A Retrospective Study on Importance of CRP as a Predictor and To Analyse the Effectiveness of Antibiotics in the Treatment of Neonatal Sepsis at Secondary Care Hospital of Tiruppur

Nandhakumar Jothivel*, Sabitha V P¹, Sharon Jacob¹, S Sonapreethi¹, Teres Siby¹, Priya Visuvasam², Senthil selvi R¹, Rajarajan S¹, Suthanth T¹, Balamurugan S¹, V Ganesan¹

¹The Erode College of Pharmacy and Research Institute, Erode- 638112, Tamil Nadu, India
²Government District Headquarters Hospital, Tiruppur, Tamil Nadu, India

ABSTRACT

Early diagnosis of sepsis in a neonate is often difficult because symptoms and signs are usually non-specific. A study was conducted to evaluate C-reactive protein (CRP) as a screening tool and the effectiveness of antibiotics in the treatment of neonatal sepsis. This retrospective study was conducted at NICU, Government District Headquarters Hospital, Tiruppur from December 2016 to June 2017, on total of 120 neonatal sepsis patients. Patients of Group I received Ampicillin + Gentamicin, Group II received Ampicillin + Gentamicin followed by Cefotaxime + Amikacin, Group III received Cefotaxime + Amikacin, Group IV received Ampicillin + Gentamicin followed by Piptaz followed by Amikacin + Ciprofloxaicn and Group V received, Ampicillin + Gentamicin followed by Piptaz then by Amikacin + Meropenem and then by Ciprofloxaicn. Chi-square test two side p-value & ONE WAY ANOVA followed by Tukey-Krammer Multiple Comparison Test is used for statistical analysis. Among study subjects, 18 (15%) and 102 (85%) had negative and positive CRP respectively. According to blood culture studies, 15 cases were culture positive, with the following organisms, Klebsiella pneumoniae (53.33%), Escherichia coli (20%), Staphylococcus aureus (20%) and Proteus marbilis (6.66%). Group II is an appropriate choice for empirical therapy of neonatal sepsis and was 46.96% of 66 patients. Group I, which is considered as First Line treatment was 33.33% of 66 patients.

Keywords: Antibiotics, Blood culture, CRP, Neonatal sepsis.

DOI: 10.25004/IJPSDR.2018.100102

*Corresponding author: Dr. Nandhakumar Jothivel
Address: Prof. and Head, Dept. of Pharmacy Practice, The Erode College Of Pharmacy, Erode – 638112, Tamil Nadu, India
Tel.: +91-9894704967
E-mail: nandhaphdcmc@gmail.com

Received: 30 October, 2017; Revised: 25 December, 2017; Accepted: 26 December, 2017; Published: 15 January, 2018
INTRODUCTION
The Third International Consensus Definitions Task Force (Sepsis-3) defined sepsis as "life-threatening organ dysfunction due to a dysregulated host response to infection." [1] Neonatal sepsis (NS) remains one of the main causes of mortality and morbidity. [2] So it is responsible for 30-50% of the total neonatal deaths in developing countries. It is estimated that up to 20% of the neonates develop sepsis and approximately 1% die of sepsis related causes. [3]

Neonatal sepsis can be divided into two main classes depending on the onset of symptoms related to sepsis into Early Onset Sepsis (EOS) and Late Onset Sepsis (LOS). Early-onset sepsis is commonly caused by organisms acquired from the mother’s genital tract around the time of delivery. [4-6] Late onset sepsis is usually caused by pathogens acquired during the course of hospitalization or during delivery. [5,6] Overall, Gram negative organisms are more common and are mainly represented by Klebsiella, Escherichia coli, Pseudomonas, and Salmonella. [7-11] Of the Gram positive organisms, Staphylococcus aureus [9-10, 12-13], Coagulase negative staphylococci (CONS) [14], Streptococcus pneumoniae [15] and Streptococcus pyogenes are most commonly isolated.

Irrespective of the etiological agent the sepsis in neonates usually present with similar features like lethargy, refusal to feed, respiratory distress in the form of tachypnea and intercostal and subcostal retractions, convulsions and renal failure. [16] C-reactive protein (CRP) is a good marker for diagnosis of NS. Elevated CRP levels are seen in infection; also the CRP values do not rise significantly until almost 14-48 hour after the onset of infection. [17] Blood culture is the gold standard for the diagnosis of neonatal sepsis. However, its positivity rate is low and is affected by blood volume inoculated, prenatal anti-biotic use, level of bacteremia and laboratory capabilities. [18] Rubarth’s scale is among the haematologial scoring tool that are used for screening for neonatal sepsis. The scale takes into consideration the clinical presentation of the neonate, and integrates it with FBP (Full blood picture) and blood pH results. The total score from both parameters is 55. [19] Complications of neonatal sepsis include respiratory failure, pulmonary hypertension, cardiac failure, shock, renal failure, liver dysfunction and cerebral oedema. [20] Sepsis originates from a breach of integrity of the host barrier, either physical or immunological, and direct penetration of the pathogen into the bloodstream, creating the septic state. [21] The foetus is protected by the membranes and placenta from bacterial exposure. [22] It has also been shown that the amniotic fluid has inhibitory properties against bacterial growth. [22-24] Foetal bacteremia may occur in preterm labor [25], and term neonates may have bacteremia or present symptoms at birth [26] suggesting that bacterial colonization may take place before birth.

The management consist of immediate supportive care. Empirical treatment with the common antibiotics to which the bacterial flora is susceptible should be started. [27] The antibiotics treatment can be changes depending upon the culture and sensitivity report. If nosocomial infections are suspected then cephalosporin and Aminoglycoside combination should be empirically started. [28] The aim of our study is to find out the diagnostic importance of CRP and to analyse the effectiveness of antibiotics in the treatment of neonatal sepsis.

PATIENTS AND METHODS
This was a retrospective study conducted from December 2016 to June 2017; at the NICU in Government District Headquarters Hospital (Tiruppur, India). This study was approved by the Ethics Committee of Government District Headquarters Hospital, Tiruppur. (Reference No: IHEC/ECP/GHTUP/2016-17/004)

The Inclusion Criteria were:
- Maternal fever >38°C
- Meconium stained liquor
- Low birth weight (LBW) < 2.5 kg
- Prematurity < 34 wks
- Maternal WBC> 15000 Cells/cu.mm
- PROM (Premature rupture of membrane)
- Amnionitis
- More than 3 per vaginal examinations during labour
- Active resuscitation required in the labour room.

The Exclusion Criteria were:
- Neonates with obvious malformation/congenital anomalies
- Outside born babies
- Babies born to mothers who had received antenatal anti-biotic therapy

During the study period of 6 months, 120 consecutive neonates with risk factors of sepsisemia were studied. Collected data included demographics, gestational age, type of delivery, weight at birth, signs of sepsis at time of blood culture drawn, comorbidities, laboratory values at time of sepsis, microbiology data (including type of organism and antimicrobial susceptibility), type of empiric treatment, and final outcome. We compared clinical features, laboratory data and final outcome for patients with sepsis. Data were collected by using a case sheets, master chart was prepared in excel and statistical analysis was performed using Chi-square test two side p-value & ONE WAY ANOVA followed by Tukey- Krammer Multiple Comparison Test.

RESULTS
Out of 322 screened patients, 202 were excluded and 120 were enrolled based on the inclusion and exclusion criteria. Out of 120; 65 (54%) were males and 55 (46%) were females; 60 (50%) of the babies were in term, 26

(21.6%) of the babies were in near term and 34 (28.3%) of the babies were in pre term; 56 (46.6%) were of Normal Birth Weight (NBW), 60 (50%) were of LBW and 4 (3.33%) were of Very Low Birth Weight (VLBW). The commonest signs and symptoms presented by the neonates has been described as reduced sucking 49 (40.83%), respiratory distress 42 (35%), fever 26 (21.6%), yellowish discoloration of skin 9 (7.5%), increased irritability 5 (4.16%), lethargy 5 (4.16%), convulsion 3 (2.5%) and vomiting 1 (0.83%) encountered at admission (Table 1).

Table 1: Baseline demographic characteristics of the neonates enrolled in the study

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number of patients</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>65</td>
<td>54%</td>
</tr>
<tr>
<td>Female</td>
<td>55</td>
<td>46%</td>
</tr>
<tr>
<td>GESTATIONAL AGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>60</td>
<td>50%</td>
</tr>
<tr>
<td>Near-term</td>
<td>26</td>
<td>21.6%</td>
</tr>
<tr>
<td>Pre-term</td>
<td>34</td>
<td>28.3%</td>
</tr>
<tr>
<td>BODY WEIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBW</td>
<td>56</td>
<td>46.6%</td>
</tr>
<tr>
<td>LBW</td>
<td>60</td>
<td>50%</td>
</tr>
<tr>
<td>VLBW</td>
<td>4</td>
<td>3.33%</td>
</tr>
<tr>
<td>CLINICAL FEATURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced sucking</td>
<td>49</td>
<td>40.83%</td>
</tr>
<tr>
<td>Respiratory Distress</td>
<td>42</td>
<td>35%</td>
</tr>
<tr>
<td>Fever</td>
<td>26</td>
<td>21.6%</td>
</tr>
<tr>
<td>Yellowish discoloration</td>
<td>9</td>
<td>7.5%</td>
</tr>
<tr>
<td>Increased irritability</td>
<td>5</td>
<td>4.16%</td>
</tr>
<tr>
<td>Lethargy</td>
<td>5</td>
<td>4.16%</td>
</tr>
<tr>
<td>Convulsion</td>
<td>3</td>
<td>2.5%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1</td>
<td>0.83%</td>
</tr>
</tbody>
</table>

Out of 120 clinically suspected cases of neonatal sepsis, 15 had positive blood cultures, which indicate prevalence of 12.5%. The main isolates in blood culture were Gram positive organisms K. pneumoniae (53.33%), E. coli (20%), S. aureus (20%) and P. marabilis (6.66%) (Figure 1). CRP was done in 120 cases out of which cases were positive 102 (85%) and 18 (15%) cases were negative. CRP is taken as a predictive value and it was compared with the body weight, gestational age, platelet count and it is used as a parameter to check the effectiveness of antibiotics. CRP values of the blood culture-positive and negative samples are shown in (Table 2). Of the 15 positive blood cultures, 1 (6.66%), 9(60%), 5 (33.33%) had CRP 0-5 mg/dL, 6-20 mg/dL and >20 mg/dL respectively, whereas among the 105 blood culture-negative neonates, 17 (16.19%), 65 (61.90%), 23 (21.90%) had CRP CRP 0-5 mg/dL, 6-20 mg/dL and >20 mg/dL respectively. The association between CRP and blood culture was statistically significant (Figure 2). In (Table 3), 12 patients had CRP level between 0-5 mg/dL with Rubarth's Scale score between 10-15, around 72 patients had CRP level between 6-20 mg/dL with Rubarth's Scale score between >15.

The 120 recruited patients were allocated into 5 groups I, II, III, IV and V consisting of patients according to the treatment pattern they received. Patients of Group I received Ampicillin + Gentamicin, Group II received Ampicillin + Gentamicin followed by Cefotaxime + Amikacin, Group III received Cefotaxime + Amikacin, Group IV received Ampicillin + Gentamicin followed by Piptaz followed by Amikacin + Ciprofloxacin and Group V received, Ampicillin + Gentamicin followed by Piptaz then by Amikacin + Meropenem and then by Ciprofloxacin to check the effectiveness of antibiotics which is shown in (Table 4). The effectiveness of antibiotics was compared with the symptomatic relief of the babies and the most effective one was the one which reduced the symptom faster in (Figure 3).
From our study, it was revealed that 9 positive blood culture patients had CRP level between 6-20 mg/dL, which is a sign of that CRP level between 6-20 mg/dL patients to get some more special attention to monitor for further evaluation.

From our study, it was noted that 12 patients had CRP level between 0-5 mg/dL with Rubarth's Scale score between 10-15, around 72 patients had CRP level between 6-20 mg/dL with Rubarth's Scale score between >15, which is a sign to give more attention for the management of sepsis. The earlier studies reported that Rubarth's scale also a tool to validate sensitivity. [31] Similar findings have been shown by Manucha et al., in India [34] who found that absolute neutropenia and thrombocytopenia was highly associated with neonatal sepsis. In our study, a higher proportion of 37 number of patients with NBW were belongs to CRP level between 6-20 mg/dL. Similarly, a medium range of 33 numbers of patients with LBW belongs to CRP level between 6-20 mg/dL.

From our study, it was observed that higher proportions of male patients were suffered with sepsis among 120 numbers. In which, very particularly the same male 38 sepsis patients had CRP level between 6-20 mg/dL. In our study, it was found that 20 numbers of preterm babies with either sex have the CRP range between 6-20 mg/dL. Apart from these findings, 30 numbers of term babies also having the CRP ranges between 6-20 mg/dL. From our study, it was observed that mild and moderate levels of leucopenia restrain sepsis babies 43 and 29 respectively belongs to the CRP level between 6-20 mg/dL. Similarly, platelet count with normal and moderate range of sepsis 47 and 15 numbers respectively had the CRP level between 6-20 mg/dL.

From our retrospective analysis, it was found that 31 numbers of sepsis cases (25.83%) were treated with empirical therapy of Ampicillin + Gentamicin, followed by Cefotaxime + Amikacin. Secondly, 22 number of sepsis cases (18.3%) were treated with empirical therapy of Ampicillin + Gentamicin combination alone. Around, 7 numbers of sepsis cases (5.8%) were treated with empirical therapy of Cefotaxime + Amikacin combination alone. From our retrospective study, it was revealed that mostly second line empirical drug therapy like Ampicillin + Gentamicin followed by Cefotaxime + Amikacin quickly decreased symptomatic relief compared to first line drug therapy (Ampicillin + Gentamicin). Also 11 sepsis cases (9.16%) had reduced complaint of respiratory distress. Only 7 sepsis cases (5.83%) had shown reduction in complaint of sucking while receiving first line drug therapy. Only 11 sepsis cases (9.16%) there reduction in complaint of respiratory distress while receiving second line drug therapy.

ACKNOWLEDGEMENT
We thank the management of The Erode Educational Trust, Erode and Department of Pharmacy Practice,

Nandhakumar J et al. / Diagnostic importance of CRP and effectiveness of antibiotics in Neonatal sepsis...........

The Erode College of Pharmacy & Research Institute, Erode, Tamil Nadu for the assistance with the conduct of the study. We express our sincere thanks to Joint Director of Health Services, Tiruppur, Tamil Nadu and Department of Paediatrics, Government District Headquarters Hospital Tiruppur-641608 for their extraordinary and unassuming care, co-operation and encouragement to complete this work.

REFERENCES