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Abstract 
 
Natural hazard assessments are core to risk definition and early warning systems and play a fundamental role in the prevention of 

major damages. Traditional hazard identification methods are static. For this reason, new information and conditions cannot be easily 

included in the pre-defined hazard assessments. The Bayesian Networks can be used effectively for dynamic hazard identification. In 

this study, a methodology based on the Bayesian Networks model is presented for dynamic avalanche hazard assessment, in which 

changed and renewed data can be included in the system. In the proposed methodology, the integration of the Bayesian Networks and 

Geographical Information Systems (GIS) is modeled in the National Spatial Data Infrastructure (NSDI) perspective. In this structure, 

it is possible to combine and analyze the data obtained from different sources and factors for avalanche hazard can be dynamically 

updated with real-time updated data and temporal hazard mapping can be produced. The proposed methodology provides a generic 

structure and has an attribute making it applicable for dynamic mapping studies for other disasters. 
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Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: 
UKVA Perspektifi 
 
Özet  
 
Doğal afetlerle ilgili çalışmalarda tehlike değerlendirmesi, risk tanımlama ve erken uyarı sistemlerinin temelidir ve büyük kayıpların 

engellenmesinde önemli bir rol oynamaktadır. Klasik tehlike tanımlama yöntemleri statiktir. Bu nedenle, yeni bilgi ve koşullar önceden 

tanımlanmış tehlike değerlendirmelerine kolayca dahil edilemez. Bayes Ağları, dinamik tehlike tanımlaması için etkin bir şekilde 

kullanılabilir. Bu çalışmada, değişen ve yenilenen verilerin sisteme dahil edilebildiği dinamik çığ tehlike değerlendirmesi için Bayes 

Ağlarına dayanan bir yaklaşım sunulmuştur. Önerilen metodolojide, Bayes Ağlarının ve Coğrafi Bilgi Sistemlerinin (CBS) 

entegrasyonu, Ulusal Konumsal Veri Altyapısı (UKVA) perspektifinde modellenmiştir. Bu yapıda, farklı kaynaklardan elde edilen 

verilerin birleştirilmesi ve analiz edilmesi mümkün olup, çığ tehlikesi için etken faktörler gerçek zamanlı güncel verilerle dinamik 

olarak güncellenerek zamansal tehlike haritaları üretilebilir. Önerilen metodoloji genel bir yapı sunmaktadır ve diğer afetlere yönelik 

dinamik harita üretimi çalışmaları için uyarlanabilir niteliktedir. 

 
Anahtar Sözcükler  

Dinamik Tehlike Değerlendirmesi, Çığ, Bayes Ağları, CBS, UKVA 

 
 

1. Introduction 
 
Hazard assessment plays a fundamental role in the prevention/reduction of the losses of life and property and this 

assessment is a first step in the realization of risk analysis of natural disasters (Anderson-Berry and King 2005; Pine 2008; 

Jonkman et al. 2012; Villa et al. 2015; Xin et al. 2017). Many of the hazard assessment approaches used today are static 

(Xin et al. 2017) and do not have a dynamic dimension that can integrate the changing conditions and new warnings into 

the system (Villa et al. 2015). Until now, dynamic systems have generally been regarded as only part of early warning 

systems, and time-dependency has not been an important factor in the hazard and risk assessment (Narasimhan 2003; 

Villa et al. 2015; Xin et al. 2017). In the static approach, the updating of the hazard maps is often carried out after many 

years due to the difficulty of the revision of hazard maps with information updates. Therefore, these maps are often 

misleading. This problem becomes even more critical when the process and operational parameters continue to change. 

For this reason, a dynamic and flexible approach is needed in order to adapt to ever-changing data and information (Xin 

et al. 2017).  
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The accuracy of hazard maps is a very critical issue. Because all the information declared for disasters has a direct effect 

on issues such as creating panic on citizens and decreases in the real estate values. For this reason, it is necessary to be 

very careful in the production of hazard maps. The issue becomes particularly critical when maps are produced within the 

framework of specific legislation governing the matter and are therefore accepted as legally approved documents (Annoni 

et al. 2010). Because early warning systems require higher hardware, higher resolution data, and advanced modeling 

techniques, they are very costly. Therefore, early warning systems are implemented only in the hazardous and risky areas, 

rather than in every area (Pulwarty and Sivakumar 2014). For this reason, new hazardous areas emerging under changing 

conditions must be identified. Therefore, the creation of dynamic hazard maps is a prerequisite for the forecasting/early 

warning systems to function properly. 

Major disasters have caused the need to overcome the limitations of conventional static methods for hazard and risk 

assessment, and researches have begun on dynamic systems with emerging information and communication technologies 

(Villa et al. 2015). Over time, the process parameters change, so the hazards and hazard formation routes also change 

(Xin et al. 2017). Dynamic approaches for hazard and risk enable the identification and evaluation of risks that change 

over time or that arise and increase during the process. Dynamic methods aim to deal with uncertainties, system 

complexity, real-time changing conditions and real-time information from different resources and provide a more flexible 

structure than conventional static approaches. With this dynamic mapping, dynamic changes of the internal and external 

conditions of the system are achieved and the hazard or risk situation is updated (Villa et al. 2015). However, in order to 

achieve dynamic character, computer-assisted estimation techniques must be used as a part of the process. Avalanche 

event, which is caused by numerous factors, is also a dynamic process due to rapidly changing conditions over time 

(McClung and Schaerer 2006). Avalanche formation is mainly related to the conditions of the land, snow cover and 

weather (Kadıoğlu 2008), and the causative factors can be handled as meteorological (precipitation, wind intensity and 

direction, air temperature, humidity, etc.), and land and topographical (vegetation cover, slope, aspect, and other 

topographic formations) (Turkish General Directorate of Disaster Affairs 1999). Meteorological factors can cause an 

avalanche under suitable topographic and terrain conditions. In general, the effects of precipitation (snow, rain, 

precipitation intensity), wind (speed, direction, high altitude winds, local wind conditions), temperature (current and 

previous temperature conditions), and relative humidity are important meteorological factors (Taştekin 2003). 

The snow conditions vary according to the land and time. Because meteorological factors show dynamic 

characteristics and change at a considerable level in a short time (Taştekin 2003). In addition, vegetation cover shows 

semi-dynamic characteristics and doesn’t change frequently (Rawat and Kumar 2015). Topographical factors are static 

and do not change significantly for many years unless human intervention or extreme nature events occur (Hodges 2003). 

It is possible to determine the avalanche hazard by acting on the factors affecting the formation of an avalanche (Kadıoğlu 

2008). Rapid changes in the instability of snow accumulation give a dynamic character to the avalanche prediction. For 

this reason, an avalanche prediction in any avalanche path can ideally be carried out by starting with the first snowfall in 

winter and then revising this prediction with new information (McClung and Schaerer 2006). However, new information 

or changing conditions cannot be easily included in existing hazard maps (Xin et al. 2017). 

The dynamic process in which the results are updated with the integration of new information is similar to the Bayesian 

revision with the use of updated information as time progresses (McClung and Schaerer 2006). In this context; the 

Bayesian Networks can be used to add dynamics to the hazard assessment process by adding new information (Grêt-

Regamey and Straub 2006; Straub and Grêt-Regamey 2006; Eckert et al. 2010; Landuyt et al. 2015; Villa et al. 2015; Xin 

et al. 2017). 

In this study, we focus on the assessment of avalanche hazard by dynamic mapping approach. In this context, a 

methodology based on the Bayesian Networks has been proposed in the integration of data from different sources and/or 

sensors and dynamic avalanche hazard mapping. The proposed approach is based on the integration of Geographical 

Information Systems (GIS) and Bayesian Networks in the National Spatial Data Infrastructure (NSDI) perspective. 

 
2. Bayesian Networks 
 
Bayes’ theorem was developed by Thomas Bayes (1702-1761). Essentially, the Bayes' theorem is an extended form of 

the concept of conditional probability (Bajpai 2009). Bayes’ theorem is a probability model that allows the prediction of 

the posterior probabilities of an event by changing and updating the prior probabilistic expectations of that event as a 

result of newly added information (Bajpai 2009; Doğan et al. 2012; d'Acremont et al. 2013; Akıncı et al. 2014). In this 

context, if more data/information can be provided about the probability of a random variable being calculated, it can be 

updated and corrected with the Bayes' rule. In other words, the probabilities predicted based on previous observations can 

be corrected according to the results of new information and observations (Jebb 2017; URL-1 2017). Bayes' theorem 

modifies a prior probability, yielding a posterior probability, via the Equation 1 (Kelly and Smith 2011). 

 

              (1) 
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As can be seen from Equation 1, there are 4 components of the Bayes' theorem. These components are explained in Table 

1 (Kelly and Smith 2011). 

 
Table 1: Components of Bayes' theorem  

 

Term Definition 

P (H│D) Posterior distribution, which is conditional upon data D that is known related to the hypothesis H 
P (H) Prior distribution, from knowledge of the hypothesis H that is independent of data D 
P (D│H) Likelihood, or aleatory model, representing the process or mechanism that provides data D 
P (D) Marginal distribution, which serves as normalization constant 

 

A Bayesian Network is based on the Bayes' theorem (Stassopoulou et al. 1998) and is a graphical-mathematical construct 

(Ames and Anselmo 2008) as a directed acyclic graph and covers nodes, edges and Conditional Probability Tables (CPT). 

Nodes are variables, directed edges between nodes represent dependencies and causal relationships between variables, 

and CPT is the conditional probabilities of linked variables (Stassopoulou et al. 1998; Qiu et al. 2015; Jebb 2017). 

Bayesian Networks are used to probabilistically model the processes and to graphically configure the information 

(Stassopoulou et al. 1998; Ames and Anselmo 2008; Çinicioğlu 2015). Bayesian Networks provide a flexible structure 

because they provide a causal relationship (Stassopoulou et al. 1998). 

Bayesian Networks allow explicit modeling of related parameters, causal relationships, and associated uncertainties. 

Probabilities can be obtained from observations, expert knowledge, and literature (Papakosta and Straub 2015).  

A Dynamic Bayesian Network is an extended form of the standard Bayesian Network (static). The general structure 

of a Dynamic Bayesian Network (Hwang et al. 2011) is presented in Figure 1. If there is a link going from node A to node 

C, then A is said to be a ‘parent node’ of C, and C is said to be a ‘child node’ of A (Kragt 2009). 

 

 
 

Figure 1: A structure of Dynamic Bayesian Network 
 

3. A Framework for Dynamic Avalanche Assessment 
 
The classical methods used in the production of hazard maps are inadequate because of the need for higher dynamism in 

the maps for disaster management. In order to be able to get effective results, these maps should be based on update and 

real-time data as much as possible (Annoni et al. 2010). With the integration of GIS and Bayesian Networks, dynamic 

hazard maps can be created by updating the hazard map with changing parameters. 

 
3.1. Determination and definition of variables 
 
In this study, a comprehensive literature review was carried out to determine the variables. Some practical studies utilized 

in this study are given in Table 2. In this study a number of variables not included in Table 2 were added based on 

theoretical literature studies (Osterhuber 1999; McClung and Schaerer 2006). Depending on these studies, the variables 

for dynamic avalanche assessment were determined as land cover, elevation, slope, aspect, plan curvature, profile 

curvature, terrain roughness, air temperature, rainfall, relative humidity, wind speed, wind direction, radiation, sunshine 

duration, and snowpack depth. 

Following the identification of the variables, the definitions/intervals of the variables were specified to calculate 

conditional probabilities for the Bayesian Network. The definitions/intervals of the variables are provided in Table 3. As 

in the specification of the variables, the definitions/intervals of the variables required for conditional probabilities were 

determined based on the literature survey. 
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Table 2: Variables used for avalanche hazard assessment in some practical studies 
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Naresh and Pant 1999          x x x    x x 
Srinivasan et al. 1999          x x  x  x x x 
Maggioni and Gruber 2003  x x x              
Cookler and Orton 2004  x x        x      x 
McCollister and Birkeland 2006 x x x     x          
Cordy et al. 2009          x x      x 
Barbolini et al. 2011  x  x    x          
Covăsnianu et al. 2011 x x x  x  x  x         
Suk and Klimánek 2011   x x  x x  x          
Tarragüel et. al. 2012  x x  x    x         
Bühler et al. 2013 x x  x   x x          
Jaedicke et al. 2014  x x         x      
Helbig et al. 2015  x        x    x    
Yilmaz 2016 x x x x x   x          
Aydın and Eker 2017 x x   x  x           
Kim and Park 2017 x x  x x         x    
Kumar et al. 2017 x x x  x  x  x         

 

 

Table 3: States of the variables for calculation conditional probabilities 
 

Variable 
Number 

of states 
States References 

Land cover 14 

Artificial surfaces 

Turkish General 

Directorate of 
Geographic 

Information Systems 

2012; Teich 2013 

Agricultural areas 

Broad-leaved Forests  
High density 

Mid density 

Low density 

Coniferous Forests 
High density 

Mid density 

Low density 

Mixed Forests 
High density 

Mid density 

Low density 

Scrub and/or herbaceous vegetation associations 

Open spaces with little or no vegetation 

Other areas 

Elevation 

(categorization based on equal 
interval classification taking into 

account the maximum and 

minimum elevation values of 
Turkey) 

6 

<1000 m 

Elibüyük and Yılmaz, 

2010; Selçuk 2013 

1000-1500 m 

1500-2000 m 

2000-2500 m 

2500-3000 m 

>3000 m 

Slope 

 
5 

< 10° 

Kriz 2001; McClung 

and Schaerer 2006; 
Brugnot 2008 

10-28° 

28-35° 

35-45° 

45-55° 

>55° 

Aspect 
(can be separately assessed for 
winter and spring) 

9 

N 

Kumar et al. 2017 

 

S 

E 

W 

NE 

NW 

SE 

SW  

Flat 

Plan curvature 3 

Concave: curvature < -0.2 

 
Maggioni and Gruber 

2003 
Convex: curvature > +0.2 

 Flat: -0.2 < curvature < +0.2 

Profile curvature 3 

Concave: curvature < -0.2 
 

Maggioni and Gruber 
2003 

Convex: curvature > +0.2 

 Flat: -0.2 < curvature < +0.2 
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Table 3: States of the variables for calculation conditional probabilities (continued) 
 

Terrain roughness 6 

<0.001 

Kumar et al. 2017 

0.001-0.005 

0.005-0.01 

0.01-0.05 

0.05-0.1 

>0.1 

Air temperature 
(long-term average can be 

assessed for winter/spring) 

3 

Min temperature longer than 24 hours < -10 C° or maximum 

temperature difference between day and night >8 C° 
Woodmencey and Nalli 

2010; Turkish Disaster 
and Emergency 

Management 

Presidency 2015 

-10 C° < Min temperature longer than 24 hours < -4 C° 

Other conditions 

Rainfall 

(long-term average of maximum 
daily total rainfall can be assessed 

for winter/spring) 

6 

1-5 mm 

Turkish General 

Directorate of 

Meteorology 2017 

5-20 mm 

20-50 mm 

50-75 mm 

75-100 mm 

>100 mm 

Relative humidity 
(long-term average of maximum 

daily relative humidity can be 

assessed for winter/spring) 

4 

95-100 % 

McClung and Schaerer 

2006 

90-95 % 

85-90% 

<85 %  

Wind speed 
(long-term average of maximum 

daily wind speed can be assessed 

for winter/spring)  

5 

<8 m/sec 

Germain 2016 

8-15 m/sec 

15-20 m/sec 

20-25 m/sec 

>25 m/sec 

Wind direction 

(Depending on the seasonal 

(winter/spring) dominant wind 
direction)  

 

2 

Leeward side Nefeslioglu et al. 2013; 
Rudolf-Miklau et al. 

2015 Other 

Radiation 

(long-term average of maximum 

daily radiation can be assessed for 
winter/spring) 

6 

<1 kWh/m2-day 

Şahan et al. 2015; Yiğit 

2015; U.S. Geological 

Survey 2016; Kıncay 
2017 

1-2 kWh/m2-day 

2-3 kWh/m2-day 

3-4 kWh/m2-day 

4-5 kWh/m2-day  

>5 kWh/m2-day 

Sunshine duration 

(long-term average of maximum 

daily sunshine duration can be 
assessed for winter/spring) 

6 

<1 hr 

Turkish General 
Directorate of 

Meteorology 2017 

1-2 hr 

2-3 hr 

3-4 hr 

4-5 hr 

>5 hr 

Snowpack depth 

(long-term average of maximum 
snowpack depth can be assessed 

for winter/spring) 

8 

<15 cm 

Liu  et al. 2009; 
Germain 2016 

15-50 cm 

50-100 cm 

100-150 cm 

150-200 cm 

200-250 cm 

250-300 cm 

>300 cm 

 

 

3.2. Dynamic Bayesian Network model development 
 
Following the determination and definition of the variables, a Dynamic Bayesian Network was created. Figure 2 shows 

the Bayesian Network for the dynamic avalanche hazard assessment. The Bayesian Network includes the variables that 

correspond to avalanche hazard. Connecting lines show the causal relationships among the variables. This Bayesian 

Network models the joint probability distribution of a set of variables for avalanche hazard. 
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Figure 2: Dynamic Bayesian Network for the avalanche hazard assessment 

 

Dynamic Bayesian Network was proposed for continually integrating data and consequently for updating the avalanche 

hazard. This will be possible by continuously generating and updating spatial data in the GIS environment. Different 

versions of the Bayesian Network may be needed because of the different conditions in different areas (e.g. some data 

cannot be obtained from each area). For this reason, the model should be extensible, in other words it should be updated 

to produce new versions. In addition, in this model, the arcs reflect the direction of causation. But many algorithms have 

been developed for learning causal of Bayesian Networks from data (Spirtes et al. 2000; Neapolitan 2004; Korb et al. 

2009). For this reason, it should also possible to use the models based on various algorithms in line with the requirements 

and preferences of users. 

 
3.3. NSDI perspective 

 
In this study, an approach based on the integration of GIS and Bayesian Networks within the NSDI framework is presented 

for an avalanche hazard assessment (Figure 3). The proposed approach is dynamic and it is based on the principle of the 

transferring field observations on the system in real time and identifying changing hazards with inputs updated at specified 

or desired periods. Thus, for example, an avalanche hazard map can be updated annually for "winter" and "spring" season. 

In this way, the parameters that change in winter and spring can be evaluated more accurately. In addition to the annual 

seasonal maps, it can be possible to get the updated maps at any time. In this approach, it should be ensured that the 

dynamic hazard assessment is carried out entirely by the system but is flexible enough to allow for user intervention when 

necessary. This flexibility will provide convenience in situations such as adding new factors to the network and network 

updating in the light of the developments on data access and new scientific facts. For the approach of the dynamic 

avalanche hazard assessment considered in this study, it is necessary to have an infrastructure in which atmospheric data 

such as snow cover, direction and intensity of wind, air temperature can be accessed in real time. Thus, parameters to be 

used in avalanche hazard evaluation can be automatically updated with the data to be added in real time. In addition to 

this, current data access and system integration for vegetation cover and other dynamics should be provided. In this way, 

the renewed hazard situation under changing conditions will be able to be up-to-date. But at this point, it is necessary to 

seek an answer to the question of how to access real-time.  

As known, many initiatives in the world, especially INSPIRE (Infrastructure for Spatial Information in Europe) aimed 

to improve the availability and accessibility of data by developing national spatial data infrastructures since the beginning 

of the 1990's. These typically involve the provision of core data sets within the framework of general user requirements, 

documentation of existing spatial data sets and services through metadata and catalogs, and access through distributed 

internet-based services within agreed rules and protocols (Cömert and Akıncı 2005; Bostancı et al. 2007; Annoni et al. 

2010; Bossomaier and Hope 2015).  
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Today, as a result of changing conditions and technological developments, expectations from NSDI's are increasing. In 

this context; with the online transmission of data from geo-sensors and other data integration, it is possible to implement 

advanced applications in the framework of the NSDI (URL-2 2017). Geo-sensors can be described as geographically 

referenced devices that take environmental stimuli (physical, chemical, or biological) and convert them into an electrical 

signal (Bröring et al. 2011). For this reason, satellite-based sensors providing a wide variety of information about the 

earth (image, land cover, vegetation cover indexes, etc.), aerial sensors for detailed images, laser scanners, fixed or 

moving sensors located near, above or below the ground surface that measure physical characteristics such as pressure, 

temperature, humidity, and events such as wind, rain, earthquake, and allows the tracking and monitoring of vehicles and 

living, are covered in this context (Annoni et al. 2010). A sensor is a basic unit, a sensor system is a group of different 

sensors that serve a common purpose connected to a single platform and sensor networks are based on a large number of 

interconnected sensors that are distributed over geographical areas and automatically generate useful information by 

combining different sensing capabilities (Bröring et al. 2011).  

Sensor technology continues to evolve with smaller, cheaper, smarter and more energy efficient devices and is being 

used in more and more applications, especially in disaster management, environmental monitoring, precision agriculture, 

early warning systems (Bröring et al. 2011). As a result of technological advances, various international organizations and 

governments have recognized the need for sensor networks, standardized protocols, sensor communication methodologies 

and procedures that enable sensors to communicate over the web (URL-2 2017). This issue has been the driving force for 

the Open Geospatial Consortium (OGC) to launch the SWE (Sensor Web Enablement) Initiative in 2003. The SWE 

Workgroup has developed a standard package that can be used as the building blocks of the Sensor Web. SWE defines 

the Sensor Web as web-accessible sensor networks and sensor data accessible with defined and standardized protocols 

and Application Programming Interfaces (APIs) (Bröring et al. 2011). In 2016, INSPIRE has released standards for sensor 

web access under the heading "Guidelines for the use of Observations & Measurements and Sensor Web Enablement-

related standards in INSPIRE Annex II and III data specification development" (URL-3 2017). In fact, large-scale sensor 

networks have already been used in science and technology since the 1990s. The new situation is that these sensors and 

sensor networks are activated by the web. Individual sensors can then be discovered, assigned and accessed via web 

standards, and networks can transfer information through interoperability regulations (Annoni et al. 2010), integration of 

sensor data with other spatial data can be achieved (URL-2 2017).  

In our country, there is a necessity to carry out the studies of NSDI, which is in the effort to be established for many 

years and called as the Turkish National Geographic Information System (TNGIS), in line with these technological 

developments and the increasing expectations as a result of changing circumstances. Therefore, sensor networks need to 

be constituted by establishing an infrastructure that will adapt to new technologies and the goals and priorities of TNGIS 

need to be renewed to provide access to real-time data. 
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Figure 3: Integration of GIS and Bayesian Networks within the NSDI framework 

 
4. Conclusion 
 
Risk assessments and forecasting/early warning systems should be realized through as realistic maps as possible. For this 

reason, this study deals with how to define probable avalanche hazard in response to update and real-time inputs by means 

of Bayesian Networks-based methodology. While the scope of the study is limited to dynamic avalanche hazard mapping, 

the same method can be applied to other fields by creating a similar Bayesian Network model. 

 Ensuring timely access to accurate information is crucial in planning and decision-making process. However, the 

accuracy and up-to-date of the data is much more critical in the management of emergencies such as disaster and accident. 

Therefore, real-time data obtained from the geo-sensors needs to be accessible within the scope of NSDI for natural 

disaster risk management and other environmental studies, including hazard identification. 
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