Effect of iron overload on electrophysiology of slow reaction autorhythmic cells of left ventricular outflow tract in guinea pigs

Ling Fan1, Li-Feng Chen2*, Jing Fan3, Lan-Ping Zhao2, Xiao-Yun Zhang2

1Department of haematology, the First Affiliated Hospital of Hebei North University, 075000 Zhangjiakou, Hebei, China
2Department of Physiology, Basic Medical College, Hebei North University, 075000 Zhangjiakou, Hebei, China
3Department of Obstetrics and Gynecology, the Sixth Hospital of Zhangjiakou, 075000 Zhangjiakou, Hebei, China

\section*{ARTICLE INFO}

\textbf{Article history:}
Received 13 November 2017
Revision 10 December 2017
Accepted 2 January 2018
Available online 2 February 2018

\textbf{Keywords:}
Iron overload
Iron poisoning
Left ventricular outflow tract
Slow reaction autorhythmic cell
Electrophysiology

\section*{ABSTRACT}

\textbf{Objective:} To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.

\textbf{Methods:} Standard microelectrode cell recording techniques were adopted to observe the electrophysiological effects of different concentrations of Fe2+ (100 µmol/L, 200 µmol/L) on the left ventricular outflow tract autorhythmic cells. Heart tissues were perfused with FeSO\textsubscript{4} (200 µmol/L) combining with CaCl\textsubscript{2} (4.2 mmol/L), Verapamil, (1 µmol/L), and nickel chloride (200µmol/L) respectively to observe the influences of these contents on electrophysiology of FeSO\textsubscript{4} (200µmol/L) on the left ventricular outflow tract autorhythmic cells.

\textbf{Results:} Fe2+ at both 100 µmol/L and 200 µmol/L could change the electrophysiological parameters of the slow response autorhythmic cells of the left ventricular outflow tract in a concentration-dependent manner resulting into decrease in Vmax, APA and MDP, slower RPF and VDD, and prolonged APD\textsubscript{50} and APD\textsubscript{90} (\textit{P} all <0.05). Besides, perfusion of increased Ca2+ concentration could partially offset the electrophysiological effects of Fe2+ (200 µmol/L). The L-type calcium channel (LTCC) blocker Verapamil (1 µmol/L) could block the electrophysiological effects of Fe2+ (200 µmol/L). But the T-type calcium channel (TTCC) blocker nickel chloride (NiCl\textsubscript{2}, 200 µmol/L) could not block the electrophysiological effects of Fe2+ (200 µmol/L).

\textbf{Conclusions:} Fe2+ can directly change the electrophysiological characteristics of the slow response autorhythmic cells of the left ventricular outflow tract probably through the L-type calcium channel.

\section*{1. Introduction}

In clinic, there are some diseases such as thalassemia, aplastic anemia and myelodysplastic syndrome, which require long-term blood transfusion. Iron overload caused by blood transfusion can lead to myocardial injury and cause arrhythmia\cite{[1-4]}. Our previous study found that the slow response autorhythmic cells in the ventricular outflow tract were closely related to the ventricular arrhythmia\cite{[5,6]}. There was no report of the electrophysiological effects and its mechanisms of iron overload on the autorhythmic cells in the ventricular outflow tract. In this experiment, exogenous iron was applied to the left ventricular outflow tract tissue to simulate the electrophysiological effects of iron poisoning on the slow response autorhythmic cells in order to explore the mechanism of ventricular arrhythmia induced by iron overload.

\begin{flushright}
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-Share Alike 3.0 License, which allows others to remix, tweak and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com
\end{flushright}

©2018 by the Asian Pacific Journal of Tropical Medicine. All rights reserved.

\begin{flushright}
How to cite this article: Ling Fan, Li-Feng Chen, Jing Fan, Lan-Ping Zhao, Xiao-Yun Zhang. Effect of iron overload on electrophysiology of slow reaction autorhythmic cells of left ventricular outflow tract in guinea pigs. Asian Pac J Trop Med 2018; 11(2): 151-154.
\end{flushright}
2. Materials and methods

2.1. Experimental animals and reagents

A total of 64 guinea pigs comprising both males and females, weighing 250-350 g, were purchased from the Beijing Jinnyuang Experimental Animal Breeding Co. Ltd. [animal license No.: SCXK (Beijing) 2010- 0001]. The guinea pigs were randomly divided into eight groups as following: control group (n = 8), FeSO$_4$ (100 µmol/L) group (n = 8), FeSO$_4$ (200 µmol/L) group (n = 8), CaCl$_2$ (4.2 mmol/L)+FeSO$_4$ (200 µmol/L) group (n = 8), Verapamil (1 µmol/L) group (n = 8), Verapamil (1 µmol/L)+ FeSO$_4$ (200 µmol/L) group (n = 8), nickel chloride (200 µmol/L) group (n = 8), and nickel chloride (200 µmol/L)+FeSO$_4$ (200 µmol/L) group (n = 8). FeSO$_4$•7H$_2$O was produced by Tianjin Dingshengxin Chemical Co. Ltd. Verapamil by BioMol company. Nickel chloride (NiCl$_2$•7H$_2$O) by Tianjin Kaixin Chemical Industry Co. Ltd.

2.2. Preparation of specimen

After the guinea pigs were anesthetized with ethyl carbamate, their chest were cut open and hearts removed. The hearts were quickly placed in O$_2$ saturated modified Locke solution. The tissue specimen of the left ventricular outflow tract was made[7-9] and fixed with stainless steel needle on the silicone rubber in the perfusion chamber (1.5 cm x 2 cm, the volume is about 4 mL). The O$_2$ saturated modified Locke solution (NaCl 157 mmol/L, KCl 5.6 mmol/L, CaCl$_2$ 2.1 mmol/L, NaHCO$_3$ 1.8 mmol/L, glucose 5.6 mmol/L, and PH7.3 to 7.4) were perfused at constant temperature of (35±1) °C and constant speed 10 mL/min. Animal breeding, care and all experiment procedures were performed in adherence to guidelines by Hebei North University animal experiment center and approved by Animal Ethics Committee.

2.3. Potential guidance

After the glass microelectrode was filled with the saturated KCl electrode solution, the DC resistance is 10-20 MΩ. The electrode was inserted into the lower part near the middle of the right and posterior flap. In most cases, the spontaneous slow action potential could be recorded directly by this way; otherwise the stimulation electrodes were placed at the heart tissue away from the valve in square wave stimulation of 2 ms, 1 Hz, and twice threshold intensity (YC-2 stimulator by Chengdu Instrument Factory); stimulation time ranged from a few seconds to a few minutes until a stable induced spontaneous rhythm appearing, stop stimulation began the experiment. The spontaneous slow reaction potential was amplified by SWF-1B type microelectrode amplifier (Chengdu instrument factory), and the results were input into a microcomputer by RM6280C multi-channel physiological signal acquisition system (Chengdu Instrument Factory) to display electrical signals, and the parameters of spontaneous slow response potential to be analyzed.

2.4. Index observation

The following indexed were observed: Maximal diastolic potential (MDP), amplitude of action potential(APA), maximal rate of depolarization(Vmax), velocity of diastolic depolarization(VDD), rate of pacemaker firing(RPF), 50% and 90% of duration of action potential (APD$_{50}$ and APD$_{90}$).

2.5. Experimental process

Perfusion was conducted with the saturated O$_2$ modified Locke liquid, and when the spontaneous rhythm stabilized for 20 min, a set of normal slow spontaneous potential was collected as control group. Then, perfusion was conducted with drug of different concentrations and saturated O$_2$ modified Locke liquid. Potential changes were recorded at 0.5, 1, 2, 5 min, respectively after each perfusion. After each observation of the drug effect, the modified Locke solution saturated with O$_2$ was applied to washout for 20 min in order to observe the recovery of spontaneous slow reaction potential.

2.6. Experimental scheme

2.6.1. The electrophysiological effects of Fe$^{2+}$ on the Slow reaction autorhythmic cells of the left ventricular outflow tract

Left ventricular outflow tract tissue was perfused with modified Locke solution containing FeSO$_4$ (100 µmol/L) and FeSO$_4$ (200 µmol/L), respectively to observe different concentrations of FeSO$_4$ on the electrophysiological changes of the slow reaction autorhythmic cells of the left ventricular outflow tract.

2.6.2. Effects of improved Ca$^{2+}$ concentration in perfusion fluid on the electrophysiological effect of FeSO$_4$ (200 µmol/L)

The left ventricular outflow tract tissue was perfused with Locke solution, in which doubled concentration of Ca$^{2+}$ (CaCl$_2$, 4.2 mmol/L) and FeSO$_4$ (200 µmol/L) were added to observe the influences of high concentration of Ca$^{2+}$ on electrophysiology of FeSO$_4$ (200 µmol/L).

2.6.3. Verapamil’s effects on electrophysiological effect of FeSO$_4$ (200 µmol/L)

The left ventricular outflow tract tissue was perfused with Locke solution containing Verapamil (1 µmol/L) and FeSO$_4$ (200 µmol/L) in order to observe the effects of Verapamil on the electrophysiological effects of FeSO$_4$(200 µmol/L).
The left ventricular outflow tract tissue was perfused with Locke solution containing nickel chloride (200 µmol/L) and FeSO₄ (200 µmol/L) to observe the influences of nickel chloride on the electrophysiological effects of Fe²⁺ (200 µmol/L).

2.7. Statistical analysis

Software SPSS version 16.0 was used for statistical analysis. Measurement data was expressed as Mean ± SD. Self paired t test was used for comparison of different indexes before and after treatment. P<0.05 was considered as significant difference.

3. Results

3.1 The electrophysiological effects of Fe²⁺ on the Slow reaction autorhythmic cells of the left ventricular outflow tract

FeSO₄ (100, 200 µmol/L) can change the electrophysiological indexes of the slow response autorhythmic cells of the left ventricular outflow tract in a concentration-dependent manner, make Vmax, APA and MDP decreased, RPF and VDD slowed, APD₅₀ and APD₉₀ prolonged (P<0.05) (Table 1).

3.2. Influences of high concentration of Ca²⁺ on the electrophysiological effects of FeSO₄ (200 µmol/L)

Increased concentration of Ca²⁺ (CaCl₂, 4.2 mmol/L) could partially inhibit the electrophysiological effects of FeSO₄ (200 µmol/L) (Table 2).

3.3. Verapamil’s effects on electrophysiological effect of FeSO₄ (200 µmol/L)

The LTCC channel blocker Verapamil (1 µmol/L) could block the electrophysiological effects of FeSO₄ (200 µmol/L) (Table 3).

3.4. Effects of nickel chloride on electrophysiological effect of FeSO₄ (200 µmol/L)

The TTCC channel blocker nickel chloride (NiCl₂, 200 µmol/L) could not block the electrophysiological effects of FeSO₄ (200 µmol/L) (Table 4).

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>VDD (mV/s)</th>
<th>RPF (bpm)</th>
<th>MDP (mV)</th>
<th>Vmax (V/s)</th>
<th>APA (mV)</th>
<th>APD₅₀ (ms)</th>
<th>APD₉₀ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>35.46±4.13</td>
<td>128.21±11.37</td>
<td>-57.62±2.63</td>
<td>10.53±1.25</td>
<td>58.69±4.67</td>
<td>142.12±10.81</td>
<td>178.38±11.35</td>
</tr>
<tr>
<td>FeSO₄ (100 µmol/L) (5 min)</td>
<td>30.61±4.02</td>
<td>105.26±7.29</td>
<td>-54.28±2.35</td>
<td>8.56±1.58</td>
<td>52.31±3.25</td>
<td>159.85±11.32</td>
<td>192.78±12.86</td>
</tr>
<tr>
<td>FeSO₄ (200 µmol/L) (5 min)</td>
<td>24.82±2.79</td>
<td>86.68±6.81</td>
<td>-50.98±3.62</td>
<td>6.89±1.16</td>
<td>45.72±3.38</td>
<td>191.39±12.14</td>
<td>229.94±13.13</td>
</tr>
</tbody>
</table>

*P<0.05 vs. control; †P<0.05 vs. FeSO₄ (100 µmol/L).

Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>VDD (mV/s)</th>
<th>RPF (bpm)</th>
<th>MDP (mV)</th>
<th>Vmax (V/s)</th>
<th>APA (mV)</th>
<th>APD₅₀ (ms)</th>
<th>APD₉₀ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>34.91±4.23</td>
<td>127.87±10.34</td>
<td>-56.76±2.77</td>
<td>10.21±1.09</td>
<td>57.88±4.51</td>
<td>141.56±12.29</td>
<td>177.29±12.12</td>
</tr>
<tr>
<td>FeSO₄ (200 µmol/L) (5 min)</td>
<td>24.06±2.68</td>
<td>85.31±7.61</td>
<td>-49.81±3.73</td>
<td>7.01±1.03</td>
<td>46.83±3.23</td>
<td>191.41±11.08</td>
<td>229.81±13.43</td>
</tr>
<tr>
<td>FeSO₄ (200 µmol/L)+CaCl₂ (4.2 mmol/L) (5 min)</td>
<td>31.85±3.26</td>
<td>110.73±5.25</td>
<td>53.35±3.22</td>
<td>8.62±1.17</td>
<td>53.46±3.06</td>
<td>163.32±11.33</td>
<td>195.78±10.68</td>
</tr>
</tbody>
</table>

*P<0.05 vs. control; †P<0.05 vs. Fe (100 µmol/L).

Table 3

<table>
<thead>
<tr>
<th>Group</th>
<th>VDD (mV/s)</th>
<th>RPF (bpm)</th>
<th>MDP (mV)</th>
<th>Vmax (V/s)</th>
<th>APA (mV)</th>
<th>APD₅₀ (ms)</th>
<th>APD₉₀ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>35.91±4.23</td>
<td>128.77±10.34</td>
<td>-56.76±2.77</td>
<td>10.21±1.09</td>
<td>57.88±4.51</td>
<td>141.56±12.29</td>
<td>177.29±12.12</td>
</tr>
<tr>
<td>Verapamil (1 µmol/L) (5 min)</td>
<td>15.82±2.79</td>
<td>66.68±6.81</td>
<td>-40.98±3.62</td>
<td>5.89±1.16</td>
<td>38.72±3.38</td>
<td>206.39±15.34</td>
<td>239.94±17.13</td>
</tr>
<tr>
<td>Verapamil (1 µmol/L)+FeSO₄ (200 µmol/L) (5 min)</td>
<td>15.09±2.93</td>
<td>65.93±7.08</td>
<td>-39.13±4.55</td>
<td>5.01±1.72</td>
<td>37.96±4.11</td>
<td>207.62±16.68</td>
<td>240.39±19.06</td>
</tr>
</tbody>
</table>

*P<0.05 vs. control; †P<0.05 vs. Fe (100 µmol/L).

Table 4

<table>
<thead>
<tr>
<th>Group</th>
<th>VDD (mV/s)</th>
<th>RPF (bpm)</th>
<th>MDP (mV)</th>
<th>Vmax (V/s)</th>
<th>APA (mV)</th>
<th>APD₅₀ (ms)</th>
<th>APD₉₀ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>33.83±3.96</td>
<td>125.58±12.39</td>
<td>-55.62±3.28</td>
<td>10.27±1.31</td>
<td>56.71±5.03</td>
<td>139.52±11.66</td>
<td>173.88±12.25</td>
</tr>
<tr>
<td>NiCl₂ (200 µmol/L) (5 min)</td>
<td>14.12±2.64</td>
<td>64.51±6.63</td>
<td>54.89±4.76</td>
<td>7.34±1.22</td>
<td>45.87±4.12</td>
<td>158.21±13.84</td>
<td>194.27±14.32</td>
</tr>
<tr>
<td>NiCl₂ (200 µmol/L)+FeSO₄ (200 µmol/L) (5 min)</td>
<td>11.25±1.82</td>
<td>55.36±4.91</td>
<td>43.2±5.71</td>
<td>5.21±1.08</td>
<td>40.07±1.83</td>
<td>178.28±11.89</td>
<td>222.38±16.07</td>
</tr>
</tbody>
</table>

*P<0.05 vs. control; †P<0.05 vs. NiCl₂ (200 µmol/L).
4. Discussion

Repeated blood transfusion, excessive consumption of high iron food and drugs can lead to the occurrence of iron overload, which can cause myocardial damage, arrhythmia and heart failure. Our previous studies showed that the electrophysiological characteristics of ventricular outflow tract can result in slow response autorhythmic cells were one of the mechanisms of ventricular arrhythmias. In order to detect whether iron overload cause abnormal electrophysiological characteristics of slow response autorhythmic cells in ventricular outflow tract or not, we perfused the left ventricular outflow tract with different concentrations of FeSO4 and detected changes in slow response action potential parameters of autorhythmic cells. Results showed decreased Vmax, RPF, VDD and APA, and increased APD50 and APD90. MDP decreased too. Indicating that iron overload could change the electrophysiological characteristics of slow reaction autorhythmic cells in left ventricular outflow tract. Our previous studies showed that phase 0 depolarization of ion current in slow response autorhythmic cell is mainly calcium influx together with a small amount of sodium ions influx. Repolarization process was the efflux of potassium ions. Phase 4 automatic depolarization is mainly L-type calcium current (I_{Ca-L}) participation and progressive attenuation of potassium efflux. And hyperpolarization-activated inward ion current(I_{h}) participates in pacemaker current[10,11]. The comparison and analysis of the above-mentioned results concluded that Fe^{2+} may change the electrophysiological characteristics of the slow response cells of the left ventricular outflow tract by reducing the I_{Ca-L}. It was observed that electrophysiological effects of Fe^{2+} could be partially inhibited by increasing the Ca^{2+} concentration in the perfusion fluid, which further proved that Fe^{2+} plays a role through the calcium channel. Perfusion of LTCC blockers, Verapamil, and Fe^{2+} caused decrease of the electrophysiological effects of Fe^{2+} indicating that Verapamil could inhibit the electrophysiological effects of Fe^{2+} too. However, perfusion of TTCC blockers, nickel chloride could not decrease the electrophysiological characteristics of autorhythmic cells in the left ventricular outflow produced by Fe^{2+}, indicating that nickel chloride could not inhibit the electrophysiological effects of Fe^{2+}. The above-mentioned results showed that Fe^{2+} may change the electrophysiological characteristics of the left ventricular outflow tract through LTCC.

Results of this study showed that when iron overload occurs Fe^{2+} inflow, which goes directly through LTCC into autorhythmic cells in ventricular outflow tract, were in competition with the influx of calcium ions and then lead to shrunk L-type calcium current (I_{Ca-L}). This is probably the mechanism of electrophysiological characteristics of autorhythmic cells of left ventricular outflow tract produced by Fe^{2+}. Under the above-mentioned condition, the left ventricle of the heart are prone to conduction abnormalities, which in turn causes tachycardia arrhythmia. This might be one of the mechanisms when ventricular arrhythmia occurs at iron overload.

Conflict of interest statement

The authors declare that there is no conflict of interest.

References