Direct detection of \(rpoB \) and \(katG \) gene mutations of \textit{Mycobacterium tuberculosis} in clinical samples

Sunil Pandey\(^1,2\)*, Ashima Lamichhane\(^1\), Anu Byanjankar\(^1\), Ansuma Kharel\(^1\), Chandrakala Rai\(^1\), Sunil Prasad Lekhak\(^3\), Menuka Karki\(^4\)

\(^1\)Department of Medical Microbiology, Nobel College, Pokhara University, Nepal
\(^2\)Department of Biological Sciences, Eastern Illinois University, USA
\(^3\)Decode Genomics and Research Center, Sinamangal, Kathmandu, Nepal
\(^4\)Department of Cell Biology, New Mexico State University, USA

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 28 Nov 2016
Received in revised form 21 Jun 2017
Accepted 26 Jul 2017
Available online 12 Aug 2017

\textbf{Keywords:}
\textit{Mycobacterium tuberculosis}
Direct detection
\(rpoB \)
\(katG \)
Mutation
Nepal

\textbf{ABSTRACT}

\textbf{Objectives:} To study the \(rpoB \) and \(katG \) gene mutation rate and its markers.

\textbf{Methods:} Cross-sectional study methods were used to study Tuberculosis. A total of 45 sputum samples were collected from Annapurna Neurological Institute and Allied sciences. Then, acid fast bacilli staining were performed. Positive and negative samples were carried for conventional polymerase chain reaction identification and electrophoresis.

\textbf{Results:} Out of 45 samples, 3 were acid fast bacilli positive and the rest were negative. Male participants were more as compare to female participants and the mutation in \(rpoB \) and \(katG \) gene was found similar i.e. 6.66% among the total samples.

\textbf{Conclusions:} We can conclude that genetic mutation in \textit{Mycobacterium tuberculosis} can be identified directly from the clinical samples. However, we have carried this study in less sample size and to validate research on large number of sample is recommended.

\section{1. Introduction}

Tuberculosis (TB) is caused by bacteria \textit{Mycobacterium tuberculosis}, which most affects the lung and is preventable and curable. In 2015, there were an estimated 10.4 million new (incident) TB cases worldwide, of which 5.9 million (56\%) were among men, 3.5 million (34\%) among women and 1.0 million (10\%) among children [1]. In 2015, there were a predictable 480,000 incidences of multidrug-resistant TB (MDR-TB) and a supplementary 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment [1]. Many social & economic factors including poverty, drug addiction and lack of health care facilities are compounding factors for causation of tuberculosis [2,3]. Isoniazid and rifampicin are the antibiotics advised first-line drugs and are the first medicines used to treat all persons with TB disease. Although there are advances in TB therapy over the past century, there were an estimated nine million new cases and 1.1 million deaths in 2013 [4].

Usually drug resistance occurs when bacteria become resistant to the drugs which are used to treat TB. It means that the drug no longer can kill the pathogens of TB. The most important way to measure the TB is quickly diagnosis with recommendation, treatment guidelines, monitoring the patients report frequently and full completion of the therapy. Isoniazid resistance (INH-R) is more complex and is related with mutations in one or more genes, such as the genes encoding catalase-peroxidase \([katG \) gene (codon 315)] and the enoyl-acyl-carrier protein reeducates enzyme, which is involved in mycolic acid biosynthesis \([inhA \) gene (codon 327)].
Great value to TB patients in proper diagnosis of the disease. Strains in human MDR-TB isolates. But this type of study gives

Final volume of 25

Master Mix

2.2. Sample size

We collected sample at least 45 patients visiting the hospital. This is a cross-sectional study and the sample about this size will be sufficient to identify the rpoB & katG gene mutation from clinical samples.

2.3. Sample collection

In total, 45 samples were collected from Annapurna Neurological Institute of Allied Sciences from Kathmandu, Nepal. Sputum of hospitalized patient was taken as study sample. Spot and early morning samples of sputum were collected in 2 sterile wide mouth containers and were processed and graded on the same day as per National Tuberculosis Control Programme (NTCP) guidelines. Only sputum samples were included in the study and the volume was 5 mL or more. Samples were labeled as saliva mucoid, purulent, mucopurulent or blood stained according to their physical appearance.

2.4. Sample handling and DNA extraction

Collected sample was first decontaminated by Petroff's modified method (Table 1), and Acid Fast Bacilli (AFB) staining was carried out. Both positive and negative AFB results were processed for DNA extraction. Collected patient's sputum samples were vortexed and decontaminated by Modified Petroff's method. Four mL of the decontaminated sputum were homogenized for 15 min in a shaker using an equal volume of 4% NaOH because modified Petroffs method is an excellent simplified decontamination technique. After 15 min, centrifugation at 3000 rpm, the deposit was neutralized with 20 mL of sterile distilled water. The samples were again centrifuged at 3000 rpm for 15 min [13]. From the pellet, DNA was extracted which was processed for polymerase chain reaction (PCR) for the detection of TB using MPB64 and IS6110 primers. Gel Electrophoresis was performed to detect the PCR amplification product.

2.5. Primers amplification conditions

The compositions of reaction mixtures and PCR conditions for each of three different rpoB codons and katG315 codon were as described by [14], with few modifications. For rpoB MAS-PCR each 25-μL reaction mixture contained purified DNA sample (0.5 μL), MgCl2 (2.5 mM for rpoB526- and rpoB531-PCR or 1.5 mM for rpoB516-PCR), 1 U of recombinant Taq DNA polymerase (Solis Bordyne, Estonia). The reactions of rpoB526-PCR and rpoB531-PCR were performed in different condition as attached in Table 1.

3. Results

Of the 45 samples collected, 60% were from the male patients and 40% were from the female patients. Most cases of
TB were isolated between the age group of 21–71 years, of which 28.88% were new cases and 71.11% were retreated cases. Of the total samples, 6 of them were found to be AFB positive and 39 were AFB negative.

However, the Gel Electrophoresis of PCR product showed TB positive for 31 (68.88%) samples and negative for 14 (31.11%) samples determined by the presence of bands of MPB64 and IS6110. Similarly, of the total samples three samples had rpoB gene mutation, three had katG gene mutation and one had both rpoB and KatG gene mutation.

4. Discussion

Lack of education among Nepalese might be one of the great reasons for people presenting advance stage of disease in Nepal and in developing countries. Many of the people are less aware of their health and method of infectious disease prevention.

In our study, we found 60% cases were males and 40% were females. Most cases of TB were in the age group of 21–56 years. Furthermore, 6 samples was found to be AFB positive 39 were found to be negative with new and retreated cases with 13 (28.88%) and 32 (71.11%), respectively. Moreover, rpoB mutation was found in 3 patients (6.66%) and katG gene mutation was also found in 3 patients (6.66%) of total sample. One sample shows both katG and rpoB gene mutation.

In world scenario of TB cases, smear microscopy has long been known as the primary method for screening of TB, with a case detection rate of not more than 68%. Considerable advancement has been made in the last few years to resolve the basis of resistance against INH and RIF. These are the major advancement has been made in the last few years to resolve the problems of drug-resistant TB.

Large epidemics have been associated with Mycobacterium tuberculosis drug resistant strains [19–23]. This identification is likely to provide a regime for anti-tuberculosis treatment. The determination of resistant genes will be helpful for clinicians to identify the most appropriate antibiotics suitable for the treatment of the patients also. The information gained from this study will be useful for health educators, and health care providers in developing specific pragmatic education.

The main aim of this study was to directly detect the rpoB & katG gene mutations from clinical samples in Nepal. This prospective cross-sectional study was conducted at Decode genomics and research center Pvt. Ltd., Sinamangal, Kathmandu, Nepal and sample with their epidemiological data are brought to disseminate fast for treatment. Nevertheless, large sample size might be needed to validate this finding.

Acknowledgement

We want to acknowledge Nobel College, Pokhara University Medical Microbiology Department for financial support for this study and Decode Genomics and Research Center for providing us molecular techniques needed in this study.

Conflict of interest statement

We declare we don’t have competing of interest.

References

