Preliminary study on investigation of zoonotic visceral leishmaniasis in endemic foci of Ethiopia by detecting Leishmania infections in rodents

Wossenseged Lemma1 ✉, Asrat Bizuneh2, Habte Tekie3, Habtamu Belay2, Hirut Wondimu2, Aysheshm Kassahun4, Weleltu Shiferaw5, Mihesha Balkew6, Ibrahim Abassi6, Gad Baneth7, Asrat Hailu2

1Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
2Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
3Department of Zoological Sciences, College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
4Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 12844, Prague 2, Czech Republic
5Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
6Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University –Hadassah Medical School, Jerusalem, Israel
7School of Veterinary Medicine, Hebrew University, P.O. Box 12, Rehovot, 76100, Jerusalem, Israel

ARTICLE INFO

Article history:
Received 10 Jan 2017
Received in revised form 12 Feb 2017
Accepted 14 Mar 2017
Available online 6 Apr 2017

Keywords:
Zoonotic visceral leishmaniasis
Phlebotomus orientalis
Phlebotomus martini
Leishmania donovani
Reservoir hosts
Ethiopia

ABSTRACT

Objective: To investigate the zoonotic visceral leishmaniasis (ZVL) by identification of the most probable reservoir hosts using parasite isolation and analysis of a possible transmission dynamics of the disease in extra-domestic agricultural fields and rural villages.

Methods: Rodents were collected from selected study sites in kala-azar endemic areas based on information for localities of kala-azar cases for screening of Leishmania infections using parasitological, serological and polymerase chain reaction (PCR) from March, 2013 to January, 2014. Ketamine (Clorketam Veterinary) was used to anaesthetize the rodents according the prescribed dosage (average 2 mg/kg for intra-venous route). The blood obtained using sterile needle was dropped into sterile filter paper and allowed to air dry before sealing in plastic bags. The tissues from liver, spleen and skin were macerated in Locke’s solution before transferring them into NNN medium. Blood and touch smears of liver, spleen, skin and bone marrow were prepared for fixing using methanol and staining by Giemsa stain for microscopy. These tissues were also used for DNA extractions and PCR amplification of Leishmania infection.

Results: A total of 335 rodents (13 species) were analyzed by sampling internal organs. The infection rate by PCR was 11.1% (6/54) for Arvicanthis nilothicus compared to 17.6% (3/17) and 12.5% (2/16) for Acomys cahirinus and Tarera (G) robustus respectively. Almost all the infections were found from bone marrow samples (8/48 or 16.7%) compared with 1/91 (1.1%) liver, 2/87 (2.2%) spleen and 0/87 (0%) skin. In all study sites with past human VL cases, rodents and proved vectors shared similar habitats.

Conclusions: Leishmania donovani might circulate among different species of rodents in kala-azar endemic lowlands and valleys of Ethiopia by Phlebotomus orientalis and Phlebotomus martini. Detailed studies to substantiate the preliminary data on the possible role of these rodents are urgently needed.
1. Introduction

In Ethiopia, the annual incidence of visceral leishmaniasis (VL) is around 4,000–7,000 from the estimated 3.2 million people at risk for getting this disease [1,2]. The disease is believed to have a zoonotic transmission except during the man to man epidemics situation in Libo-Kemkem district [2–4]. Intrusion into a zoonotic cycle in extra-domestic environments has been indicated as the source VL infections in the major foci in Southern and northwestern Ethiopia [1,3–7]. However, the reservoir hosts of kala-azar have not been found conclusively. Direct agglutination test (DAT), enzyme linked immuno sorbent assay (ELISA) and polymerase chain reaction (PCR) indicated the presence of *Leishmania donovani* (L. donovani) infection and salivary protein of *Phlebotomus orientalis* ([*P. orientalis*] (vectors of VL) in serum of cow, dogs, sheep, goats and donkeys in the northwestern Ethiopia [8,9]. The role of domestic animals such as cow, sheep, goat, donkey, camel and dogs in north-west Ethiopia might be related only to blood meal sources for the vector of VL [7–9]. A study in Sudan suggested Egyptian mongoose as probable reservoir host [10] while other studies considered rodents as possible reservoirs [11–14]. The fact that this carnivorous mongoose feed on rodents might lead to rodents' origin of the *Leishmania* infection. *Leishmania* screening of the rodents and bats in Ethiopia, including those samples for the study of animal wildlife in the country, indicated only rodents in the VL endemic areas harbored *L. donovani* infections [14,15].

Experimental *L. donovani* infection in *Arvicanthis niloticus* ([*A. nilothicus*]) in Sudan indicated the susceptibility of this species to *Leishmania* infection but parasitemia decreased with time indicating that rodents may not be the reservoir host of VL [16]. Hoogstraal and Heyneman [11], on the other hand, found chronic natural of the infection in *A. nilothicus* and considered this rodent species as the most probable reservoir host of VL in Sudan, where the *Leishmania* parasites isolated from the rodents were found to be identical with parasites from VL patients and *P. orientalis* vectors. The objective of this study was to describe zoonotic visceral leishmaniasis in Ethiopia by investigating the role of rodents as reservoir hosts of VL in endemic lowland areas of Ethiopia.

2. Materials and methods

2.1. Study area

In Western Tigray Zone (Kafta Humera district), extra-domestic agricultural fields and tickets of *Acacia seyal* near Baeker (14°01’N, 36°59’E) and May Kadra towns (Gelanzeraf) (13°59’N, 036°31’E) were used for trapping the rodents in addition to agriculture fields in Adijamus village in Welkit districts. In Tahtay Adiyabo district (around Shiraro town; Western Tigray Zone), rodents were sampled from Ademiti, Chameskebet and Mayhas villages. In Raya Azebo district, southern Tigray zone, rodents were collected from pre-domestic areas around houses with previous VL cases in a village located 7 km away from Mehoni town, where the administrative center of the zone was located. In southern Ethiopia rodents were trapped from Galga-village (900–1,300 m.a.s.l) and Segen Valley (<700 m.a.s) in Abu-Roba kebele (5°15’0’’N; 37°16’0’’E) in Konso district. In Guji Zone of the Oromia Region, Negele Borana (or Neghelle) (5°20’N39°35’E, 5,333’N 39,583’E; 1475 m altitude) is the largest town in the zone. Rodents were sampled from Gofe Ambo (Enso) and Kobadi villages that were located at about 20 km west of Negele Borana town. The inhabitants in these two villages were semi-pastoral communities. The surroundings of clustered huts (tukuls) were bushy with big termite mounds serving as habitats for rodents and *Phlebotomus martini*, the proved vector of kala-azar in southern Ethiopia [17], similar to Galga village. Algude and Cherkeka (026°34’E; 05°65’N; 550 m altitude) villages were the other sites for rodent sampling in Omo valley in Hamer district of South Omo zone. These villages had similar vegetation with Segen valley, Galga and Negele Borana areas.

2.2. Study design

The rodent sampling sites in villages and extra-domestic habitats were selected based on information on document obtained from VL patients in treatment centers in Humera, Gondar, Arbaminch and Negele Borana Hospitals. Rodents were trapped for screening of *Leishmania* infection by parasitological, serological and molecular techniques before the species of the rodents were identified by morphological characters.

2.3. Study period

Rodents were sampled from sampling sites in Humera-Shiraro lowlands (March, April September and December, 2013), Mehoni lowland (June, 2013), Galga village (July, October, 2013), villages in Hamer (August, 2013), villages in Negele Borana (August, 2013) and Segen Valley (January, 2014).

2.4. Rodent trapping and tissue sampling techniques

Rodents were captured by Sherman live traps baited with peanut butter and placed overnight in the sampling sites. The rodents were anaeasthetized for tissue biopsies from liver, spleen, bone marrow and tip of the nose (skin) for screening of *Leishmania* infections. Ketamine (Clorketam Veterinary) was used to anaeasthetize the rodents according the prescribed dosage (average 2 mg/kg for intra-venous route). The blood obtained using sterile needle was dropped into sterile filter paper and allowed to air dry before sealing in plastic bags. The tissues from liver, spleen and skin were macerated in Locke's solution before transferring them into NNN medium. Blood and touch smears of liver, spleen, skin and bone marrow were made on microscope slides and allowed to air dry before fixing using methanol and staining by Giemsa stain for microscopy. Rodents were trapped from the sampling sites after permission was obtained from Ethiopian Wildlife Conservation Authority (EWCA), Government of Ethiopia.

2.5. Serological test of the blood samples on filter paper

Five mm disks from the dried blood samples on the filter papers were punched out before eluting in 125 μL DAT buffer in each well of a micro-plate row B which was incubated for overnight at 4 °C. Fifty micro-liter DAT diluent (physiological saline (0.9% NaCl) containing 0.78% β-mercaptoethanol) was dispensed into every well of the vertical rows A, B, C, D, E, F, G
and H except into row B. Freeze dried serum diluted in PBS (100 μL) was used as positive control and dispensed into well 12C while 100 μL freeze dried solution of bovine albumin was added (negative control) in 11C. Serial dilution, using a multi-channel pipette, was performed from Row B until Row H by mixing five times. Mixed and re-suspended DAT-antigen (50 μL) was pipetted to every well except row B. Finally, the micro-plate was sealed with an adhesive plate sealer and shaken gently and incubated for overnight. The end point titre was determined by visual inspection of the agglutination reactions with reference of the negative controls. The cut-off value of the DAT was set at >1:800 so as to increase sensitivity of the test in detecting Leishmania infection.

2.6. Morphological data

Morphological data relevant to the systematics of rodents such as pelage colour, length of body, head, tail, soles of the feet and ear size were obtained when the rodents were anaesthetized for tissue biopsies. Each rodent has been photographed before dissection and the head was mounted in 95% ethanol. Each head sample was individually boiled to remove the skull morphometric characters for species identification.

2.7. DNA extraction and PCR

DNA was extracted from spleen, liver, bone marrow and skin samples and PCR reaction performed according to Abbasi et al. [18]. In brief, 25 μL final volume was prepared from 20 μL master mix (1 μL forward primer, 1 μL backward primer, dNTPs and 18 μLH2O) and 5 μL DNA sample for PCR reaction. 18S rRNA internal transcribed spacer one (ITS1) was amplified using primers LITSR (5’-CTG CAT TAT TTT CCG ATG-3’) and LITSR (5’-GAC TAC CAC TTA TCG CAC TT-3’) for 35 cycles. The thermal profile of the PCR comprised 5 min at 95 °C, followed by 35 cycles starting at 95 °C for 30 s, 56 °C for 30 s, and 72 °C for 1 min, a final elongation step at 72 °C for 10 min. The ITS1 PCR product, sized ca 330 bp, was analyzed by gel electrophoresis at 120 V in 1× TAE buffer in 1.5% agarose gels to find Leishmania spp. specific bands. The fragments were visualized using ethidium bromide up on exposure to UV light.

3. Results

A total of 335 rodents were trapped. Of these, a total of 164 rodents were collected from Northern and 171 from southern Ethiopia (Table 1). Rodents were found in pre-domestic and extra-domestic areas. Fences and bushes around houses in pre-domestic areas, agricultural fields, termite mounds and grasses in sparse tickets of Acacia seyal in extra-domestic habitats were the habitats for the rodents.

Of the total 91 rodents [Arvicathis niloticus (A. niloticus; n = 54), Tarerella (G) robustus (T. robustus; n = 16), Acomys caurinus (A. caurinus; n = 17), Melomys albigena (n = 2), Xerus erythropus (n = 2)] collected from extra-domestic habitats of Baeker and Gelanzeraf (Kafta Humera district) in March and April, 2013 and analyzed by PCR using skin, spleen, liver and bone marrow samples, 6/54 (11.1%) of A. niloticus were positive compared to infection rates in A. caurinus (3/17 or 17.6%) and T. robustus (2/16 or 12.5%). Only 48 bone marrow samples

<table>
<thead>
<tr>
<th>Species</th>
<th>Sample site</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niloticus</td>
<td>68 27 – – –</td>
<td>95</td>
</tr>
<tr>
<td>A. somalica</td>
<td>– – – 25 21 31</td>
<td>77</td>
</tr>
<tr>
<td>A. caurinus</td>
<td>25 1 16 7 5 2</td>
<td>56</td>
</tr>
<tr>
<td>T. robustus</td>
<td>21 3 – – – –</td>
<td>24</td>
</tr>
<tr>
<td>Mastomys erythropus</td>
<td>3 5 25 5 10 7</td>
<td>55</td>
</tr>
<tr>
<td>Taterillus emini</td>
<td>– – 11 – –</td>
<td>11</td>
</tr>
<tr>
<td>Melomys albigena</td>
<td>2 – – – –</td>
<td>2</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>5 – – – –</td>
<td>5</td>
</tr>
<tr>
<td>Paracricetomys aethiopicus</td>
<td>1 – 1 – –</td>
<td>2</td>
</tr>
<tr>
<td>Crocidura macmillani (Elephant shrew)</td>
<td>– – 2 – –</td>
<td>2</td>
</tr>
<tr>
<td>Hetercephalus glaber (Nacked mole rat)</td>
<td>– – 1 – –</td>
<td>1</td>
</tr>
<tr>
<td>Xerus erythropus</td>
<td>3 – – 1</td>
<td>4</td>
</tr>
<tr>
<td>Civettictis ceyta (Striped ground squirrel)</td>
<td>– – 1 – –</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>128 36 56 38 37 40</td>
<td>335</td>
</tr>
</tbody>
</table>

Sample site A: Humera (Gelanzeraf); B: Mekoni and Shiraro; C: Galga (Aba-Roba); D: Segen valley; E: Hamer (Algude and cherkaka villages); F: Negelle Borena (Gofe Ambo and Easo villages).

Figure 1. Representative samples of PCR amplifications of ITS1 of Leishmania parasites from bone marrow samples from rodents collected in March and April, 2013 in extra-domestic habitats of Baeker and Gelanzeraf areas in Kaft – Humera district. Lane M: MW marker; Lanes 1 and 45 (code 111 and 109): T. robustus collected from Gelanzeraf in April; Lanes 20 and 27 (Code H132 and H139): A. caurinus collected from Baeker and Gelanzeraf; Lanes 31, 33, 37 and 38 (Code H92, H94, H98 and H99): A. niloticus from Baeker.
were found enough for DNA extraction to run PCR. Almost all the infections were found from these bone marrow samples (8/48 or 16.7%) compared with 1/91 (1.1%) liver, 2/87 (2.2%) spleen and 0/87 (0%) skin (Figure 1). Different organs of the same rodent were not found infected. DAT of blood on the filter papers for 91 rodents from southern Ethiopia were DAT positive. Microscopy and NNN medium were negative for all rodents except 2 spleen samples NNN medium positive A. niloticus. Bone marrow samples were not used for NNN medium.

4. Discussion

All the rodents including those found infected in this study such as A. niloticus, T. robustus, Mastomys erythroleucus (M. erythroleucus) and A. cahirinus share a habitat (cracks of black soil) with P. orientalis. Getting infected rodents and human VL cases near rodents, which share a habitat with the proved vectors, could give clue for vectors – rodents – vectors L. donovani cycle in extra-domestic agricultural fields and rural areas with incidental human infections (vectors – rodents – vectors – humans). Rodent species (A. nilothicus, T. robustus and A. cahirinus) in Kafia Humera lowlands were found with 12.5%–17.6% infection rate similar to infection rate of rodents in southern Ethiopia by Kassahun et al. [14].

Most probably, rodents play important role in maintaining L. donovani cycle during rainy season when P. orientalis population declines [6]. Identification of L. donovani complex from Arvicanthis spp., Gerbilliscus nigrigaudeus, and M. erythroleucus, using real time PCR in the Southern kala-azar endemic lowlands of Ethiopia [14] and in northwest Ethiopia by this study could prove the zoonotic nature of VL transmission. Intrusion of humans into lowlands and valleys and settlement in rural areas, where zoonotic parasite cycle is maintained, could be the main reason for incidence of VL in Ethiopia.

Infection rates obtained in this study using ordinary PCR were ranged from 0 to 2.2% for skin, liver and spleen samples compared with 16.7% in bone marrow. For Kassahun et al. [14], bone marrow samples were not analyzed; all the infections were obtained from spleen samples. In this study, bone marrow samples were not used for NNN-medium. Only 2 spleen samples were positive by NNN-medium from the total 335 rodents analyzed (skin, liver and spleen). Future study should take into considerations about the type of techniques and tissue samples used during the screening of infections in rodents. Unlike the common thought of the sequestration of L. donovani amastigotes in the spleen [19], bone marrow has also been shown, in this study, as a major source of L. donovani infection. Our finding was supported with previous experiment on BALB/c mice which confirmed bone marrow as site of persistent infection in addition to a striking similarity with the spleen in the time of onset of rapid amastigote accumulation [20].

In conclusion, A. niloticus, A. cahirinus, Gerbilliscus nigrigaudeus and M. erythroleucus could play a role in the transmission cycle of zoonotic kala-azar infection due to L. donovani in endemic areas of Ethiopia. Further studies are required for L. donovani isolation from rodents in the endemic areas. Additional evidences relating to infectivity of sand flies using xenodiagnosis should be sought before considering these rodents as potential reservoir hosts of L. donovani.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

We would like to thank the Bill and Melinda Gates Foundation Global Health Program [Grant number OPPGH53536] and Gondar University for funding this research. We would also thank Abel Haile and Argeyo Kereno, for technical assistance and rodent trapping, and Shewangizaw Sime and Michael Birhanu who derived us to the different sampling sites. Our thanks also go to Bethlehem Getachew and Kakebe Gmichael in Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia. I would like to thanks Professor Afewerk Bekele for valuable comments on rodent systematics. I would like to acknowledge Ato Ketema Amberbir for the interest and willingness to help me during my work in the Zoological National History Museum of Addis Ababa University.

References


