Spectral conditions for a graph to contain some subgraphs

Rao Li
Department of Mathematical Sciences
University of South Carolina Aiken
Aiken, SC 29801
USA.
raol@usca.edu

Abstract

In this paper, using the upper bound for the spectral radius for a graph obtained by Cao, we present sufficient conditions based on the spectral radius for a graph to contain some subgraphs.

Keywords: Spectral radius, subgraph.
AMS Subject Classification(2010): 05C50, 05C35.

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2]. For a graph $G = (V, E)$, we use n and e to denote its order $|V|$ and size $|E|$, respectively. The largest and smallest degrees of a graph G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The eigenvalues of a graph are defined as the eigenvalues of its adjacency matrix. The largest eigenvalue of a graph G, denoted $\rho(G)$, is called the spectral radius of G. If no confusion arises, we may drop G for those invariants. We use C_k to denote a cycle of length k. We also call C_3 as a triangle. The circumference of a graph is defined as the length of the longest cycle in the graph.

Cao [3] obtained the following upper bound for the spectral radius of a graph.

Theorem 1.1. [3] Let G be a graph of order n and size e with minimum degree $\delta \geq 1$ and maximum degree Δ. Then $\rho(G) \leq \sqrt{2e - \delta(n - 1) + (\delta - 1)\Delta}$ with equality if and only if G is regular, a star plus copies of K_2, or a complete graph plus a regular graph with smaller degree of vertices.

2 Main Results

Using Theorem 1.1, Li [4] obtained sufficient conditions which are based on the spectral radius for some Hamiltonian properties of graphs. In this note, we use some of the ideas in [4] to obtain spectral conditions for a connected graph to contain some subgraphs.

Theorem 2.1. Let G be a connected graph of order n and size e. Suppose $k \geq 2$ is an integer. If $\rho > \sqrt{(1 - \frac{1}{k})n^2 - \delta(n - 1) + (\delta - 1)\Delta}$, then G contains K_{k+1}.

105
Proof: Let G be a connected graph satisfying the conditions in Theorem 2.1. Turán [6] proved that if a graph G does not contain K_{k+1} then $e \leq \left(1 - \frac{1}{k}\right) \frac{n^2}{2}$.

Suppose that G does not contain K_{k+1}. Then, by Theorem 1.1, we have that

$$\rho \leq \sqrt{2e - \delta(n - 1) + (\delta - 1)\Delta} \leq \sqrt{\left(1 - \frac{1}{k}\right) n^2 - \delta(n - 1) + (\delta - 1)\Delta},$$

which is a contradiction. This completes the proof.

Let $k = 2$ in Theorem 2.1. Then we have the following corollary.

Corollary 2.2. Let G be a connected graph of order n and size e. If $\rho > \sqrt{\frac{n^2}{2} - \delta(n - 1) + (\delta - 1)\Delta}$, then G contains a triangle.

Let $H = K_{r,r}$, where $r \geq 2$. Then, for any $\epsilon > 0$,

$$r = \rho(H) > r - \epsilon = \sqrt{\frac{(n(H))^2}{2} - \delta(H)(n(H) - 1) + (\delta(H) - 1)\Delta(H) - \epsilon},$$

and H does not contain a triangle. Thus Corollary 2.2 is best possible.

Theorem 2.3. Let G be a connected graph of order n and size e. Suppose G is not bipartite. If

$$\rho > \sqrt{\frac{(n - 1)^2}{2} + 2 - \delta(n - 1) + (\delta - 1)\Delta},$$

then G contains a triangle.

Proof: Let G be a connected graph satisfying the conditions in Theorem 2.3. By Exercise 7.3.3(c) on Page 111 in [2], we have that if a non-bipartite graph G does not contain a triangle then $e \leq \frac{(n-1)^2}{4} + 1$. Suppose that the non-bipartite graph G does not contain a triangle. Then, by Theorem 1.1, we have

$$\rho \leq \sqrt{2e - \delta(n - 1) + (\delta - 1)\Delta} \leq \sqrt{\frac{(n - 1)^2}{2} + 2 - \delta(n - 1) + (\delta - 1)\Delta},$$

which is a contradiction. This completes the proof.

Theorem 2.4. Let G be a connected graph of order n and size e. If

$$\rho > \sqrt{\frac{n}{2}(1 + \sqrt{4n - 3}) - \delta(n - 1) + (\delta - 1)\Delta},$$

then G contains C_4.

Proof: Let \(G \) be a connected graph satisfying the given conditions. Reiman [5] proved that if a graph \(G \) does not contain \(C_4 \), then \(e \leq \frac{n}{4} (1 + \sqrt{4n - 3}) \). Suppose that \(G \) does not contain \(C_4 \). Then, by Theorem 1.1, we have that
\[
\rho \leq \sqrt{2e - \delta(n - 1) + (\delta - 1)\Delta} \leq \sqrt{\frac{n}{2} (1 + \sqrt{4n - 3}) - \delta(n - 1) + (\delta - 1)\Delta}
\]
which is a contradiction. This completes the proof.

Theorem 2.5. Let \(G \) be a connected graph of order \(n \) and size \(e \). If
\[
\rho > \sqrt{n\sqrt{(r - 1)n + \frac{n}{2} - \delta(n - 1) + (\delta - 1)\Delta}}
\]
then \(G \) contains \(K_{2,r} \) \((r \geq 2) \).

Proof: Let \(G \) be a connected graph satisfying the given conditions. By Exercise 7.3.4(b) on Page 111 in [2], we have that if a graph \(G \) does not contain \(K_{2,r} \) \((r \geq 2) \) then \(e \leq \frac{n\sqrt{(r-1)n}}{2} + \frac{n}{4} \).

Suppose that \(G \) does not contain \(K_{2,r} \). Then, by Theorem 1.1, we have
\[
\rho \leq \sqrt{2e - \delta(n - 1) + (\delta - 1)\Delta} \leq \sqrt{n\sqrt{(r - 1)n + \frac{n}{2} - \delta(n - 1) + (\delta - 1)\Delta}}
\]
which is a contradiction. This completes the proof.

Theorem 2.6. Let \(G \) be a connected graph of order \(n \) and size \(e \). If
\[
\rho > \sqrt{(r - 1)\frac{1}{2} n^{2 - \frac{1}{r}} + (r - 1)n - \delta(n - 1) + (\delta - 1)\Delta}
\]
then \(G \) contains \(K_{r,r} \).

Proof: Let \(G \) be a connected graph satisfying the given conditions. By Exercise 7.3.5 on Page 112 in [2], we have that if a graph \(G \) does not contain \(K_{r,r} \) then \(e \leq \frac{(r-1)^{\frac{1}{r}} n^{2 - \frac{1}{r}}}{2} + \frac{(r-1)n}{2} \).

Suppose that \(G \) does not contain \(K_{r,r} \). Then by Theorem 1.1, we have
\[
\rho \leq \sqrt{2e - \delta(n - 1) + (\delta - 1)\Delta} \leq \sqrt{(r - 1)\frac{1}{2} n^{2 - \frac{1}{r}} + (r - 1)n - \delta(n - 1) + (\delta - 1)\Delta}
\]
which is a contradiction. This completes the proof.

Theorem 2.7. Let \(G \) be a connected graph of order \(n \) and size \(e \). Suppose \(c \) satisfies \(3 \leq c \leq n \). If
\[
\rho \geq \sqrt{(n - 1)(c - 1 - \delta) + (\delta - 1)\Delta + 2}
\]
then the circumference of \(G \) is at least \(c \).

Proof: Let \(G \) be a connected graph satisfying the given conditions. By Theorem 4.9 on Page 137 in [1], we have that if the circumference of a graph \(G \) is less than \(c \) then \(e < \frac{(c-1)(n-1)}{2} + 1 \).
Suppose that the circumference of G is less than c. Then, by Theorem 1.1, we have

$$\rho \leq \sqrt{2e - \delta(n - 1)} + (\delta - 1)\Delta < \sqrt{(n - 1)(c - 1) + (\delta - 1)\Delta + 2},$$

which is a contradiction. This completes the proof.

Theorem 2.8. Let G be a connected graph of order n and size e. Suppose c is the circumference of G. If

$$\rho > \sqrt{\frac{c(2n - c)}{2} - \delta(n - 1) + (\delta - 1)\Delta},$$

then G contains C_r for each r with $3 \leq r \leq c$.

Proof: Let G be a connected graph satisfying the given conditions. By Theorem 5.2 on Page 149 in [1], we have that if G does not contain C_r for some r with $3 \leq r \leq c$ then $e \leq \frac{c(2n-c)}{4}$. Suppose that G does not contain C_r for some r with $3 \leq r \leq c$. Then, by Theorem 1.1, we have that

$$\rho \leq \sqrt{2e - \delta(n - 1)} + (\delta - 1)\Delta \leq \sqrt{\frac{c(2n - c)}{2} - \delta(n - 1) + (\delta - 1)\Delta},$$

which is a contradiction. This completes the proof.

Corollary 2.9. Let G be a connected graph of order n and size e. Suppose G is Hamiltonian. If

$$\rho > \sqrt{n^2/2 - \delta(n - 1) + (\delta - 1)\Delta},$$

then G contains C_r for each r with $3 \leq r \leq n$.

Let $H = K_{r, r}$, where $r \geq 2$. Then H is Hamiltonian and, for any $\epsilon > 0$,

$$r = \rho(H) > r - \epsilon = \sqrt{\frac{(n(H))^2}{2} - \delta(H)(n(H) - 1) + (\delta(H) - 1)\Delta(H)} - \epsilon,$$

and H does not contain C_s when s is odd such that $3 \leq s \leq n(H)$. Thus Corollary 2.9 is possible.

References

