Some Properties of Operations on $\alpha O(X)$

Alias B. Khalaf1, Hariwan Z. Ibrahim2

1 Department of Mathematics
Faculty of Science, University of Duhok
Kurdistan-Region, Iraq.
aliasbkhalaf@gmail.com

2 Department of Mathematics
Faculty of Science, University of Zakho
Kurdistan-Region, Iraq.
hariwan_math@yahoo.com

Abstract

In this paper, we introduce the notions of α_γ-interior, α_γ-neighbourhood, α_γ-derived, α_γ-boundary, α_γ-kernel and α_γ-g.closed set defined by γ-operation on $\alpha O(X)$ and investigate some of their properties.

Keywords: operation, α-open set, α_γ-open set.

AMS Subject Classification(2010): Primary: 54A05, 54A10; Secondary: 54C05.

1 Introduction

The notion of α-open sets was introduced by Njastad [6] and he denoted the family of all α-open sets in a topological space (X, τ) by $\alpha O(X, \tau)$ or $\alpha O(X)$. Ibrahim [1] defined the concept of an operation on $\alpha O(X)$ and introduced the notion of α_γ-open sets. Kasahara [2] defined the concept of an operation on topological spaces and introduced α_γ-closed graphs of an operation. Ogata [7] called the operation α as γ operation and introduced the notion of τ_γ which is the collection of all γ-open sets in a topological space (X, τ). The aim of this paper is to continue the study of topological properties by means of operations on $\alpha O(X)$.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure and the interior of A are denoted by $Cl(A)$ and $Int(A)$, respectively. A subset A of a topological space (X, τ) is said to be α-open [6] if $A \subseteq Int(Cl(Int(A)))$. The complement of an α-open set is said to be α-closed.

The intersection of all α-closed sets containing A is called the α-closure of A and is denoted by $\alpha Cl(A)$. An operation $\gamma : \alpha O(X, \tau) \to P(X)$ [1] is a mapping satisfying the condition, $V \subseteq V^\gamma$ for each $V \in \alpha O(X, \tau)$. We call the mapping γ an operation on $\alpha O(X, \tau)$. A subset A of X is called an α_γ-open set [1] if for each point $x \in A$, there exists an α-open set U of X containing x such that $U^\gamma \subseteq A$. The complement of an α_γ-open set is said to be α_γ-closed. We denote the set
of all α_γ-open (resp., α_γ-closed) sets of (X, τ) by $\alpha O(X, \tau)_\gamma$ (resp., $\alpha C(X, \tau)_\gamma$). The α_γ-closure [1] of a subset A of X with an operation γ on $\alpha O(X)$ is denoted by $\alpha Cl(A)$ and is defined to be the intersection of all α_γ-closed sets containing A. A point $x \in X$ is in αCl_γ-closure [1] of a set $A \subseteq X$, if $U^\gamma \cap A \neq \emptyset$ for each α-open set U containing x. The αCl_γ-closure of A is denoted by $\alpha Cl_\gamma(A)$. An operation γ on $\alpha O(X, \tau)$ is said to be α-open [1] if for every α-open set U of X containing $x \in X$, there exists an α_γ-open set V of X such that $x \in V$ and $V \subseteq U^\gamma$.

3 Some Properties of γ-operations on $\alpha O(X)$

Definition 3.1. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. A point $a \in A \subseteq X$ is said to be α_γ-interior point of A if there exists an α-open set N of X containing a such that $N^\gamma \subseteq A$. We denote the set of all such points by $\alpha Int_\gamma(A)$.

Thus $\alpha Int_\gamma(A) = \{x \in A : x \in N \in \alpha O(X) \text{ and } N^\gamma \subseteq A\} \subseteq A$.

Theorem 3.2. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If A and B are two subsets of X, then the following statements are true:

1. If $A \subseteq B$, then $\alpha Int_\gamma(A) \subseteq \alpha Int_\gamma(B)$.
2. $\alpha Int_\gamma(A) \cup \alpha Int_\gamma(B) \subseteq \alpha Int_\gamma(A \cup B)$.
3. If γ is α-regular, then $\alpha Int_\gamma(A) \cap \alpha Int_\gamma(B) = \alpha Int_\gamma(A \cap B)$.

Proof: Follows from Definition 3.1 and 2.14 [1].

Theorem 3.3. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If A is a subset of X, then

1. $\alpha Int_\gamma(X \setminus A) = X \setminus \alpha Cl_\gamma(A)$.
2. $\alpha Cl_\gamma(X \setminus A) = X \setminus \alpha Int_\gamma(A)$.
3. $\alpha Int_\gamma(A) = X \setminus \alpha Cl_\gamma(X \setminus A)$.
4. $\alpha Cl_\gamma(A) = X \setminus \alpha Int_\gamma(X \setminus A)$.

Proof: We prove (1) only and the other parts can be proved similarly.

Let $x \in \alpha Int_\gamma(X \setminus A)$, then there exists an α-open sets U containing x such that $U^\gamma \subseteq X \setminus A$. This implies that $U^\gamma \cap A = \emptyset$. This gives that $x \notin \alpha Cl_\gamma(A)$ and so $x \in X \setminus \alpha Cl_\gamma(A)$.

Conversely, let $x \in X \setminus \alpha Cl_\gamma(A)$ implies that $x \notin \alpha Cl_\gamma(A)$, then there exists an α-open sets V containing x such that $V^\gamma \cap A = \emptyset$ implies that $x \in V \subseteq V^\gamma \subseteq X \setminus A$. It follows that $x \in \alpha Int_\gamma(X \setminus A)$.

The proof of the following theorem is obvious and hence omitted.
Theorem 3.4. Let \((X, \tau)\) be a topological space and \(\gamma\) an operation on \(\alpha O(X)\). Then for \(A \subseteq X\), we have

1. \(\alpha Int_\gamma(A)\) is an \(\alpha\)-open set.
2. \(A\) is \(\alpha\)-\(\gamma\)-open if and only if \(\alpha Int_\gamma(A) = A\).

Theorem 3.5. If a subset \(A\) of \(X\) is \(\alpha\)-\(\gamma\)-open, then there exists an \(\alpha\)-open set \(O\) such that \(O \subseteq A \subseteq O^\gamma\).

Proof: If \(A\) is an \(\alpha\)-\(\gamma\)-open set, then \(\alpha Int_\gamma(A) = A\). By taking \(O = \alpha Int_\gamma(A)\), we obtain that \(O \subseteq A \subseteq O^\gamma\).

Definition 3.6. [3] A topological space \((X, \tau)\) is said to be \(\alpha\)-\(\gamma\)-regular if for each \(x \in X\) and for each \(\alpha\)-open set \(V\) in \(X\) containing \(x\), there exists an \(\alpha\)-open set \(U\) in \(X\) containing \(x\) such that \(U^\gamma \subseteq V\).

Theorem 3.7. Let \((X, \tau)\) be a topological space and \(\gamma\) an operation on \(\alpha O(X)\). Then the following statements are equivalent.

1. \(\alpha O(X, \tau) = \alpha O(X, \tau)_\gamma\).
2. \((X, \tau)\) is an \(\alpha\)-\(\gamma\)-regular space.
3. For every \(x \in X\) and every \(\alpha\)-open set \(U\) of \(X\) containing \(x\) there exists an \(\alpha\)-\(\gamma\)-open set \(W\) of \(X\) such that \(x \in W\) and \(W \subseteq U\).

Proof:

(1) \(\Rightarrow\) (2): Let \(x \in X\) and \(V\) be an \(\alpha\)-open set containing \(x\). Then by assumption, \(V\) is an \(\alpha\)-\(\gamma\)-open set. This implies that for each \(x \in V\), there exists an \(\alpha\)-open set \(U\) such that \(U^\gamma \subseteq V\). Therefore \((X, \tau)\) is an \(\alpha\)-\(\gamma\)-regular space.

(2) \(\Rightarrow\) (3): Let \(x \in X\) and \(U\) be an \(\alpha\)-open set containing \(x\). Then by (2), there is an \(\alpha\)-open set \(W\) containing \(x\) and \(W \subseteq U^\gamma \subseteq U\). Applying (2) to set \(W\) shows that \(W\) is \(\alpha\)-\(\gamma\)-open. Hence \(W\) is an \(\alpha\)-\(\gamma\)-open set containing \(x\) such that \(W \subseteq U\).

(3) \(\Rightarrow\) (1): By (3) and [[1], Proposition 2.13], it follows that every \(\alpha\)-open set is \(\alpha\)-\(\gamma\)-open, that is, \(\alpha O(X, \tau) \subseteq \alpha O(X, \tau)_\gamma\). Also from [[1], Remark 2.6], \(\alpha O(X, \tau)_\gamma \subseteq \alpha O(X, \tau)\). Hence we have the result.

Remark 3.8. For any topological space \((X, \tau)\), we have

1. If \(\alpha O(X)\) is indiscrete, then \(\alpha O(X)_\gamma\) is also indiscrete.
2. If \(\alpha O(X)_\gamma\) is discrete, then \(\alpha O(X)\) is discrete.

Remark 3.9. Let \((X, \tau)\) be a topological space and \(x \in X\). If \(\{x\} \in \alpha O(X)_\gamma\), then \(\{x\}^\gamma = \{x\}\).
Definition 3.10. Let \((X, \tau)\) be a topological space and \(x \in X\), then a subset \(N\) of \(X\) is said to be \(\alpha_\gamma\)-neighbourhood (resp., \(\alpha\)-neighbourhood [4]) of \(x\), if there exists an \(\alpha_\gamma\)-open (resp., \(\alpha\)-open) set \(U\) in \(X\) such that \(x \in U \subseteq N\).

Proposition 3.11. In a topological space \((X, \tau)\), a subset \(A\) of \(X\) is \(\alpha_\gamma\)-open if and only if it is an \(\alpha_\gamma\)-neighbourhood of each of its points.

Proof: Let \(A \subseteq X\) be an \(\alpha_\gamma\)-open set, since for every \(x \in A\), \(x \in A \subseteq A\) and \(A\) is \(\alpha_\gamma\)-open. This shows \(A\) is an \(\alpha_\gamma\)-neighbourhood of each of its points. Conversely, suppose that \(A\) is an \(\alpha_\gamma\)-neighbourhood of each of its points. Then for each \(x \in A\), there exists \(B_x \in \alpha O(X)_\gamma\) such that \(B_x \subseteq A\). Then \(A = \cup\{B_x : x \in A\}\). Since each \(B_x\) is \(\alpha_\gamma\)-open. It follows that \(A\) is \(\alpha_\gamma\)-open set. □

Proposition 3.12. If \(A \subseteq B\) in a topological space \((X, \tau)\) and \(A\) is an \(\alpha_\gamma\)-neighbourhood of a point \(x \in X\), then \(B\) is also \(\alpha_\gamma\)-neighbourhood of the same point \(x\).

Proof: Obvious. □

Remark 3.13. Since every \(\alpha_\gamma\)-open set is \(\alpha\)-open, then every \(\alpha_\gamma\)-neighbourhood of a point is an \(\alpha\)-neighbourhood of the same point.

Definition 3.14. Let \(A\) be a subset of a topological space \((X, \tau)\) and \(\gamma\) be an operation on \(\alpha O(X)_\gamma\). The union of all \(\alpha_\gamma\)-open sets contained in \(A\) is called the \(\alpha_\gamma\)-interior of \(A\) and denoted by \(\alpha_\gamma\text{Int}(A)\).

Theorem 3.15. Let \((X, \tau)\) be a topological space and \(\gamma\) be an operation on \(\alpha O(X)\). For any subsets \(A, B\) of \(X\) we have the following:

1. \(\alpha_\gamma\text{Int}(A)\) is an \(\alpha_\gamma\)-open set in \(X\).
2. \(A\) is \(\alpha_\gamma\)-open if and only if \(A = \alpha_\gamma\text{Int}(A)\).
3. \(\alpha_\gamma\text{Int}(\alpha_\gamma\text{Int}(A)) = \alpha_\gamma\text{Int}(A)\).
4. \(\alpha_\gamma\text{Int}(\phi) = \phi\) and \(\alpha_\gamma\text{Int}(X) = X\).
5. \(\alpha_\gamma\text{Int}(A) \subseteq A\).
6. If \(A \subseteq B\), then \(\alpha_\gamma\text{Int}(A) \subseteq \alpha_\gamma\text{Int}(B)\).
7. \(\alpha_\gamma\text{Int}(A \cup B) \supseteq \alpha_\gamma\text{Int}(A) \cup \alpha_\gamma\text{Int}(B)\).
8. \(\alpha_\gamma\text{Int}(A \cap B) \subseteq \alpha_\gamma\text{Int}(A) \cap \alpha_\gamma\text{Int}(B)\).

Proof: Straight forward. □
Definition 3.16. Let \((X, \tau)\) be a topological space with an operation \(\gamma\) on \(\alpha O(X)\). A point \(x \in X\) is said to be \(\alpha_\gamma\)-limit point of a set \(A\) if for each \(\alpha_\gamma\)-open set \(U\) containing \(x\), then \(U \cap (A \setminus \{x\}) \neq \emptyset\). The set of all \(\alpha_\gamma\)-limit points of \(A\) is called an \(\alpha_\gamma\)-derived set of \(A\) and is denoted by \(\alpha_\gamma D(A)\).

Some properties of \(\alpha_\gamma\)-derived sets are stated in the following proposition.

Proposition 3.17. Let \(A, B\) be any two subsets of a space \(X\), and \(\gamma\) be an operation on \(\alpha O(X)\). Then we have the following properties:

1. \(\alpha_\gamma D(\emptyset) = \emptyset\).
2. If \(x \in \alpha_\gamma D(A)\), then \(x \in \alpha_\gamma D(A \setminus \{x\})\).
3. \(\alpha_\gamma D(A \cup B) \supseteq \alpha_\gamma D(A) \cup \alpha_\gamma D(B)\).
4. \(\alpha_\gamma D(A \cap B) \subseteq \alpha_\gamma D(A) \cap \alpha_\gamma D(B)\).
5. \(\alpha_\gamma D(\alpha_\gamma D(A)) \setminus A \subseteq \alpha_\gamma D(A)\).
6. \(\alpha_\gamma D(A \cup \alpha_\gamma D(A)) \subseteq A \cup \alpha_\gamma D(A)\).

Proof: Obvious.

The proofs of Propositions 3.18 and 3.19 are clear.

Proposition 3.18. A subset \(A\) of a topological space \(X\) is \(\alpha_\gamma\)-closed if and only if it contains the set of its \(\alpha_\gamma\)-limit points.

Proposition 3.19. Let \(A\) be any subset of a topological space \((X, \tau)\) and \(\gamma\) be an operation on \(\alpha O(X)\), then \(\alpha_\gamma Cl(A) = A \cup \alpha_\gamma D(A)\).

Proposition 3.20. Let \(A\) be any subset of a topological space \((X, \tau)\) and \(\gamma\) be an operation on \(\alpha O(X)\). Then \(\alpha_\gamma Int(A) = A \setminus \alpha_\gamma D(X \setminus A)\).

Proof: If \(x \in A \setminus \alpha_\gamma D(X \setminus A)\), then \(x \notin \alpha_\gamma D(X \setminus A)\) and so there exists an \(\alpha_\gamma\)-open set \(U\) containing \(x\) such that \(U \cap (X \setminus A) = \emptyset\). Then \(x \in U \subseteq A\) and hence \(x \in \alpha_\gamma Int(A)\), that is \(A \setminus \alpha_\gamma D(X \setminus A) \subseteq \alpha_\gamma Int(A)\). On the other hand, if \(x \in \alpha_\gamma Int(A)\), then \(x \notin \alpha_\gamma D(X \setminus A)\) since \(\alpha_\gamma Int(A)\) is \(\alpha_\gamma\)-open and \(\alpha_\gamma Int(A) \cap (X \setminus A) = \emptyset\). Hence \(\alpha_\gamma Int(A) = A \setminus \alpha_\gamma D(X \setminus A)\).

Proposition 3.21. Let \(A\) be any subset of a topological space \((X, \tau)\) and \(\gamma\) be an operation on \(\alpha O(X)\). Then the following statements are true:

1. \(X \setminus \alpha_\gamma Int(A) = \alpha_\gamma Cl(X \setminus A)\).
2. \(X \setminus \alpha_\gamma Cl(A) = \alpha_\gamma Int(X \setminus A)\).
3. \(\alpha O \text{Int}(A) = X \setminus \alpha O \text{Cl}(X \setminus A) \).

4. \(\alpha O \text{Cl}(A) = X \setminus \alpha O \text{Int}(X \setminus A) \).

Proof: We only prove (1), the other parts can be proved similarly.

\(X \setminus \alpha O \text{Int}(A) = X \setminus (A \setminus \alpha O \text{D}(X \setminus A)) = (X \setminus A) \cup \alpha O \text{D}(X \setminus A) = \alpha O \text{Cl}(X \setminus A) \).

Definition 3.22. Let \(A \) be a subset of a space \(X \), then the \(\alpha O \)-boundary of \(A \) is defined as \(\alpha O \text{Cl}(A) \setminus \alpha O \text{Int}(A) \) and is denoted by \(\alpha O \text{Bd}(A) \).

Some properties of \(\alpha O \)-boundary sets are stated in the following proposition.

Proposition 3.23. Let \(A \) be any subset of a topological space \((X, \tau) \) and \(\gamma \) be an operation on \(\alpha O(X) \). Then the following statements hold:

1. \(\alpha O \text{Cl}(A) = \alpha O \text{Int}(A) \cup \alpha O \text{Bd}(A) \).

2. \(\alpha O \text{Int}(A) \cap \alpha O \text{Bd}(A) = \phi \).

3. \(\alpha O \text{Bd}(A) = \alpha O \text{Cl}(A) \cap \alpha O \text{Cl}(X \setminus A) \).

4. \(\alpha O \text{Bd}(A) = \alpha O \text{Bd}(X \setminus A) \).

5. \(\alpha O \text{Bd}(A) \) is an \(\alpha O \)-closed set.

Proof: Obvious.

Definition 3.24. Let \((X, \tau) \) be a topological space. A mapping \(\gamma : \alpha O(X) \to P(X) \) is said to be:

1. \(\alpha \)-monotone on \(\alpha O(X) \) if for all \(A, B \in \alpha O(X) \), \(A \subseteq B \) implies \(A^\gamma \subseteq B^\gamma \).

2. \(\alpha \)-idempotent on \(\alpha O(X) \) if \(A^{\gamma \gamma} = A^\gamma \) for all \(A \in \alpha O(X) \).

3. \(\alpha \)-additive on \(\alpha O(X) \) if \((A \cup B)^\gamma = A^\gamma \cup B^\gamma \) for all \(A, B \in \alpha O(X) \).

If \(\bigcup_{i \in I} A_i^\gamma \subseteq (\bigcup_{i \in I} A_i)^\gamma \) for any collection \(\{A_i\}_{i \in I} \subseteq \alpha O(X) \), then \(\gamma \) is said to be \(\alpha \)-subadditive on \(\alpha O(X) \).

Proposition 3.25. Let \((X, \tau) \) be a topological space and \(\gamma \) an operation on \(\alpha O(X) \). Then, \(\gamma \) is \(\alpha \)-monotone on \(\alpha O(X) \) if and only if \(\gamma \) is \(\alpha \)-subadditive on \(\alpha O(X) \).

Proof: Let \(\gamma \) be \(\alpha \)-monotone on \(\alpha O(X) \) and \(\{A_i\}_{i \in I} \subseteq \alpha O(X) \). Then for each \(i \in I \), \(A_i^\gamma \subseteq (\bigcup_{i \in I} A_i)^\gamma \) and thus \(\bigcup_{i \in I} A_i^\gamma \subseteq (\bigcup_{i \in I} A_i)^\gamma \).

Conversely, if \(\gamma \) is \(\alpha \)-subadditive on \(\alpha O(X) \) and \(A, B \in \alpha O(X) \) with \(A \subseteq B \), then \(A^\gamma \subseteq A^\gamma \cup B^\gamma \subseteq (A \cup B)^\gamma = B^\gamma \). Thus \(\gamma \) is \(\alpha \)-monotone on \(\alpha O(X) \).
Remark 3.26. The α-regularity of operation γ in [1] follows from the α-monotonicity of operation γ.

Remark 3.27. It is easy to verify that if γ is α-additive on $\alpha O(X)$ then γ is α-monotone on $\alpha O(X)$.

The following result shows that the family of α_{γ}-open sets may be a topology on X.

Theorem 3.28. Let (X, τ) be a topological space. If γ is an α-monotone operation on $\alpha O(X)$, then the family of α_{γ}-open is a topology on X.

Proof: Clearly $\phi, X \in \alpha O(X)$ and by [[1], Theorem 2.11], the union of any family of α_{γ}-open sets is α_{γ}-open. To complete the proof it is enough to show that the finite intersection of α_{γ}-open sets is α_{γ}-open. Let A and B be two α_{γ}-open sets and let $x \in A \cap B$, then $x \in A$ and $x \in B$, so there exist α-open sets U and V such that $x \in U \subseteq U^\gamma \subseteq A$ and $x \in V \subseteq V^\gamma \subseteq B$, since γ is an α-monotone operation and $U \cap V$ is α-open set such that $U \cap V \subseteq U$ and $U \cap V \subseteq V$, this implies that $(U \cap V)^\gamma \subseteq U^\gamma \cap V^\gamma \subseteq A \cap B$. Thus $A \cap B$ is α_{γ}-open set. This completes the proof. ■

Theorem 3.29. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. If $(\bigcup_{i \in I} W_i)^\gamma \subseteq \bigcup_{i \in I} W_i^\gamma$ for any collection $\{W_i\}_{i \in I} \subseteq \alpha O(X)$, then for every α_{γ}-open set U we have $U^\gamma = U$.

Proof: Let U be an α_{γ}-open set. Then for every $x \in U$ there exists an α-open set W containing x such that $W \subseteq W^\gamma \subseteq U$. Therefore $\bigcup_{x \in U} W \subseteq \bigcup_{x \in U} W^\gamma \subseteq U$, so $\bigcup_{x \in U} W \subseteq (\bigcup_{x \in U} W)^\gamma \subseteq U$. Therefore, $U \subseteq U^\gamma \subseteq U$ and so $U^\gamma = U$. ■

Theorem 3.30. For any operation γ on $\alpha O(X)$, the map $\alpha_{\gamma} Cl : \alpha O(X) \rightarrow P(X)$ is an operation on $\alpha O(X)$ satisfying (1) and (2) of Definition 3.24, but not (3).

Proof: By [[1], Theorem 2.22 (5)], $\alpha_{\gamma} Cl$ is an α-monotone on $\alpha O(X)$. We show that $\alpha_{\gamma} Cl$ is α-idempotent on $\alpha O(X)$. Given $A \in \alpha O(X)$, it is obvious that $\alpha_{\gamma} Cl(A) \subseteq \alpha_{\gamma} Cl(\alpha_{\gamma} Cl(A))$. Let $x \in \alpha_{\gamma} Cl(\alpha_{\gamma} Cl(A))$ and V be any α_{γ}-open set containing x, then by [[1], Theorem 2.23], there is $z \in V \cap \alpha_{\gamma} Cl(A)$. Since $z \in \alpha_{\gamma} Cl(A)$ and V is an α_{γ}-open set containing z, we have that $V \cap A \neq \phi$, thus $x \in \alpha_{\gamma} Cl(A)$. Therefore $\alpha_{\gamma} Cl(\alpha_{\gamma} Cl(A)) \subseteq \alpha_{\gamma} Cl(A)$ and hence $\alpha_{\gamma} Cl(\alpha_{\gamma} Cl(A)) = \alpha_{\gamma} Cl(A)$. In general, $\alpha_{\gamma} Cl$ is not an α-additive operation on $\alpha O(X)$ as shown in the following example. ■

Example 3.31. Let $X = \{a, b, c\}$ equipped with the discrete topology on X. We define an operation γ on $\alpha O(X)$ by

$$A^\gamma = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \\ X & \text{otherwise.} \end{cases}$$
Then, the α_γ-open subsets of (X, τ) are $\phi, \{a, b\}, \{a, c\}$ and X. Now, if we let $A = \{b\}$ and $B = \{c\}$, then $\alpha_\gamma Cl(A) = A$, $\alpha_\gamma Cl(B) = B$ and $\alpha_\gamma Cl(A \cup B) = X$, where $A \cup B = \{b, c\}$, this implies that $\alpha_\gamma Cl(A \cup B) = X \neq \{b, c\} = \alpha_\gamma Cl(A) \cup \alpha_\gamma Cl(B)$.

Suppose that A is a subset of a topological space (X, τ), then we have the following properties:

Theorem 3.32. Let $\gamma : \alpha O(X) \to P(X)$ be an operation on $\alpha O(X)$, A and B subsets of a topological space (X, τ). Then, we have the following properties:

1. $A \subseteq \alpha Cl_{\gamma}(A)$.
2. $\alpha Cl_{\gamma}(\phi) = \phi$ and $\alpha Cl_{\gamma}(X) = X$.
3. A is α_γ-closed (that is, $X \setminus A$ is α_γ-open) in (X, τ) if and only if $\alpha Cl_{\gamma}(A) = A$ holds.
4. If $A \subseteq B$, then $\alpha Cl_{\gamma}(A) \subseteq \alpha Cl_{\gamma}(B)$.
5. $\alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B) \subseteq \alpha Cl_{\gamma}(A \cup B)$ holds.
6. If γ is α-regular, then $\alpha Cl_{\gamma}(A \cup B) = \alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B)$ holds.
7. $\alpha Cl_{\gamma}(A \cap B) \subseteq \alpha Cl_{\gamma}(A) \cap \alpha Cl_{\gamma}(B)$ holds.

Proof: (1), (2), (4): Obviously, by [[1], Definition 2.20], we have $A \subseteq \alpha Cl_{\gamma}(A)$.

(3): Suppose that $X \setminus A$ is α_γ-open in (X, τ). We claim that $\alpha Cl_{\gamma}(A) \subseteq A$. Let $x \notin A$. There exists an α-open set U containing x such that $U^\gamma \subseteq X \setminus A$, that is, $U^\gamma \cap A = \phi$. Hence, using [[1], Definition 2.20], we have $x \notin \alpha Cl_{\gamma}(A)$ and so $\alpha Cl_{\gamma}(A) \subseteq A$. By (1), it is proved that $A = \alpha Cl_{\gamma}(A)$.

Conversely, suppose that $A = \alpha Cl_{\gamma}(A)$. Let $x \in X \setminus A$. Since $x \notin \alpha Cl_{\gamma}(A)$, there exists an α-open set U containing x such that $U^\gamma \cap A = \phi$, that is, $U^\gamma \subseteq X \setminus A$. Namely, $X \setminus A$ is α_γ-open in (X, τ) and so A is α_γ-closed.

(5), (7): Followed from (4).

(6): Let $x \notin \alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B)$. Then, there exist two α-open sets U and V containing x such that $U^\gamma \cap A = \phi$ and $V^\gamma \cap B = \phi$. By [[1], Definition 2.14], there exists an α-open set W containing x such that $W^\gamma \subseteq U^\gamma \cap V^\gamma$. Thus, we have that $W^\gamma \cap (A \cup B) \subseteq U^\gamma \cap V^\gamma \cap (A \cup B) \subseteq [U^\gamma \cap A] \cup [V^\gamma \cap B] = \phi$, that is, $W^\gamma \cap (A \cup B) = \phi$. Namely, we have $x \notin \alpha Cl_{\gamma}(A \cup B)$ and so $\alpha Cl_{\gamma}(A \cup B) \subseteq \alpha Cl_{\gamma}(A) \cup \alpha Cl_{\gamma}(B)$. We can obtain (6) by using (5).

Theorem 3.33. Let (X, τ) be a topological space and γ an α-monotone operation on $\alpha O(X)$. If A is a subset of X, then

1. For every α_γ-open set G of X, we have that $\alpha Cl_{\gamma}(A) \cap G \subseteq \alpha Cl_{\gamma}(A \cap G)$.

2. For every α_γ-closed set F of X, we have that $\alpha\text{Int}_\gamma(A \cup F) \subseteq \alpha\text{Int}_\gamma(A) \cup F$.

Proof: (1) Let $x \in \alpha\text{Cl}_\gamma(A) \cap G$ and let U be an α-open set containing x. Since $x \in \alpha\text{Cl}_\gamma(A)$, implies that $U \cap A \neq \emptyset$. Since G is an α_γ-open set, there exists an α-open set V of X containing x such that $V \cap A \subseteq G$. Thus $(U \cap V) \cap A \neq \emptyset$, this implies that $U \cap A \cap G \neq \emptyset$ by α-monotone and hence $x \in \alpha\text{Cl}_\gamma(A \cap G)$. Therefore $\alpha\text{Cl}_\gamma(A) \cap G \subseteq \alpha\text{Cl}_\gamma(A \cap G)$.

(2) Follows from (1) and Theorem 3.3 (3).

The following example shows that the condition γ is α-monotone is necessary for the above theorem.

Example 3.34. Consider $X = \{a, b, c\}$ with the discrete topology on X. We define an operation γ on $\alpha O(X)$ by

$$A^\gamma = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\} \\ X & \text{otherwise.} \end{cases}$$

Since γ is not α-monotone, so if we let $A = \{a, c\}$ and $G = \{b, c\}$, then $\alpha Cl_\gamma(A) = X$ and $\alpha Cl_\gamma(A) \cap G = \{b, c\}$, this implies that $\alpha Cl_\gamma(A) \cap G = \{b, c\} \not\subseteq \alpha Cl_\gamma(A \cap G) = \alpha Cl_\gamma(\{c\}) = \{c\}$.

Remark 3.35. Let (X, τ) be a topological space and γ an α-regular operation on $\alpha O(X)$. If A is a subset of X, then

1. For every α_γ-open set G of X, we have $\alpha_\gamma Cl(A) \cap G \subseteq \alpha_\gamma Cl(A \cap G)$.
2. For every α_γ-closed set F of X, we have $\alpha_\gamma Int(A \cup F) \subseteq \alpha_\gamma Int(A) \cup F$.

Theorem 3.36. Let (X, τ) be a topological space, N a subset of X and γ an α-open operation on $\alpha O(X)$. Then, $\alpha Int_\gamma(\alpha Cl_\gamma(N)) = \phi$ if and only if any one of the following conditions hold:

1. $\alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N)) = X$.
2. $N \subseteq \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$.

Proof: (1) $\alpha Int_\gamma(\alpha Cl_\gamma(N)) = \phi$ if and only if $X \setminus \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N)) = \phi$ by Theorem 3.3 (3) if and only if $X \subseteq \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$ if and only if $X = \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$.

(2) $N \subseteq X = \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$ by (1). Conversely, $N \subseteq \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$, implies that $\alpha Cl_\gamma(N) \subseteq \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$ by [[1], Theorem 2.26 (2)]. Since $X = \alpha Cl_\gamma(N) \cup (X \setminus \alpha Cl_\gamma(N))$, implies that $X \subseteq \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N)) \cup (X \setminus \alpha Cl_\gamma(N)) = \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$. Hence $X = \alpha Cl_\gamma(X \setminus \alpha Cl_\gamma(N))$.

Theorem 3.37. Let (X, τ) be a topological space, N a subset of X and γ be both α-regular and α-open operation on $\alpha O(X)$. If $\alpha Int_\gamma(\alpha Cl_\gamma(N)) = \phi$ then every non empty α_γ-open set U contains a non empty α_γ-open set A disjoint with N.
Proof: Given $\alpha Int_\gamma(\alpha Cl_\gamma(N)) = \phi$. This implies that $\alpha Cl_\gamma(N)$ does not contain any non empty α_γ-open set. Hence for any non empty α_γ-open set U, $U \cap (X \setminus \alpha Cl_\gamma(N)) \neq \phi$. Thus by [[1], Theorem 2.26 (2) and Proposition 2.18] $A = U \cap (X \setminus \alpha Cl_\gamma(N)) = U \setminus \alpha Cl_\gamma(N)$ is a non empty α_γ-open set contained in U and disjoint with N.

Definition 3.38. Let A be a subset of a topological space (X, τ) and γ an operation on $\alpha O(X)$. The α_γ-kernel of A, denoted by $\alpha_\gamma Ker(A)$ is defined to be the set $\alpha_\gamma Ker(A) = \cap \{V : A \subseteq V, V \in \alpha O(X, \tau)_\gamma\}$.

Proposition 3.39. Let (X, τ) be a topological space with an operation γ on $\alpha O(X)$ and $x \in X$. Then $y \in \alpha_\gamma ker(\{x\})$ if and only if $x \in \alpha_\gamma Cl(\{y\})$.

Proof: Suppose that $y \notin \alpha_\gamma ker(\{x\})$. Then there exists an α_γ-open set V containing x such that $y \notin V$. Therefore, we have $x \notin \alpha_\gamma Cl(\{y\})$. The proof of the converse case can be done similarly.

Proposition 3.40. Let (X, τ) be a topological space with an operation γ on $\alpha O(X)$ and A be a subset of X. Then, $\alpha_\gamma ker(A) = \{x \in X : \alpha_\gamma Cl(\{x\}) \cap A \neq \phi\}$.

Proof: Let $x \in \alpha_\gamma ker(A)$ and suppose $\alpha_\gamma Cl(\{x\}) \cap A = \phi$. Hence $x \notin X \setminus \alpha_\gamma Cl(\{x\})$ which is an α_γ-open set containing A. This is impossible, since $x \in \alpha_\gamma ker(A)$. Consequently, $\alpha_\gamma Cl(\{x\}) \cap A \neq \phi$. Let $x \in X$ such that $\alpha_\gamma Cl(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \alpha_\gamma ker(A)$. Then, there exists an α_γ-open set V containing A and $x \notin V$. Let $y \in \alpha_\gamma Cl(\{x\}) \cap A$. Hence, V is an α_γ-open set containing y which does not contain x. By this contradiction $x \in \alpha_\gamma ker(A)$ and the claim.

Proposition 3.41. The following properties hold for the subsets A, B of a topological space (X, τ) with an operation γ on $\alpha O(X)$:

1. $A \subseteq \alpha_\gamma ker(A)$.
2. $A \subseteq B$ implies that $\alpha_\gamma ker(A) \subseteq \alpha_\gamma ker(B)$.
3. If A is α_γ-open in (X, τ), then $A = \alpha_\gamma ker(A)$.
4. $\alpha_\gamma ker(\alpha_\gamma ker(A)) = \alpha_\gamma ker(A)$.

Proof: (1), (2) and (3): Immediate consequences of $\alpha_\gamma ker(A) = \cap \{U \in \alpha O(X)_\gamma : A \subseteq U\}$.

(4): First observe that by (1) and (2), we have $\alpha_\gamma ker(A) \subseteq \alpha_\gamma ker(\alpha_\gamma ker(A))$. If $x \notin \alpha_\gamma ker(A)$, then there exists $U \in \alpha O(X, \tau)_\gamma$ such that $A \subseteq U$ and $x \notin U$. Hence $\alpha_\gamma ker(A) \subseteq U$, and so we have $x \notin \alpha_\gamma ker(\alpha_\gamma ker(A))$. Thus $\alpha_\gamma ker(\alpha_\gamma ker(A)) = \alpha_\gamma ker(A)$.
Proposition 3.42. The following statements are equivalent for any points \(x \) and \(y \) in a topological space \((X, \tau) \) with an operation \(\gamma \) on \(\alpha O(X) \):

1. \(\alpha_\gamma \ker \{ \{ x \} \} \neq \alpha_\gamma \ker \{ \{ y \} \} \).
2. \(\alpha_\gamma \Cl \{ \{ x \} \} \neq \alpha_\gamma \Cl \{ \{ y \} \} \).

Proof: (1) \(\Rightarrow \) (2): Suppose that \(\alpha_\gamma \ker \{ \{ x \} \} \neq \alpha_\gamma \ker \{ \{ y \} \} \), then there exists a point \(z \) in \(X \) such that \(z \in \alpha_\gamma \ker \{ \{ x \} \} \) and \(z \notin \alpha_\gamma \ker \{ \{ y \} \} \). From \(z \in \alpha_\gamma \ker \{ \{ x \} \} \) it follows that \(\{ x \} \cap \alpha_\gamma \Cl \{ \{ z \} \} \neq \emptyset \) which implies \(x \in \alpha_\gamma \Cl \{ \{ z \} \} \). By \(z \notin \alpha_\gamma \ker \{ \{ y \} \} \), we have \(\{ y \} \cap \alpha_\gamma \Cl \{ \{ z \} \} = \emptyset \). Since \(x \in \alpha_\gamma \Cl \{ \{ z \} \} \), \(\alpha_\gamma \Cl \{ \{ x \} \} \subseteq \alpha_\gamma \Cl \{ \{ z \} \} \) and \(\{ y \} \cap \alpha_\gamma \Cl \{ \{ x \} \} = \emptyset \). Therefore, it follows that \(\alpha_\gamma \Cl \{ \{ x \} \} \neq \alpha_\gamma \Cl \{ \{ y \} \} \). Now \(\alpha_\gamma \ker \{ \{ x \} \} \neq \alpha_\gamma \ker \{ \{ y \} \} \) implies that \(\alpha_\gamma \Cl \{ \{ x \} \} \neq \alpha_\gamma \Cl \{ \{ y \} \} \).

(2) \(\Rightarrow \) (1): Suppose that \(\alpha_\gamma \Cl \{ \{ x \} \} \neq \alpha_\gamma \Cl \{ \{ y \} \} \). Then there exists a point \(z \) in \(X \) such that \(z \in \alpha_\gamma \Cl \{ \{ x \} \} \) and \(z \notin \alpha_\gamma \Cl \{ \{ y \} \} \). Then, there exists an \(\alpha_\gamma \)-open set containing \(z \) and therefore \(x \) but not \(y \), namely, \(y \notin \alpha_\gamma \ker \{ \{ x \} \} \) and thus \(\alpha_\gamma \ker \{ \{ x \} \} \neq \alpha_\gamma \ker \{ \{ y \} \} \).

\[
\square
\]

Proposition 3.43. Let \((X, \tau) \) be a topological space and \(\gamma \) be an operation on \(\alpha O(X) \). Then, \(\cap \{ \alpha_\gamma \Cl \{ \{ x \} \} : x \in X \} = \emptyset \) if and only if \(\alpha_\gamma \ker \{ \{ x \} \} \neq X \) for every \(x \in X \).

Proof: Necessity, suppose that \(\cap \{ \alpha_\gamma \Cl \{ \{ x \} \} : x \in X \} = \emptyset \). Assume that there is a point \(y \) in \(X \) such that \(\alpha_\gamma \ker \{ \{ y \} \} = X \). Let \(x \) be any point of \(X \). Then \(x \in V \) for every \(\alpha_\gamma \)-open set \(V \) containing \(y \) and hence \(y \in \alpha_\gamma \Cl \{ \{ x \} \} \) for any \(x \in X \). This implies that \(y \in \cap \{ \alpha_\gamma \Cl \{ \{ x \} \} : x \in X \} \). But this is a contradiction.

Sufficiency, assume that \(\alpha_\gamma \ker \{ \{ x \} \} \neq X \) for every \(x \in X \). If there exists a point \(y \) in \(X \) such that \(y \in \cap \{ \alpha_\gamma \Cl \{ \{ x \} \} : x \in X \} \), then every \(\alpha_\gamma \)-open set containing \(y \) must contain every point of \(X \). This implies that the space \(X \) is the unique \(\alpha_\gamma \)-open set containing \(y \). Hence \(\alpha_\gamma \ker \{ \{ y \} \} = X \) which is a contradiction. Therefore, \(\cap \{ \alpha_\gamma \Cl \{ \{ x \} \} : x \in X \} = \emptyset \).

\[
\square
\]

Definition 3.44. [1] A subset \(A \) of a topological space \((X, \tau) \) is called an \(\alpha_\gamma \)-D-set if there are two \(U, V \in \alpha O(X, \tau) \) such that \(U \neq X \) and \(A = U \setminus V \).

Proposition 3.45. If a singleton \(\{ x \} \) is an \(\alpha_\gamma \)-D-set of \((X, \tau) \), then \(\alpha_\gamma \ker \{ \{ x \} \} \neq X \).

Proof: Since \(\{ x \} \) is an \(\alpha_\gamma \)-D-set of \((X, \tau) \), then there exist two subsets \(U_1, U_2 \in \alpha O(X, \tau) \) such that \(\{ x \} = U_1 \setminus U_2 \), \(\{ x \} \subseteq U_1 \) and \(U_1 \neq X \). Thus, we have that \(\alpha_\gamma \ker \{ \{ x \} \} \subseteq U_1 \neq X \) and so \(\alpha_\gamma \ker \{ \{ x \} \} \neq X \).

\[
\square
\]

Definition 3.46. A subset \(A \) of a topological space \((X, \tau) \) is said to be \(\alpha_\gamma \)-generalized closed (\(\alpha_\gamma \)-g-closed) set if \(\alpha \Cl \gamma(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is an \(\alpha_\gamma \)-open set of \((X, \tau) \).
Definition 3.47. [1] A subset A of the space (X, τ) is said to be α_γ-generalized closed (briefly, α_γ-g.closed) if $\alpha_\gamma \text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is an α_γ-open set in (X, τ). The complement of an α_γ-g.closed set is called an α_γ-g.open set.

Definition 3.48. [5] A subset A of a topological space (X, τ) is called an (α, α)-generalized closed set (briefly, (α, α)-g-closed) if $\alpha \text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open.

Theorem 3.49. Let A be a subset of a topological space (X, τ) and γ an operation on $\alpha O(X)$. Then, the following statements are true:

1. If A is α_γ-g.closed in X, then A is (α, α)-g-closed.

2. If A is α_γ-g.closed in X, then A is α_γ-g.closed.

Proof: Follows from Theorem 2.24 [1].

Remark 3.50. By Theorem 3.49, every α_γ-g.closed is (α, α)-g-closed.

Remark 3.51. It is clear that every α_γ-closed set is α_γ-g.closed, but the converse is not true in general as shown in the following example.

Example 3.52. Let $X = \{1, 2, 3\}$ with the topology $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, X\}$. We define an operation γ on $\alpha O(X)$ by

$$A^\gamma = \begin{cases} A & \text{if } A = \{2\} \text{ or } \{1, 3\} \\ X & \text{otherwise.} \end{cases}$$

Now, if we let $A = \{1\}$, since the only α_γ-open supersets of A are $\{1, 3\}$ and X, then A is α_γ-g.closed. But it is easy to see that A is not α_γ-closed.

Theorem 3.53. If A is α_γ-open and α_γ-g.closed, then A is α_γ-closed.

Proof: Suppose that A is α_γ-open and α_γ-g.closed. Since $A \subseteq A$, we have $\alpha Cl_\gamma(A) \subseteq A$, also $A \subseteq \alpha Cl_\gamma(A)$, therefore $\alpha Cl_\gamma(A) = A$. That is, A is α_γ-closed.

Theorem 3.54. Let $\gamma : \alpha O(X) \to P(X)$ be an operation on $\alpha O(X)$ and A a subset of a topological space (X, τ). Then the following statements are equivalent:

1. A is α_γ-g.closed in (X, τ).

2. $\alpha_\gamma Cl(\{x\}) \cap A \neq \emptyset$ for every $x \in \alpha Cl_\gamma(A)$.

3. $\alpha Cl_\gamma(A) \subseteq \alpha_\gamma Ker(A)$ holds.
Proof: (1) ⇒ (2): Let A be an $α$-γ-g-closed set of $(X, τ)$. Suppose that there exists a point $x ∈ αClγ(A)$ such that $αγCl(\{x\}) ∩ A = \phi$. By [[1], Theorem 2.22 (2)], $αγCl(\{x\})$ is $αγ$-closed. Put $U = X \setminus αγCl(\{x\})$. Then, we have $A ⊆ U$, $x ∉ U$ and U is an $αγ$-open set of $(X, τ)$. Since A is an $αγ$-g-closed set, $αClγ(A) ⊆ U$. Thus, we have $x ∉ αClγ(A)$. This is a contradiction.

(2) ⇒ (3): Follows from Proposition 3.40.

(3) ⇒ (1): Let U be any $αγ$-open set such that $A ⊆ U$. Let x be a point such that $x ∈ αClγ(A)$. By (3), $x ∈ αγKer(A)$ holds. Namely, we have that $x ∈ U$, because $A ⊆ U$ and $U ∈ αO(X, τ)γ$.

Theorem 3.55. Let $(X, τ)$ be a topological space and $γ$ an operation on $αO(X)$. If a subset A of X is $αγ$-g-closed, then $αClγ(A) \setminus A$ does not contain any non-empty $αγ$-g-closed set.

Proof: Suppose that there exists a non-empty $αγ$-g-closed set F such that $F ⊆ αClγ(A) \setminus A$. Then we have $A ⊆ X \setminus F$ and $X \setminus F$ is $αγ$-open. It follows from the assumption that $αClγ(A) ⊆ X \setminus F$ and so $F ⊆ (αClγ(A) \setminus A) \cap (X \setminus αClγ(A))$. Therefore, we have $F = \phi$.

Remark 3.56. In the above theorem, if $γ$ is an $α$-open operation, then the converse of the above theorem is true.

Proof: Let U be an $αγ$-open set such that $A ⊆ U$. Since $γ$ is an $α$-open operation, it follows from [[1], Theorem 2.26] that $αClγ(A)$ is $αγ$-g-closed in $(X, τ)$. Thus by [[1], Definition 2.2 and Theorem 2.11], we have $αClγ(A) ∩ (X \setminus U) = F$ is $αγ$-g-closed in $(X, τ)$. Since $X \setminus U ⊆ X \setminus A$, $F ⊆ αClγ(A) \setminus A$. Using the assumptions of the converse of Theorem 3.55 above, $F = \phi$ and hence $αClγ(A) ⊆ U$.

Theorem 3.57. Let $(X, τ)$ be a topological space and $γ$ an operation on $αO(X)$. Then for each $x ∈ X$, $\{x\}$ is $αγ$-g-closed or $X \setminus \{x\}$ is $αγ$-g-closed in $(X, τ)$.

Proof: Suppose that $\{x\}$ is not $αγ$-g-closed, then $X \setminus \{x\}$ is not $αγ$-g-open. Let U be any $αγ$-g-open set such that $X \setminus \{x\} ⊆ U$. Then $U = X$. Hence, $αClγ(X \setminus \{x\}) ⊆ U$. Therefore, $X \setminus \{x\}$ is an $αγ$-g-closed set.

Proposition 3.58. A subset A of X is $αγ$-g-open if and only if $F ⊆ αγInt(A)$ whenever $F ⊆ A$ and F is $αγ$-g-closed in X.

Proof: Let A be $αγ$-g-open and $F ⊆ A$ where F is $αγ$-g-closed. Since $X \setminus A$ is $αγ$-g-closed and $X \setminus F$ is an $αγ$-g-open set containing $X \setminus A$ implies $αγCl(X \setminus A) ⊆ X \setminus F$. By Proposition 3.21 (1), $X \setminus αγInt(A) ⊆ X \setminus F$. That is $F ⊆ αγInt(A)$.

Conversely, suppose that F is $αγ$-g-closed and $F ⊆ A$ implies $F ⊆ αγInt(A)$. Let $X \setminus A ⊆ U$ where U is $αγ$-open. Then $X \setminus U ⊆ A$ where $X \setminus U$ is $αγ$-g-closed. By hypothesis $X \setminus U ⊆ αγInt(A)$.

That is $X \setminus αγInt(A) ⊆ U$. By Proposition 3.21 (1), $αγCl(X \setminus A) ⊆ U$. This implies $X \setminus A$ is $αγ$-g-closed and A is $αγ$-g-open.
References

