{ from } A_nx \to Ax \text{ where } A_0 = 0$ &

 $A_{n+1} = A_n + \frac{1}{2}(T - A_n^2) \quad n = 0,1,2, \ldots$ \hspace{1em} (i)

 We consider(i), since $A_0 = 0$, we have $A_1 = \frac{1}{2}T, A_2 = T - \frac{1}{8}T^2 \ldots$,

 $A_{n+1} = A_n + \frac{1}{2}(T - A_n^2) \quad n = 0,1,2, \ldots$

 Each A_n is polynomial in T, and they also commutes with T. We now prove

 $A_n \leq I \quad n = 0,1,2, \ldots$ \hspace{1em} (ii)

 \vspace{1em}

 NAAS Rating: 3.00- Articles can be sent to editor@impactjournals.us
\[A_n \leq A_{n+1} \text{ for } n = 0, 1, 2, \ldots \]
\[A_n x \to Ax, A = T \frac{1}{2} \]
\[ST = TS, \Rightarrow AS = SA \]

Where \(S \) is a bounded linear operator on \(H \).

Proof (ii). This is true for \(n = 0 \). Assume true for \(n \). Since \(I - A_{n-1} \) is self-adjoint

\[
(I - A_{n-1})^2 \geq 0. \text{ Also } T \leq I. \text{ This implies } I - T \geq 0. \text{ From this (i) and we obtain (ii).}
\]

\[
0 \leq \frac{1}{4} (I - A_{n-1})^2 + \frac{1}{2} (I - T) = I - A_{n-1} - \frac{1}{2} (T - A_{n-1}^2) = I - A_n.
\]

\[
\Rightarrow 0 \leq I - A_n.
\]

Proof (iii). We use induction (i) gives \(0 = A_0 \leq A_1 = \frac{1}{2} T \)

We show that \(A_{n-1} \leq A_n \) for fixed \(n \) implies \(A_n \leq A_{n+1} \) from (i) we have;

\[
A_{n+1} - A_n = A_n + \frac{1}{2} (T - A_n^2) - A_{n-1} - \frac{1}{2} (T - A_{n-1}^2)
\]

\[
= A_n - \frac{1}{2}A_n^2 - A_{n-1} + \frac{1}{2}A_{n-1}^2
\]

\[
= A_n - A_{n-1} - \frac{1}{2}A_n^2 + \frac{1}{2}A_{n-1}^2
\]

\[
\geq (A_n - A_{n-1})(\frac{1}{2}A_n + A_{n-1})
\]

\[
= (A_n - A_{n-1})I - \frac{1}{2}(2I) = 0.
\]

Hence \(A_n - A_{n-1} \geq 0 \) and \((I - \frac{1}{2}(A_n + A_{n-1}) \geq 0 \).

Therefore \(A_n \leq A_{n+1} \text{ for } n = 0, 1, 2, \ldots \).

Proof (iv). \((A_n) \) Monotone increasing by (iii) and \(A_n \leq I \) by (ii). Hence (by the theorem monotone sequence) implies the existence of a bounded self-adjoint linear operator \(A \). Such that \(A_n x \to Ax \text{ for all } x \in H \), since \((A_n x) \) converges (i) gives

\[
A_{n+1} x - A_n x = \frac{1}{2} (Tx - A_n^2 x) \to 0 \text{ as } n \to \infty
\]

\[
Tx - A^2 x = 0 \forall x.
\]

\[
Tx = A^2 x, x \neq 0. \text{ Hence } T = A^2. \text{ Also } A \geq 0. \text{ Because } 0 = A_0 \leq A_n \text{ by (iii)}
\]

\[
\Rightarrow \lim_{n \to \infty} (A_n x, x) = \lim_{n \to \infty} (x, A_n x) = (x, Ax) = (A_n x) \geq 0, \text{ by continuity of inner product}
\]

Proof (v). Let \(S \in L(H, H) \) be any linear operator that commute with \(A \).

\(SA_n = A_n S, \forall n \)

Since \(A_n \to A \), \(A_n Sx \to ASx \). Using continuity of inner product of \(S \),

\[
\lim_{n \to \infty} SA_n x = S \lim_{n \to \infty} A_n x = SAx = \lim_{n \to \infty} A_n Sx = ASx. \text{ Hence } ST = TS \Rightarrow AS = SA
\]
• **Uniqueness:** Let both A and B be positive square root of T. Then $A^2 = B^2 = T$. Also $BT = B^2B = BB^2 = TB$. So that $AB = BA$ by (v). Let $x \in H$ be arbitrary and $y = (A - B)x$. Then $\langle Ay, y \rangle \geq 0 \& \langle By, y \rangle \geq 0$, because $A \geq 0 \& B \geq 0$. Using $AB = BA \& A^2 = B^2$ we obtain $\langle Ay, y \rangle + \langle By, y \rangle = ((A + B)y, y) = ((A^2 - B^2)x, y) = 0$.

Hence $\langle Ay, y \rangle = \langle By, y \rangle = 0$, since $A \geq 0$ and A is self-adjoint. It has itself a positive square root C, that is $C^2 = A$ and C is self-adjoint. We obtain: $0 = \langle Ay, y \rangle = \langle C^2y, y \rangle = (Cy, Cy) = \|Cy\|^2$ and $Cy = 0$, also $Ay = C^2y = C(Cy) = 0$.

Similarly, $B \geq 0$ and B is self-adjoint, it has itself a positive square root D. That is $D^2 = B$ and D is self-adjoint. $0 = \langle By, y \rangle = \langle D^2y, y \rangle = (Dy, Dy) = \|Dy\|^2 \& Dy = D(Dy) = 0$. Hence $By = 0$, since $B \geq 0$. Hence $(A - B)y = 0$, using $y = (A - B)x$, $\forall x \in H$. $\|Ax - Bx\|^2 = ((A - B)^2x, x) = ((A - B)y, x) = 0$. Hence $A = B$. Then A is unique. ■

Example 5

Let $T: L^2(0,1) \rightarrow L^2(0,1)$ be a linear operator defined by

$Tf(x) = xf(x)$ for all $f \in L^2(0,1), \text{for all } x \in (0,1)$

- Show that T is a positive operator.
- Find the lower and upper bounds of T.
- Find norm of T.

Solution. (a) For all $f \in L^2(0,1)$ we have that T is self-adjoint

$\langle Tf, g \rangle = \int_0^1 x f(x) \overline{g(x)} \, dx = \int_0^1 f(x) x \overline{g(x)} \, dx = \langle f, Tg \rangle \ \forall f, g \in L^2(0,1)$

$\langle Tf, f \rangle = \int_0^1 x^2 f(x) \, dx = \int_0^1 x f(x)^2 \, dx \geq 0$.

Therefore T is positive operator.

- First we Notice that

$M = \sup_{\|f\|=1} \langle Tf, f \rangle = \sup_{\|f\|=1} \int_0^1 x f(x)^2 \, dx \leq \sup_{\|f\|=1} \int_0^1 f(x)^2 \, dx = 1$

We prove that $M = 1$, consider

$f_\varepsilon(x) = \begin{cases} 0, & \text{if } x \in [0,1-\varepsilon) \\ \frac{1}{\varepsilon^2}, & \text{if } x \in [1-\varepsilon,1] \end{cases}$

$\Rightarrow \|f\|^2 = \int_{1-\varepsilon}^1 \varepsilon^{-1} \, dx = 1 &$

$M = \langle Tf_\varepsilon, f_\varepsilon \rangle = \int_0^1 x |f_\varepsilon x|^2 \, dx = \int_{1-\varepsilon}^1 x |f_\varepsilon x|^2 \, dx = \frac{x^2}{2\varepsilon} |1-\varepsilon = \frac{1-(1-\varepsilon)^2}{2\varepsilon} = 1$

$M = 1$.

We proceed similarly in order to prove that $m = \inf_{\|f\|=1} \langle Tf, f \rangle = 0$ using the function
4. PROJECTIONS

4.1.1 Definition

Let H be a Hilbert space over Complex numbers. A bounded linear operator P on H called:

- a projection, if $P^2 = P$
- An orthogonal projection, if $P^2 = P$ and $P^* = P$.

Note

The range $\text{Ran}(P) = P(H)$ of a projection on a Hilbert space H always is a closed linear subspace of H on which P acts like the identity. If in addition P is orthogonal, then P acts like zero operator on $(R(P))^\perp$.

If $x = y + z$ with $y \in R(P)$ and $z \in (R(P))^\perp = N(P)$ is the decomposition guaranteed by the projection theorem, then $Px = y$. Thus the projection theorem sets up a one -to –one correspondence between orthogonal projection and closed linear subspaces.

$x = y + z = Px + (I - P)x$

This show that the projection of H onto Y^\perp is $I - P$

4.1.1. Theorem

A bounded linear operator $P: H \to H$ on a Hilbert space H is a projection if and only if P is self-adjoint and idempotent.

Proof. (\Rightarrow) Suppose that P is a projection on H and denote $P(H)$ by Y. Then $P^2 = P$ because for every $x \in H$ and $Px = y \in Y$ we have; $P^2x = Py = y$, hence $P^2x = Px \Rightarrow P^2 = P$ is idempotent. Now consider any two vectors $x_1, x_2 \in H$, from decomposition we can write $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$, where $y_1, y_2 \in Y = R(P)$ and $z_1, z_2 \in Y^\perp = N(P)$. Then, $\langle y_1, z_2 \rangle = \langle y_2, z_1 \rangle = 0$, because $Y \perp Y^\perp$. We show that P is self-adjoint; $\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle = \langle x_1, x_2 \rangle$. Hence, P is self-adjoint.

(\Leftarrow) Suppose that P is self-adjoint and idempotent, denoted $P(H)$ by Y. Then for every $x \in H$

$x = Px + (I - P)x$

Orthogonality; $Y = P(H) \perp (I - P)(H)$, follows from:

$\langle Px, (I - P)v \rangle = \langle x, P(I - P)v \rangle = \langle x, Pv - P^2v \rangle = \langle x, 0 \rangle = 0$.

Let, $Q = (I - P)$, $y \in \ker Q$ can see from $QPx = Px - P^2x = QPx = 0$. Next, $y \supset \ker Q$, $Qx = x - Px \Rightarrow Qx = x$. Hence $Y = \{0\}$, since $\{0\}$ is closed, so inverse image $\{x: QPx = 0\} = \ker Q$. Hence Y is closed subspace of H.

Therefore, Y is projection on H.

4.1.2. Theorem

For any projection Y on a Hilbert space H.

- $\langle Py, x \rangle = \|Py\|^2$
- $0 \leq P \leq I$
- $\|P\| \leq 1; \|P\| = 1$ if $P(H) \neq \{0\}$

Proof.

- $\langle Py, x \rangle = \langle P^2y, x \rangle = \langle Py, Py \rangle = \|Py\|^2$
- $0 \leq \|Py\|^2 = \langle Py, Py \rangle = \|Py\|^2 = \langle x, x \rangle = I \Rightarrow 0 \leq P \leq I$
- By using Schwarz inequality;

$\langle Py, x \rangle \leq \|x\|^2$

$\|Py\|^2 \leq \|x\|^2$, since $\|x\| \neq 0$

$\|P\| \leq 1, \forall x \in H$ \hspace{1cm} (1)

$\|Py\| = \|P(Py)\| \leq \|P\|\|Py\|$

$\|Py\| \leq \|P\|\|P\|$, since $\|P\| \neq 0$

$1 \leq \|P\|$ \hspace{1cm} (2)

By combining (1) and (2) we get; $\|P\| = 1$ \hspace{1cm} \square

4.1.3. Theorem

Products projections on Hilbert space H are satisfying the following two conditions:

- $P = P_1P_2$ is projection on H if and only if the projections P_1 and P_2 commute. Then P projects H onto $Y = Y_1 \cap Y_2$ where $Y_i = P_i(H)$.

- Two closed subspaces Y and V of H are orthogonal if and only if the corresponding projections satisfy $P_1P_2 = 0$.

Proof. $I(\Rightarrow)$. Suppose that P_1 and P_2 commute, then show that P is self-adjoint and idempotent $P^* = (P_1P_2)^* = P_2^*P_1^* = P_2P_1 = P_1P_2 = P$. Hence $P^* = P$, then P is self-adjoint. $P^2 = (P_1P_2)^2 = (P_1P_2)(P_1P_2) = P_1^2P_2^2 = P_1P_2 = P_2P_1 = P$. Then P is idempotent. Hence P is projection. Then $Py = P_1(P_2y) = P_2(P_1y) = x, \forall y \in H$. Since P_1 projects H onto Y_1, we must have:

$Py = x = P_1(P_2y) \in Y_1$

$Py = x = P_2(P_1y) \in Y_2$

$Py \in Y_1 \cap Y_2$ since $x \in H$ was arbitrary. This show P projects H into $Y = Y_1 \cap Y_2$. Actually P projects H
onto Y. Indeed, if $y \in Y$, then $y \in Y_1$ and $y \in Y_2$. $P_y = P_1 P_2 y = P_y y = y$. Then $y \in Y_1 \cap Y_2$, $y \in Y$. Hence $Y = Y_1 \cap Y_2$.

(\Rightarrow). Suppose $P = P_1 P_2$ is projection defined on H. It must be self-adjoint $(P y_1, y_2) = (P_1 P_2 y_1, y_2) = (P_2 y_1, P_2 y_2) = (y_1, P_2 P_1 y_2) = (y_1, y_2)$. Then $P_1 P_2 = P_2 P_1$.

II (\Rightarrow). If $y \perp V$, then $y \cap V = \{0\}$ and $P_y P_V x = \{0\}$ for all $x \in H$ by part (a), so that $P_y P_V = 0$.

(\Leftarrow). If $P_y P_V = 0$, then for every $y \in Y$ and $v \in V$. We obtain $(y, v) = (P_y y, P_V v) = (y, P_v y) = (y, 0) = 0$. Hence $y \perp V$.

3.1.5 Theorem

Let P_1 and P_2 be projections on Hilbert space H. Then:

- The sum $P = P_1 + P_2$ is a projection on H if and only if $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal.
- If $P = P_1 + P_2$ is a projection, P projects onto $Y = Y_1 \oplus Y_2$.

Proof. I (\Rightarrow). Suppose that $P = P_1 + P_2$ is a projection.

Let $x \in Y_1 \Rightarrow \|x\|^2 \geq \|(P_1 + P_2)x\|^2 = ((P_1 + P_2)x, (P_1 + P_2)x)$

$= (P_1 x + P_2 x, x) = (P_1 x, x) + (P_2 x, x)$

$= \|x\|^2 + \|P_2 x\|^2 \Rightarrow \|P_2 x\| = 0$.

For any $y \in Y_2$ and $y \in Y_1 \perp Y_2$. Therefore $Y_1 \perp Y_2$.

(\Leftarrow) If $Y_1 \perp Y_2$, then $P_2 P_1 = P_1 P_2 = 0$ which implies $P^2 = P$. Since P_2 and P_1 are self-adjoint, so is $P_1 + P_2$.

Hence P is projection.

II. We determine the closed subspace $Y \subset H$ onto which P projects. Since $P_1 + P_2, \forall x \in H, y = Px = P_1 x + P_2 x$. Here $P_1 x \in Y_1$ and $P_2 x \in Y_2$ hence, $y \in Y_1 \oplus Y_2$.

So that;

$Y \subset Y_1 \oplus Y_2$.

We show that $Y \supset Y_1 \oplus Y_2$. Let $v \in Y_1 \oplus Y_2$ be arbitrary, then $v = y_1 + y_2$, here $y_1 \in Y_1$ and $y_2 \in Y_2$. Applying in P. Using $Y_1 \perp Y_2$, we obtain: $P v = P_1 (y_1 + y_2) + P_2 (y_1 + y_2) = P_1 y_1$. Hence,

$v \in Y$ and $Y \supset Y_1 \oplus Y_2$

Combining (1) and (2) we have:

$Y = Y_1 \oplus Y_2$.

4.2 Further Properties of Projections
4.2.1 Theorem

Let \(P_1 \) and \(P_2 \) be projections defined on a Hilbert Space \(H \). Denote by \(Y_1 = P_1(H) \) and \(Y_2 = P_2(H) \) the subspace onto which \(H \) is projected by \(P_1 \) and \(P_2 \), and let \(\mathcal{N}(P_1) \) and \(\mathcal{N}(P_2) \) be the Null space of these projection. Then the following conditions are equivalent.

- \(P_2P_1 = P_1P_2 = P_1 \)
- \(Y_1 \subset Y_2 = P_1(H) \subset P_2(H) \)
- \(\mathcal{N}(P_1) \supset \mathcal{N}(P_2) \)
- \(\|P_1x\| \leq \|P_2x\| \)
- \(P_1 \leq P_2 \)

Proof. (ii \(\Rightarrow \) i). Suppose \(Y_1 \subset Y_2 = P_1(H) \subset P_2(H) \). We want show that \(P_2P_1 = P_1P_2 = P_1 \). For every \(x \in H \), we have \(P_2x \in Y_1 \). Hence, \(P_2x \in Y_2 \) by (ii.) \(P_2(P_2x) = P_1x \Rightarrow P_2P_1 = P_1 = P_2P_1P_2 = P_2P_1 = P_1 \). Since, \(P_1 \) is self-adjoint. Therefore, \(P_1 = P_1P_2 = P_1 \).

(i \(\Rightarrow \) iv). Suppose \(P_2P_1 = P_1P_2 = P_1 \). We want show that \(\|P_1x\| \leq \|P_2x\| \) for all \(x \in H \)

\[\Rightarrow \langle P_1x, x \rangle \leq \|x\|^2, \text{ since } P_1x = x \]
\[\Rightarrow \|P_1x\|^2 \leq \|x\|^2, \text{ for all } x \in H \]
\[\Rightarrow \|P_1\|^2\|x\|^2 \leq \|x\|^2, \|x\| \neq 0. \text{ We have } \|P_1\| \leq 1 \text{ by (1) } \langle Px, x \rangle = \|Px\|^2 \]
\[\Rightarrow \|P_1x\| = \|P_1P_2x\| \leq \|P_1\|\|P_2x\| \leq \|P_2x\|. \]

Therefore, \(\|P_1x\| \leq \|P_2x\| \).

(iv \(\Rightarrow \) iii). Suppose \(\|P_1x\| \leq \|P_2x\| \). We want show that \(P_1 \leq P_2 \). From \(\langle Px, x \rangle = \|Px\|^2 \) and (iv.) in present theorem we have for all \(x \in H \). \(\langle P_1x, x \rangle = \|P_1x\|^2 \leq \|P_2x\|^2 = \langle P_2x, x \rangle \)

Therefore, \(P_1 \leq P_2 \) by definition of positive operators.

(v \(\Rightarrow \) iii). Suppose \(P_1 \leq P_2 \). We want show that \(\mathcal{N}(P_1) \supset \mathcal{N}(P_2) \). Let \(x \in \mathcal{N}(P_2) \Rightarrow P_2x = 0 \) by (iii.) sect. 2 and (v.) in the present theorem, \(\|P_1x\|^2 = \langle P_1x, x \rangle \leq \langle P_2x, x \rangle = \langle 0, x \rangle = 0 \). Hence, \(P_1x = 0, x \in \mathcal{N}(P_1) \). Therefore, \(\mathcal{N}(P_1) \supset \mathcal{N}(P_2) \).

4.2.2 Theorem

Let \(P_1 \) & \(P_2 \) be Projections on a Hilbert space \(H \). Then

- The difference \(P = P_2 - P_1 \) is a projection if and only if \(Y_1 \subset Y_2 \) where \(Y_j = P_j(H) \).
- If \(P = P_2 - P_1 \) is a projection, \(P \) projects \(H \) onto \(Y \), where \(Y \) is the orthogonal complement of \(Y_1 \) in \(Y_2 \).

Proof. (\(\Rightarrow \)) Suppose that \(P = P_2 - P_1 \) is a projection. We want to show that \(Y_1 \subset Y_2 \). If \(P = P_2 - P_1 \) is a projection.
\[P = P^2 \Rightarrow P_2 - P_1 = (P_2 - P_1)^2 = P_2^2 - P_2P_1 - P_1P_2 + P_1^2. \]
\[P_2 + P_2P_1 = 2P_1 \]

by theorem (2.2) (i.). Multiply both sides by \(P_2 \) we have:

\[P_2P_1P_2 + P_2P_1 = 2P_2P_1 \]

\[P_2P_1 + P_2P_1P_2 = 2P_2P_1 \]

Hence \(P_2P_1P_2 = P_2P_1, P_2P_1P_2 = P_2P_2 \) and by (*)

\[P_1 = P_2P_1 = P_1 \]

Therefore, \(Y_1 \subseteq Y_2 \).

(\(\Leftarrow \)) Suppose \(Y_1 \subseteq Y_2 \), where \(Y_j = P_j(H) \Rightarrow P^2 = (P_2 - P_1)^2 = P_2^2 - P_2P_1 - P_1P_2 + P_1^2 = P_2 - P_1 \). Therefore, \(P \) is idempotent. \(\Rightarrow P^* = (P_2 - P_1)^* = P_2^* - P_1^* = P_2 - P_1 \). Therefore \(P \) is self-adjoint.

\[\therefore \] \(P \) is projection.

(b) \(Y = P(H) \) consists of all vectors of the form

\[(8) Y = Px = P_2x - P_1x \text{ for all } x \in H \]

Since \(P_2P_1 = P_1P_2 = P_1 \) implies \(Y_1 \subseteq Y_2 \)

\[P_2y = P_2^2x - P_2P_1x = P_2x - P_1x = y \]

This show that \(y \in Y_2 \), also from (8) and (1)

\[P_1y = P_1^2x = P_1x - P_1x = 0 \]

\[\Rightarrow P_1y = 0 \]

\[y \in N(P_1) = Y_1^+ \]

Together \(y \in V \) where \(V = Y_2 \cap Y_1^+ \), since the projection of \(H \) onto \(Y_1^+ \) is \(I - P_1 \), every \(v \in V \) is the form

\[(9) v = (I - P_1) + \ y_2, \ (y_2 \in Y_2) \]

Using again, \(P_2P_1 = P_1 \), we obtain from (9), since \(P_2y_2 = y_2 \)

\[P \ v = (P_2 - P_1)(I - P_1)y_2 \]

\[= (P_2 - P_2P_1 - P_1 + P_1^2)y_2 \]

\[= (P_2 - P_2P_1 - P_1 + P_1)y_2 = (P_2 - P_1)y_2 \]

\[= P_2y_2 - P_1y_2 = y_2 - P_1y_2 = v \]

\[\therefore \] \(P \ v = v \) so that \(v \in Y \), since \(v \in V \) was arbitrary

\[\therefore Y \ni V \]
\[Y = P(H) = V = Y_2 \cap Y_4^1 \]

4.2.3. Theorem

Let \(P_n \) is a monotone increasing sequence of projection \(P_n \) defined on a Hilbert Space \(H \). Then

- \((P_n) \) is strongly operator convergent, say \(P_n x \to Px \) for every \(x \in H \), and the limit operator \(P \) is a projection defined on \(H \).
- \(P \) projects \(H \) onto
- \(P(H) = \bigcup_{n=1}^{\infty} P_n(H) \)
- \(P \) has the null space \(\mathcal{N}(P) = \bigcap_{n=1}^{\infty} \mathcal{N}(P_n) \)

Proof a) Let \(m < n \), by assumption \(P_m \subseteq P_n \), so that we have \(P_m(H) \subseteq P_n(H) \) and \(P_m - P_m \) is projection. Hence for every fixed \(x \in H \), we obtain by 2.1.2

\[
\|P_n x - P_m x\|^2 = \|(P_n - P_m)x\|^2 = \|(P_n - P_m)x, x\| = \|P_n x\|^2 - \|P_m x\|^2.
\]

Now \(\|P_n\| \leq 1 \) by 3.1.2, so that \(\|P_n x\| \leq \|x\| \) for all \(n \). Hence, \(\|P_n x\| \) is bounded a sequence of numbers.\(\|P_n x\| \) is also monotone by 3.2.1. Since \((P_n) \) is monotone. Hence \(\lim_{n \to \infty} P_n x \to Px \) is converges. Since \((P_n x) \) is Cauchy.

\[
\|P_n x - P_m x\| = \|(P_n - P_m)x\| \leq \|P_n - P_m\||x|
\]

\[\implies \lim_{n \to \infty} P_n x = Px, \text{ since } H \text{ is complete.} \]

The linearity of \(P \):

\[
P(ax + \beta y) = \lim_{n \to \infty} P_n(ax + \beta y)
\]

\[= \lim_{n \to \infty}(P_n ax + P_n \beta y)
\]

\[= a \lim_{n \to \infty} P_n x + \beta \lim_{n \to \infty} P_n y
\]

\[= ax + \beta Py
\]

\[\implies \|P_n x\| \leq \|P_n\||x| \implies \|P_n x\| \leq \|P_n\||x|
\]

\[\implies \|P_n x\| \leq \|x\|
\]

\[\implies \|P_n\| \leq \|x\|. \text{ Therefore } P_n \text{ is bounded,}
\]

\((P_n x, x) = (x, P_n x) = (x, P_n x) \), therefore \(P_n \) is self-ad joint, and

\((P_n^2 x, x) = (P_n x, P_n x) = (x, P_n x) = (P_n x, x) \), hence \(P_n \) is projection.

b). We determine \(P(H) \). Let \(m < n \). Then \(P_m \subseteq P_n \), that is \(P_n - P_m \geq 0 \) and \((P_n - P_m)x, x\) \(\geq 0 \). The continuity of inner product

\[\lim_{n \to \infty}((P_n - P_m)x, x) = \lim_{n \to \infty}(x, (P_n - P_m)x) \]

NAAS Rating: 3.00- Articles can be sent to editor@impactjournals.us
\[= \lim_{n \to \infty} (x, (P - P_m)x) \]
\[\therefore ((P - P_m)x, x) \geq 0. \]

That is \(P_m \leq P \) and 3.2.1 yields \(P_m(H) \subset P(H) \) for every \(m \). Hence \(\bigcup P_m(H) \subset P(H) \). Furthermore, for every \(m \) and for every \(x \in H \), we have, \(P_m x \in P_m(H) \subset \bigcup P_m(H) \). Since \(P_m x \to Px, Px \in \bigcup P_m(H) \). Hence \(P(H) \subset \bigcup P_m(H) \)

\[
\bigcup P_m(H) \subset P(H) \subset \bigcup P_m(H) \\
\Rightarrow P(H) = \mathcal{N}(J - P) = \{0\} \\
\Rightarrow P(H) = \{0\} \text{is closed} \\
\therefore P(H) = \bigcup_{m=1}^{\infty} P_m(H)
\]

c). We determine \(\mathcal{N}(P) \)

\[
\mathcal{N}(P) = P(H)^\perp \subset P_n(H)^\perp \text{for all } n. \text{ Since } P(H) \supset P_n(H) \text{ by part (b). Hence } \mathcal{N}(P) \subset \cap P_n(H)^\perp = \cap \mathcal{N}(P_n)
\]

\[
\Rightarrow \mathcal{N}(P) \subset \cap \mathcal{N}(P_n)
\]

On other hand, if \(x \in \cap \mathcal{N}(P_n) \), then \(x \in \mathcal{N}(P_n) \) for all \(n \). So that \(P_n x = 0 \) and \(P_n x \to Px \Rightarrow Px = 0 \). That is \(x \in \mathcal{N}(P_n) \) was arbitrary.

\[
\cap \mathcal{N}(P_n) \subset \mathcal{N}(P)
\]

By combining (1) and (2) we gets

\[
\mathcal{N}(P) = \cap_{n=1}^{\infty} \mathcal{N}(P_n)
\]

Example 6

Let \(P: C^3 \to C^3 \) be the linear operator defined by \(P(x, y, z) = (x, y, 0) , \forall x, y, z \in C^3 \). Then \(P \) is orthogonal projection.

Solution

Since \(C^3 \) is finite dimensional \(P \in B(C^3) \) and clealy \(P^2 = P \).

Follows from \(\langle P(x, y, z), (u, v, w) \rangle = xu + yv = \langle (x, y, z), P(u, v, w) \rangle \). Then \(P \) is self-adjoint. Therefore \(P \) is projection. Orthogonal projection of \(P \) has:

\[
\text{Imp} = \{(x, y, 0): x, y \in C \}
\]

Then \(P \) matrix representation:

\[
T = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

In generally a \(n \times n \) diagonal matrix whose diagonal element either 0 or 1 is the matrix of an orthogonal projection \(B(C^3) \).

5. SPECTRAL FAMILY
5.1.1 Definition

A one-parameter family of projection is called spectral family. Spectral family can be obtained from the finite dimension case as follows. Let $T: H \to H$ be a self-adjoint linear operator on a unitary space $H = \mathbb{C}^n$. Then T is bounded and we may choose a basis for H and represent T by a Hermitian matrix which we denote simply by T. The spectrum of the operator consists of the eigenvalues of that matrix which are real. For simplicity let us assume that the matrix T has n different eigenvalues $\lambda_1 < \lambda_2 < \lambda_3 < \cdots < \lambda_n$. Then theorem 1.1.1(6) implies that T has an orthonormal set of n eigenvectors x_1, x_2, \ldots, x_n where x_j corresponding to λ_j and we write these vectors as column vectors. This a basis for H, so that every $x \in H$ has a unique representation

$$x = \sum_{j=1}^{n} y_j x_j, \quad y_j = \langle x, x_j \rangle = x^T \overline{x}_j$$

(1)

In (1) we obtain the second formula from the first one by taking the inner product $\langle x, x_k \rangle$, where x_k is fixed and using the orthonormality. The essential fact in (1) is that x_j is an eigen vectors of T, so that we have $Tx_j = \lambda_j x_j$, consequently, if we apply T to (1) we simply obtain

$$Tx = \sum_{j=1}^{n} \lambda_j y_j x_j$$

(2)

Looking at (1) more closely, we see that we can define an operator

$$P_j: H \to H$$

(3)

$$x \mapsto y_j x_j \Rightarrow p_j x = y_j x_j = \langle x, x_j \rangle x_j. \quad P_j$$ is the projection (orthogonal projection) of H onto the eigenspace of T corresponding to λ_j. Formula (1) can now be written,

$$x = \sum_{j=1}^{n} P_j x$$

(4)

Hence, $I = \sum_{j=1}^{n} P_j$. Where I is identity operator on H. Formula (2) becomes

$$Tx = \sum_{j=1}^{n} \lambda_j P_j x$$

(5)

Hence $T = \sum_{j=1}^{n} \lambda_j P_j$. This is representation of T in terms of projection. Instead of the projection P_1, P_2, \ldots, P_n themselves we take sums of such projection. More precisely, for any real λ we define,

$$E_{\lambda} = \sum_{\lambda_j \leq \lambda} P_j \quad (\lambda \in \mathbb{R})$$

(6)

Hence $E_{\lambda}^2 = E_{\lambda}$, moreover E_{λ} is symmetric operator. This is one-operator family of projection, λ being the parameter. From (6) we see that for any λ the operator E_{λ} is the projection of H onto the subspace V_{λ} spanned by all those x_j for which $\lambda_j \leq \lambda$ it follows that $V_{\lambda} \subset V_{\mu} (\lambda \leq \mu)$. As λ traverse \mathcal{R} in the positive sense E_{λ} grows from 0 to I. The growth occurring at the eigenvalues of T and E_{λ} remaining unchanged for λ in any interval that is free of eigenvalues.

Properties of E_{λ}

- $E_{\lambda} E_{\mu} = E_{\mu} E_{\lambda} = E_{\lambda}$, if $\lambda < \mu$
- $E_{\lambda} = 0$, if $\lambda < \lambda_1$
- $E_{\lambda} = I$, if $\lambda \geq \lambda_n$
Spectral Properties of Self-Adjoint Linear Operators

- \(E_{\lambda_0} = \lim_{\nu \to \lambda_0} E_{\nu} = E_{\lambda} \)

Definition

A real spectral family (or real decomposition unity) is a one parameter family \(\mathcal{E} = (E_{\lambda}), \lambda \in \mathbb{R} \) of projection \(E_{\lambda} \) defined on Hilbert space \(H \) (of any dimension) which depends on a real parameter \(\lambda \) and such that,

\[
E_{\lambda} \leq E_{\mu} \quad (7)
\]

Hence, \(E_{\lambda}E_{\mu} = E_{\mu}E_{\lambda} = E_{\lambda}, \lambda < \mu \)

\[
\lim_{\lambda \to -\infty} E_{\lambda}x = 0 \quad (8a)
\]

\[
\lim_{\lambda \to +\infty} E_{\lambda}x = x \quad (8b)
\]

\[
E_{\lambda_0}x = \lim_{\mu \to \lambda_0} E_{\mu}x = E_{\lambda}x (\forall x \in H) \quad (9)
\]

We see from the definition that a real spectral family can be regarded as a mapping \(\mathbb{R} \to \mathcal{B}(H,H), \lambda \to E_{\lambda} \); strongly operator continuous from right. To each \(\lambda \in \mathbb{R} \) there corresponds a projection \(E_{\lambda} \in \mathcal{B}(H,H) \), where \(\mathcal{B}(H,H) \) is the space of all bounded linear operators from \(H \) into \(H \). We assume, for simplicity, that the eigenvalues \(\lambda_1, \lambda_2, ..., \lambda_n \) of \(T \) are all different and \(\lambda_1 < \lambda_2, < \cdots < \lambda_n \). Then we have,

\[
E_{\lambda_1} = P_1
\]

\[
E_{\lambda_2} = P_1 + P_2
\]

\[
E_{\lambda_3} = P_1 + P_2 + P_3
\]

\[
\vdots
\]

\[
E_{\lambda_n} = P_1 + P_2 + \cdots + P_n.
\]

Hence, conversely :

\[
P_1 = E_{\lambda_1}
\]

\[
P_j = E_{\lambda_j} - E_{\lambda_{j-1}} \quad j=2, ..., n
\]

Since \(E_1 \) remains the same for \(\lambda \) in the interval \([\lambda_{j-1}, \lambda_j]\), this can be written \(P_j = E_{\lambda_j} - E_{\lambda_{j-1}} \). Now equation (4) becomes \(x = \sum_{j=1}^{n} P_j x = \sum_{j=1}^{n} (E_{\lambda_j} - E_{\lambda_{j-1}})x \) and equation (5) becomes

\[
T x = \sum_{j=1}^{n} \lambda_j P_j x = \sum_{j=1}^{n} \lambda_j (E_{\lambda_j} - E_{\lambda_{j-1}})x.
\]

If we drop the \(x \) and write \(\delta E_{\lambda} = E_{\lambda} - E_{\lambda_0} \). Since \(E_{\lambda} = \sum_{j \geq \lambda} P_j \). We arrive at

\[
T = \sum_{j=1}^{n} \lambda_j \delta E_{\lambda_j} \quad (10)
\]

This is the spectral representation of the self-adjoint linear operator \(T \) with eigenvalues \(\lambda_1 < \lambda_2, < \cdots < \lambda_n \) on that \(n \)-dimensional Hilbert space \(H \). The representation shows that for any \(x, y \in H \).
(Tx, y) = \sum_{j=1}^{n} \lambda_j (\delta E_j, x, y) \tag{11}

We note that this may be written as a Riemann-Stieltjes integral

(Tx, y) = \int_{-\infty}^{\infty} \lambda d\omega(\lambda) \tag{12}

Where \(\omega(\lambda) = (E_\lambda, x, y) \).

5.2 Spectral Family of a Bounded Self-Adjoint Linear Operator

To define Spectral family \(\epsilon \) we need the operator \(T_A = T - \lambda I \) from resolvent theorem \(\|T_A x\| \geq c\|x\| \). Then \(\mathcal{B}_{A^2} = T_A^{-2} \), the positive square root of \(T_A^{-2} \) denote by \(\mathcal{B}_{A^2} \). \(\mathcal{B}_{A^2} = (T_A^{-2})^{\frac{1}{2}} = |T_A| \) and operator \(T_A^+ = \frac{1}{2}(A^+T_A) \) which is called positive part of \(T_A \). The spectral family \(\epsilon \) of \(T \) is then defined by \(\epsilon = (E_\lambda), \lambda \in \mathbb{R} \), where \(E_\lambda \) is the projection of \(H \) onto the null space \(\mathcal{N}(T_A^{-1}) \) of \(T_A^{-1} \). We proceed step wise and consider at first the operator:

\[
\mathcal{B} = (T^2)^{\frac{1}{2}}(\text{Positive square root of } T^2), \\
T^+ = \frac{1}{2}(A+T) \text{ (Positive part of } T), \\
T^- = \frac{1}{2}(A-T) \text{ (Negative part of } T),
\]

and the projection of \(H \) onto the null space of \(T^+ \) which we denote by \(E \).

\[
E: H \to V = \mathcal{N}(T^+) = \ker (\lambda I - T)^+
\]

\[
T = T^+ - T^- \implies \frac{1}{2}(\mathcal{B} + T) - \frac{1}{2}(A-T) = T^+ - T^- \]

\[
= \frac{1}{2} B + \frac{1}{2} T - \frac{1}{2} B + \frac{1}{2} T = T^+ - T^-
\]

\[
\implies T = T^+ - T^- \text{ by subtraction}
\]

\[
\mathcal{B} = T^+ + T^- \implies T^+ + T^- = \frac{1}{2}(\mathcal{B} + T) + \frac{1}{2}(A-T). \\
= \frac{1}{2} B + \frac{1}{2} T + \frac{1}{2} B - \frac{1}{2} T. \\
= B
\]

\[
\implies \mathcal{B} = T^+ + T^- \text{ by addition.}
\]

5.2.1 Lemma

The operators just defined have the following properties

- \(\mathcal{B}, T^+ \) and \(T^- \) are bounded and self-adjoint
- \(\mathcal{B}, T^+ \) and \(T^- \) commute with every bounded linear operator that \(T \) commute with; in particular
 - \(B T = T B T^+ T = T T^+ T^- T = T T^- T^+ T^- = T^- T^+ \)
- \(E \) commutes with every bounded self-adjoint linear operator that \(T \) commute with; in particular
• \(ET = TE \) \(EB = BE \)

• Furthermore

\(T^+T^- = 0 \) \(T^-T^+ = 0 \)

\(T^+E = ET^+ = 0 \) \(T^-E = ET^- = T^- \)

\(TE = -T^-T(I - E) = T^+ \)

\(T^+ \geq 0 \) \(T^- \geq 0 \)

Proof. a

• **Claim 1** \(\mathcal{B} \) is bounded

Proof of Claim 1

\[
\|\mathcal{B}\|^2 = \langle \mathcal{B}, \mathcal{B} \rangle \leq \langle T^++T^-, T^++T^- \rangle \\
= T^+T^- + T^+T^- + T^-T^- + T^-T^- \\
\leq \|T^+\|^2 + 2\text{Re}(T^+, T^-) + \|T^-\|^2 \\
\leq \|T^+\|^2 + 2|\langle T^+, T^- \rangle| + \|T^-\|^2 \\
\leq (\|T^+\|^2 + \|T^-\|^2)^2 \\
\|\mathcal{B}\| \leq \|T^+\|^2 + \|T^-\|^2
\]

\(\therefore \) \(\mathcal{B} \) is bounded \(\Leftrightarrow \) continuous. Since \(\lambda = 1 \)

Claim 2 \(\mathcal{B} \) is self-adjoint

Proof of Claim 2 Since \(\mathcal{B} = T^+ + T^- \)

\[
\langle Bx, y \rangle = \langle (T^+ + T^-)x, y \rangle = \langle x, (T^+ + T^-)^*y \rangle \\
= \langle x, B^*y \rangle \\
\Rightarrow \mathcal{B} = B^*
\]

\(\therefore \) \(\mathcal{B} \) is self-adjoint

• Suppose \(TS = ST \). Then \(T^2S = TST = ST^2 \) and \(BS = SB \) follows from theorem (positive square root) \(T^+S = \frac{1}{2}(BS + TS) = \frac{1}{2}(SB + ST) = ST^+ \).

Therefore, \(T^+S = ST^+ \Rightarrow T^-S = ST^- \Rightarrow T^-S = \frac{1}{2}(BS - TS) = \frac{1}{2}(SB - ST) = ST^- \).

Then show that \(T^+T^- = T^-T^+ \).

\[
T^+T^- = \frac{1}{2}(BS + TS), \frac{1}{2}(BS - TS) = \frac{1}{2}(SB - ST), \frac{1}{2}(SB + ST) = T^-T^+ \Rightarrow T^+T^- = T^-T^+.
\]
For every \(x \in H \) we have \(y = Ex \in Y = \mathcal{N}(T^*) = \ker(T^*) \). Hence \(T^+y = 0 \) and \(ST^*Y = S0 = 0 \). From TS=ST and (b) we have \(S^*T = T^*S \) and \(T^*Sx \in T^*y = S0 = 0 \) \(\Rightarrow T^*Sx = 0 \), hence \(S\mathfrak{S}x \in Y \). Since \(E \) projects \(H \) onto \(Y \). We thus have \(E\mathfrak{S}x = S\mathfrak{S}x \). For every \(x \in H \), that is \(E\mathfrak{S} = S\mathfrak{S} \). A projection is self-adjoint. \(E = E^* = (E\mathfrak{S})^* = (E\mathfrak{S})^* = E \). Therefore, \(E\mathfrak{S} = S\mathfrak{S} \).

We prove (3) – (6)

Proof (3)

\[
B = (T^2)^{\frac{1}{2}} \Rightarrow B^2 = T^2, \text{ and also } BT = TB \text{ by (6)} \quad \text{Hence } \quad T^+T^* - T^-T^* = \frac{1}{2}(B - T), \frac{1}{2}(B + T) = \frac{1}{2}(B^2 + BT - TB - T^2) = 0 \Rightarrow T^+T^* = T^-T^* = 0
\]

Proof (4)

Let \(T^Ex = 0 \ \forall x \in H \), since \(T^+ \) is self-adjoint. We have \(ET^+x = T^Ex = 0 \) by (3) and (c). Therefore, \(ET^+ = T^+E = 0 \). Furthermore \(T^+T^-x = 0 \) by (8), so that \(T^-x \in \mathcal{N}(T^+) = \ker(T^+) \). Hence \(ET^-x = T^-Ex = T^-x \ \forall x \in H \). Therefore, \(ET^- = T^-E = T^- \)

Proof (5)

From a, b and (4), since \(T = T^+ - T^- \) we have \(TE = (T^+ - T^-)E = T^+E - T^-E = -T^-E \). \(TE = -T^- \), since \(T^- \) is self-adjoint. Again by (4) \(T(I - E) = T - TE = T^+ + T^- \). Therefore, \(T(I - E) = T^+ \).

Proof (11) By (4) and (b) \(T^- = ET^- + ET^+ = E(T^+ - T^-) = EB \geq 0 \), since \(E \) and \(B \) are self-adjoint and \(E \geq 0 \) and \(B \geq 0 \) by definition of positive operators.

\[
T^+ = B - T^- = B - EB = (I - E)B \geq 0
\]

\[
: T^+ \geq 0, \text{ since } I - E \geq 0 \text{ and } B \geq 0
\]

In second step instead of \(T \) we consider \(T_\lambda = T - \lambda I \)

Instead of \(B, T^+, T^- \) and \(E \) we now have to take \(B_\lambda = \left(T_\lambda^2\right)^{\frac{1}{2}}, T_\lambda^+ = \frac{1}{2}(B_\lambda + T_\lambda), T_\lambda^- = \frac{1}{2}(B_\lambda - T_\lambda) \) and projection \(E_\lambda: H \to Y_\lambda = \mathcal{N}(T_\lambda^+) \).

5.2.2. Lemma

The previous lemma remains true if we replace \(T, B, T^+, T^-, E \) by \(T_\lambda, B_\lambda, T_\lambda^+, T_\lambda^-, E_\lambda \) respectively, where \(\lambda \) is real, moreover, for any real \(\kappa, \lambda, \mu, v, \tau \) following operator all commute: \(T_\kappa, B_\lambda, T^*_\mu, T^-_\tau, E_\varepsilon \)

5.2.1. Theorem

Let \(T: H \to H \) is a bounded self-adjoint linear operator on a complex Hilbert space \(H \). Furthermore, let \(E_\lambda(\lambda \text{ is real}) \) be the projection of \(H \) onto the null space \(Y_\lambda = \mathcal{N}(T_\lambda^+) \) of the positive part \(T_\lambda^+ \) of \(T_\lambda = T - \lambda I \). Then \(\varepsilon = (E_\lambda)_{\lambda \in \mathbb{R}} \) is spectral family on the interval \([m, M] \subset \mathbb{R} \), where \(m \) and \(M \) are given by (1) see section 3.2.

Proof. We shall prove \(\lambda < \mu \Rightarrow E_\lambda < E_\mu \)

NAAS Rating: 3.00- Articles can be sent to editor@impactjournals.us
\(\lambda < m \Rightarrow E_\lambda = 0. \)

\(\lambda \geq M \Rightarrow E_\lambda = I. \)

\(\mu \rightarrow \lambda + 0 \Rightarrow E_\mu x \rightarrow E_\lambda x. \)

In the proof we use part of Lemma 5.2.2 formulated for \(T_\mu, T^+_{\mu}, T^-_{\mu} \) etc instead of \(T, T^+ \) etc.

\(T^+_{\mu} - T^-_{\mu} = 0 \)

\(T_\lambda E_\lambda = -T_\lambda^- T_\lambda (I - E_\lambda) = T_\lambda^+ T_\mu E_\mu = -T_{\mu}^- \)

\(T^+_\lambda \geq 0, T^-_\lambda \geq 0 \)

\(T^+_{\mu} \geq 0, T^-_{\mu} \geq 0 \)

Proof (7)

Let \(\lambda < \mu \), we have \(T_\lambda = T^+_\lambda - T^-_\lambda \leq T^+_\lambda \) because \(T^-_\lambda \leq 0 \). Hence \(T^+_\lambda - T^-_\mu \geq T^+_\lambda - T^-_\lambda = (\mu - \lambda)I \geq 0 \).

\(T^+_\lambda - T^-_\mu \) is self-adjoint and commutes with \(T^-_{\mu} \) by Lemma of 5.2.2 and \(T^+_{\mu} \geq 0 \). Theorem 3.3.1 \(T^+_{\mu}(T^+_\lambda - T^-_\mu) = T^+_{\mu}(T^+_\lambda - T^-_{\mu} + T^+_{\mu}) \geq 0 \). Here \(T^+_{\mu} T^-_{\mu} = 0 \). Hence \(T^+_{\mu} T^-_{\mu} \geq 0 \). \(\forall x \in H \). \(\langle T^+_{\mu} T^-_{\mu}, x, x \rangle \geq \langle T^+_{\mu} x, x \rangle = \|T^+_{\mu} x\|^2 \geq 0 \). Since \(T^+_{\mu} \) is self-adjoint. This show that \(T^+_{\mu} x = 0 \Rightarrow T^+_{\mu} x = 0 \). Hence \(N(T^+_\lambda) \subset N(T^+_{\mu}) \).

\(E_\lambda < E_\mu \) for \(\lambda < \mu \)

Proof (8)

Suppose not \(E_\lambda \neq 0 \Rightarrow E_\lambda z \neq 0 \) for \(\exists z \). we set \(x = E_\lambda z \). Then \(E_\lambda x = E_\lambda^2 z = E_\lambda z = x \). we may assume \(\|x\| = 1 \).

\(\langle T_\lambda E_\lambda x, x \rangle = \langle T_\lambda x, x \rangle - \lambda \geq \inf_{\|x\|=1} \langle T_\lambda x, x \rangle \lambda = m - \lambda > 0 \), contradiction the fact that \(\lambda > m \).

\(T_\lambda E_\lambda = -T_\lambda^- \leq 0 \).

\(T_\lambda E_\lambda = 0 \Rightarrow E_\lambda = 0 \)

\(\therefore \lambda < m \Rightarrow E_\lambda = 0 \)

Proof (9)

Suppose \(\lambda > M \) but \(E_\lambda \neq I \) so that \(I - E_\lambda \neq 0 \). Then \((I - E_\lambda) x = x \) for some \(x \) of norm 1. Hence \(\langle T_\lambda (I - E_\lambda) x, x \rangle = \langle T_\lambda x, x \rangle - \lambda \leq \sup_{\|x\|=1} \langle T_\lambda x, x \rangle - \lambda = M - \lambda < 0 \). Then there is contradiction.

\(T_\lambda (I - E_\lambda) = (T^+_\lambda) = 0 \)

\(\therefore \lambda \geq M \Rightarrow E_\lambda = I \)

6. REFERENCES

