Cosplitting and co-regular graphs

Selvam Avadayappan, M. Bhuvaneshwari

Department of Mathematics
VHNSN College, Virudhunagar – 626001, India.
selvam_avadayappan@yahoo.co.in
bhuvanakamaraj28@yahoo.com

Abstract

The graph $S(G)$ obtained from a graph $G(V,E)$, by adding a new vertex w for every vertex $v \in V$ and joining w to all neighbours of v in G, is called the splitting graph of G. The cosplitting graph $CS(G)$ is obtained from G, by adding a new vertex w for each vertex $v \in V$ and joining w to those vertices of G which are not adjacent to v in G. In this paper, we introduce the concept of cosplitting graph and characterise the graphs for which splitting and cosplitting graphs are isomorphic.

Keywords: Cosplitting graph, splitting graph, degree splitting graph, co–regular graph.

AMS Subject Classification (2010): 05C(Primary).

1 Introduction

Throughout this paper, we consider only finite, simple and undirected graphs. For notations and terminology, we follow [2]. A graph G is said to be r-regular if every vertex of G has degree r. For $r \neq k$, a graph G is said to be (r,k)-biregular if $d(v)$ is either r or k for any vertex v in G. A 1–factor of G is a 1–regular spanning subgraph of G and it is denoted by F. For any vertex $v \in V$ in a graph $G(V,E)$, the open neighbourhood $N(v)$ of v is the set of all vertices adjacent to v. That is, $N(v) = \{u \in V \mid uv \in E\}$. The closed neighbourhood $N[v]$ of v is defined by $N[v] = N(v) \cup \{v\}$.

A vertex of degree one is called a pendant vertex. A vertex v is said to be a k–regular adjacency vertex (or simply a k–RA vertex) if $d(u) = k$ for all $u \in N(v)$. A vertex is called an RA vertex if it is a RA vertex for some $k \geq 1$. A graph G in which every vertex is an RA vertex, is said to be an RA graph. A full vertex of a graph G is a vertex which is adjacent to all other vertices of G.

Let G_1 and G_2 be any two graphs. The graph $G_1 \circ G_2$ obtained from one copy of G_1 and $|V(G_1)|$ copies of G_2 by joining each vertex in the ith copy of G_2 to the ith vertex of G_1 is called the corona of G_1 and G_2.

The cartesian product of G_1 and G_2 is denoted by $G_1 \times G_2$, whereas, the join of G_1 and G_2 is denoted by $G_1 \vee G_2$. $\gamma(G)$ denotes the domination number of a graph G and $\chi(G)$ denotes its chromatic number.
The concept of splitting graph was introduced by Sampath Kumar and Walikar [4]. The graph \(S(G) \), obtained from \(G \), by adding a new vertex \(w \) for every vertex \(v \in V \) and joining \(w \) to all vertices of \(G \) adjacent to \(v \), is called the splitting graph of \(G \). For example, a graph \(G \) and its splitting graph \(S(G) \) are shown in Figure 1.

![Figure 1: A graph G and its splitting graph S(G).](image1.png)

In [4], the following result has been proved.

Result 1.1. [4] A graph \(G \) is a splitting graph if and only if \(V(G) \) can be partitioned into two sets \(V_1 \) and \(V_2 \) such that there exists a bijective mapping \(f \) from \(V_1 \) to \(V_2 \) and \(N(f(v)) = N(v) \cap V_i \), for any \(v \in V_1 \).

On a similar line, Ponraj and Somasundaram [3] have introduced the concept of degree splitting graph \(DS(G) \) of a graph \(G \). For a graph \(G = (V, E) \) with vertex set partition \(V_i = \{v \in V \mid d(v) = i\} \), the degree splitting graph \(DS(G) \) is obtained from \(G \), by adding a new vertex \(w_i \) for each partition \(V_i \) that contains at least two vertices and joining \(w_i \) to each vertex of \(V_i \). For example, a graph \(G \) and its degree splitting graph \(DS(G) \) are shown in Figure 2.

![Figure 2: A graph G and its degree splitting graph DS(G).](image2.png)

It is obvious that every graph is an induced subgraph of \(DS(G) \). The following results on \(DS(G) \) have been proved in [1]:
Cosplitting and Co-regular graphs

Result 1.2. [1] The degree splitting graph $DS(G)$ is regular if and only if $G \cong K_r$, $r \geq 1$ or $(K_{2k} - F) \lor K_1$, where F is a 1-factor of K_{2k} and $k \geq 1$.

If $K_{n,2n+1}$ is the complete bipartite graph with bipartition (X,Y) where $X = \{ v_1, v_2, \ldots, v_n \}$ and $Y = \{ w_1, w_2, \ldots, w_{2n+1} \}$, then $K_{n,2n+1}^*$ denotes the graph obtained from $K_{n,2n+1}$ by deleting the edges v_iw_{2i-1} and v_iw_{2i} for all i, $1 \leq i \leq n$.

Result 1.3. [1] Let G be a connected graph. Then $DS(G)$ is a biregular RA graph if and only if $G \cong K_{1,n}$ or $K_{n,2n+1}^*$, where $n \geq 2$.

Result 1.4. [1] For any $n \geq 2$, there are n non isomorphic graphs whose degree splitting graphs are all isomorphic.

We define the cosplitting graph $CS(G)$ of a graph G as follows:

Let G be a graph with vertex set $\{v_1, v_2, \ldots, v_n\}$. The cosplitting graph $CS(G)$ is the graph obtained from G, by adding a new vertex w_i for each vertex v_i and joining w_i to all vertices which are not adjacent to v_i in G. For example, a graph G and its cosplitting graph $CS(G)$ are shown in Figure 3.

Figure 3: A graph G and its cosplitting graph $CS(G)$.

In this paper, we characterise the graphs for which the cosplitting graph is regular, biregular or bipartite. Also we give a necessary and sufficient condition for a graph to be a cosplitting graph. And finally we characterise the graphs for which the splitting graph and the cosplitting graph are isomorphic.

2 Properties of Cosplitting Graph

Let $K(m,n)$ denote the bipartite graph with vertex set bipartition (X,Y) where $X = \{ u_1, u_2, \ldots, u_{m+n} \}$ and $Y = \{ v_1, v_2, \ldots, v_{m+n} \}$ and edge set $E(K(m,n)) = \{ u_i v_j / 1 \leq i \leq m \text{ and } 1 \leq j \leq m+n \} \cup \{ u_i v_j / 1 \leq i \leq m+n \text{ and } 1 \leq j \leq n \}$. For example, the graph $K(2,3)$ is shown in Figure 4.

Figure 4: The graph $K(2,3)$.
For any graph G of order n, clearly $CS(G)$ contains $2n$ vertices. Let v_1, v_2, \ldots, v_n be the vertices of G and w_1, w_2, \ldots, w_n be the corresponding newly added vertices in $CS(G)$. Let $d'(v)$ and $d^*(v)$ denote the degrees of a vertex v in $CS(G)$ and $S(G)$ respectively.

For the cosplitting graph $CS(G)$, the following results can be easily verified:

Result 2.1. $d'(v_i) = n$ and $d'(w_i) + d(v_i) = n$, for all i, $1 \leq i \leq n$.

Result 2.2. If G has n vertices and m edges, then $CS(G)$ has $2n$ vertices and $n^2 - m$ edges.

Result 2.3. For a connected graph G, $1 \leq d'(w_i) \leq n - 1$. $d'(w_i) = 1$ implies that v_i is a full vertex in G and $d'(w_i) = n - 1$ implies that v_i is a pendant vertex in G.

It is important to note that Result 2.3 is also true for any disconnected graph G unless G contains an isolated vertex. In other words, $d'(w_i) = n$ if and only if v_i is an isolated vertex. Hence $\Delta(CS(G)) = n$. Also $CS(G)$ contains $n + m$ vertices of degree n, if and only if G contains m isolated vertices. Let them be denoted by u_1, u_2, \ldots, u_m. Note that in such case, $CS(G)$ contains $K_{m,n}$ as an induced subgraph. The removal of the $2m$ vertices that induces $K_{m,n}$ from $CS(G)$ results in a graph which is isomorphic to $CS(G \setminus \{u_1, u_2, \ldots, u_m\})$.

Result 2.4. $CS(K_n) \cong K_n \circ K_1$, $CS(K_n^e) \cong K_{n,n}$ and $CS(K_{m,n}) \cong K(m,n)$.

It is easy to observe that $G \circ K_1$ is a spanning subgraph of $CS(G)$ and $G \circ K_f = CS(G)$ if and only if $G \cong K_n$.

Result 2.5. Every graph G is an induced subgraph of its cosplitting graph $CS(G)$.

Result 2.6. In $CS(G)$, the subgraph induced by the set of all vertices of degree n is isomorphic to G.

Result 2.7. For any graph G, the cosplitting graph $CS(G)$ is always connected. But in case of splitting graph, $S(G)$ is connected if and only if G is connected.

Result 2.8. The cosplitting graph $CS(G)$ is r-regular if and only if $G \cong K_r^c$.

Result 2.9. The cosplitting graph $CS(G)$ is $(r, n-r)$-biregular if and only if G is an r-regular graph for any positive integer r.

Result 2.10. In the cosplitting graph of a connected graph, every newly added vertex that corresponds to a non-full vertex lies on at least one new cycle.

Result 2.11. For any graph G, $\chi(CS(G)) = \chi(G)$ or $\chi(G) + 1$.

The following theorem gives a characterisation of cosplitting graphs.

Theorem 2.12. A graph G is a cosplitting graph if and only if $V(G)$ can be partitioned into two sets V_1 and V_2 such that there exists a bijection f from V_1 to V_2 which satisfies the following conditions:

(i) $N(v) \cup N(f(v)) = V \setminus f(N(v))$ and

(ii) $N(v) \cap N(f(v)) = \emptyset$, for any $v \in V_1$.
Proof: Let G be a cosplitting graph of a graph H. To construct G from H, we add a new vertex w for each vertex v of H and join w with every vertex of H which is not adjacent to v. Let $V_1 = V(H)$ and $V_2 = V(G) \setminus V(H)$. For $v_i \in V_1$, let $w_i \in V_2$, be the corresponding newly added vertex where $1 \leq i \leq |V_1|$.

Now define a function $f : V_1 \to V_2$ by $f(v_i) = w_i$, $1 \leq i \leq |V_1|$. Then clearly f is a bijection from V_1 onto V_2. Also by definition $N(f(v_i)) = V_1 \setminus N(v_i)$. Hence (ii) is proved. In H, each v_i is adjacent not only to its neighbours in G, but also to all newly added vertices corresponding to its non-neighbours. Therefore we get $N(v_i) \cup N(f(v_i)) = V \setminus f(N(v_i))$.

Conversely, let the given conditions be true for a graph G. Let H be the subgraph of G induced by V_1. We claim that $CS(G) \cong G$. Since f is bijective, it is clear that for every vertex v_i in H, there is a unique vertex $f(v_i)$ in $G \setminus H$. Also by the assumptions (i) and (ii), v_i and $f(v_i)$ are adjacent for every i, $1 \leq i \leq n$ and every vertex in V_1 is a neighbour of either v_i or $f(v_i)$ but not both. Let us prove that $< G \setminus H >$ contains no edge. Suppose not, let $f(v_i)$ and $f(v_j)$ be adjacent for some $i \neq j$. Then by assumption (ii), $f(v_j) \notin N(v_i)$. In other words, $v_i \notin N(f(v_j))$ which implies that $v_i \notin N(v_j)$ which is a contradiction to (i) since $N(v_i) \cup N(f(v_j))$ does not contain any vertex of $f(N(v_j))$. Therefore $< G \setminus H >$ is a null graph. Hence if we consider $f(v_i)$ to be the corresponding newly added vertex for v_i, then G is the cosplitting graph of H.

The following theorem characterises all bipartite cosplitting graphs.

Theorem 2.13. For any graph G, $CS(G)$ is bipartite if and only if $G \cong K_{m,n}$ or K_{n}^C.

Proof: Let G be any graph for which $CS(G)$ is bipartite. Since G is an induced subgraph of $CS(G)$, G is also bipartite. Let (X,Y) be the bipartition of G.

Case (i): Suppose G is connected. Let $x \in X$ and $y \in Y$. We claim that x and y are adjacent in G. Suppose not, then there exists an (x,y) - path P of odd length in G. Also the newly added vertex w corresponding to x, is adjacent to both x and y in $CS(G)$. Therefore the path P together with the edges xw and wy forms a cycle of odd length in $CS(G)$, which is a contradiction. Therefore every $x \in X$ is adjacent to any $y \in Y$ in G and we have $G \cong K_{m,n}$.

Case (ii): Suppose G is disconnected. If $G \not\cong K_{n}^C$, then there is a component, say G_1 of G containing at least one edge xy. Let v be a vertex of G not in G_1 and let w be the newly added vertex corresponding to v in $CS(G)$. Clearly w is adjacent to both x and y in $CS(G)$. Thus $wxyw$ forms a triangle in $CS(G)$. This is a contradiction to the assumption that $CS(G)$ is bipartite. Hence $G \cong K_{n}^C$.

Conversely if $G \cong K_{m,n}$ or K_{n}^C, then $CS(G) \cong K(m,n)$ or $K_{n,n}$ respectively and hence the result follows.

Corollary 2.14. $CS(G)$ is a tree if and only if $G \cong K_{1,1}$ or K_1.

Proof: Suppose $CS(G)$ is a tree. Then $CS(G)$ is bipartite and G is acyclic. Therefore, by the above theorem, $G \cong K_{1,1}$ or K_1. And the converse is obvious.

From the above corollary, P_2 and P_4 are the only cosplitting trees.
Next we prove that $K_n \circ K_1$ and C_4 are the only unicyclic cosplitting graphs.

Theorem 2.15. The cosplitting graph $CS(G)$ of a graph G is unicyclic if and only if $G \cong K_3$ or K_3^c.

Proof: Let G be any graph such that $CS(G)$ is unicyclic with the cycle C. Let $v_1, v_2, ..., v_n$ be the vertices of G and $w_1, w_2, ..., w_n$ be the corresponding newly added vertices in $CS(G)$. Since $\{w_1, w_2, ..., w_n\}$ is independent, either $V(C) \subset V(G)$ or $w_i \in V(C)$ for some i.

Case (i): Suppose $V(C) \subset V(G)$.

It is clear that the cosplitting graph of a disconnected graph other than K_3^c contains more than one triangle. Hence G must be connected. Also by Result 2.10, every vertex of G is a full vertex and therefore the newly added vertices do not form any new cycle. Hence, $G \cong K_3$.

Case (ii): Suppose $w_i \in V(C)$ for some i.

Then G is acyclic and so every component of G is a tree. Since $CS(G)$ is unicyclic, by Result 2.10 every component of G contains only one non full vertex. This is possible only when G is empty. If G contains more than two isolated vertices, then $CS(G)$ is not unicyclic. Thus $G \cong K_3^c$.

Conversely, the cosplitting graphs of K_3 and K_n^c are $K_3 \circ K_1$ and C_4 respectively which are unicyclic.

Theorem 2.16. No two non-isomorphic graphs can have the same cosplitting graph.

Proof: Suppose there are two non-isomorphic graphs G_1 and G_2 such that $CS(G_1) \cong CS(G_2)$.

Case (i): Suppose G_1 has no isolated vertex. Then by Result 2.3, no newly added vertex in $CS(G_1)$ is of degree n. Therefore the subgraph induced by the set of all vertices of degree n in $CS(G_1)$ is isomorphic to G_1. Since $CS(G_1) \cong CS(G_2)$, we have $CS(G_2)$ also contains exactly n vertices of degree n, and the subgraph induced by them is isomorphic to G_2. This implies that $G_1 \cong G_2$, a contradiction.

Case (ii): Let $G_1 = H_1 \cup K_n^c$, where H_1 contains no isolated vertex. Then $CS(G_1)$ contains $n + m$ vertices of degree n and it contains $K_{n,m}$ as an induced subgraph. Since $CS(G_1) \cong CS(G_2)$, it is clear that $CS(G_2)$ also contains $n + m$ vertices of degree n. Therefore, $G_2 = H_2 \cup K_n^c$, for some graph H_2 which contains no isolated vertex. From Result 2.3, by removing $2m$ vertices that induces $K_{n,m}$ in $CS(G_1)$ and $CS(G_2)$, we get $CS(H_1)$ and $CS(H_2)$ respectively. This implies that $CS(H_1) \cong CS(H_2)$. Now using Case (i), we conclude that $H_1 \cong H_2$ and so $G_1 \cong G_2$, which is again a contradiction. Hence the result follows.

3 Co-regular Graphs

In this section, we define a new type of graphs called co-regular graphs and prove that co-regular graphs are the only graphs for which splitting and cosplitting graphs are isomorphic.

Let G be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$. Then the **co-regular graph** of G denoted by $CR(G)$ is the graph with vertex set $V(CR(G)) = \{u_1, u_2, ..., u_m, w_1, w_2, ..., w_n\}$ and edge set $E(CR(G)) = \{u_iw_j \mid v_iw_j \in E(G), i \neq j \text{ and } 1 \leq i, j \leq n\} \cup \{u_iw_j \mid uv_iw_j \not\in E(G) \text{ and } 1 \leq i, j \leq n\}$.

For example, a graph G and its co-regular graph $CR(G)$ are shown in Figure 5.
The following results can be easily verified for a co-regular graph:

Result 3.1. A co-regular graph is an \(n \) - regular graph on \(2n \) vertices.

Result 3.2. \(G \times P_2 \) is a spanning subgraph of \(CR(G) \). In particular, \(CR(K_n) = K_n \times P_2 \).

Result 3.3. \(CR(K_n^r) = K_n^r \cup K_n^c \cong K_{n,n} \).

Result 3.4. For any graph \(G \), \(CR(G) \) is connected.

For, if \(G \) is connected since \(G \times P_2 \) is a spanning subgraph of \(CR(G) \), then \(CR(G) \) is also connected. If \(G \) is disconnected, then every vertex in each component of one copy of \(G \) is adjacent to all vertices in the other components of another copy of \(G \) and hence \(CR(G) \) is connected.

Result 3.5. For any graph \(G \), \(\gamma(CR(G)) = 2 \).

For, \(CR(G) \) does not contain a full vertex and hence \(\gamma(CR(G)) \neq 1 \), and \(\{u_i, w_i\} \) is a minimum dominating set of \(CR(G) \) for any \(i, 1 \leq i \leq n \).

Theorem 3.6. A graph \(G \) is co-regular if and only if its vertex set can be partitioned into two element subsets \(\{u_i, w_i\}, 1 \leq i \leq n \), such that for any \(i, N(u_i) \) and \(N(w_i) \) form a partition of \(V(G) \), that is, such that \(N(u_i) \cup N(w_i) = V(G) \) and \(N(u_i) \cap N(w_i) = \emptyset \), for every \(i = 1, 2, \ldots, n \).

Proof: Let \(G \) be the co-regular graph of some graph \(H \). Let \(V(G) = \{u_1, u_2, \ldots, u_n, w_1, w_2, \ldots, w_n\} \) such that \(\langle\{u_i, u_2, \ldots, u_n\}\rangle \equiv \langle\{w_1, w_2, \ldots, w_n\}\rangle \equiv H \). Without loss of generality, let \(u_i \) be the isomorphic image of \(w_i \). Consider the pair \(\{u_i, w_i\} \). By the definition of co-regular graph, any vertex \(u_i, 1 \leq j \leq n, i \neq j \), is adjacent to either \(u_i \) or \(w_i \) but not both. Similar condition holds with any \(w_i \), \(1 \leq j \leq n, i \neq j \). Since \(u_i \) and \(w_i \) are adjacent, \(u_i \in N(w_i) \) and \(w_i \in N(u_i) \). Therefore, the neighbor sets of \(u_i \) and \(w_i \) form a partition of \(V(G) \).

Conversely, suppose the vertex set of any graph \(G \) can be partitioned into two element subsets such that any vertex in \(G \) is a neighbour of any one vertex but not to both in each subset. Therefore \(G \) contains even number of vertices. Let \(V(G) = \{u_1, u_2, \ldots, u_n, w_1, w_2, \ldots, w_n\} \) such that \(\{u_i, w_i\}, \{u_2, w_2\}, \ldots, \{u_n, w_n\} \) be the partition of \(V(G) \).

First we claim that \(\langle\{u_1, u_2, \ldots, u_n\}\rangle \equiv \langle\{w_1, w_2, \ldots, w_n\}\rangle \). Suppose \(u_i \) is adjacent to \(u_s \). Then \(u_s \notin N(w_i) \) and hence \(w_i \in N(u_s) \). In a similar way, we prove that if \(u_i \) and \(u_s \) are non adjacent, then \(w_i \) and \(w_s \) are non adjacent. Since \(r \) and \(s \) are arbitrary, \(\langle\{u_1, u_2, \ldots, u_n\}\rangle \equiv \langle\{w_1, w_2, \ldots, w_n\}\rangle \equiv H \), say.
For $1 \leq i \leq n$, since $N(u_i) \cup N(w_i) = V(G)$, we have $u_i \in N(w_i)$. Hence, u_i is adjacent to w_i. Also since $N(u_i) \cap N(w_i) = \emptyset$, both u_i and w_i have no common neighbours. Combining the two conditions we get $|N(u_i)| = |N(w_i)|$. Thus we conclude that $G = CR(H)$.

Theorem 3.7. Let G be any graph of order n. Then $S(G) \cong CS(G)$ if and only if $G \cong CR(H)$ for some graph H.

Proof: Let G be any graph of order n such that its splitting graph $S(G)$ is isomorphic to its cosplitting graph $CS(G)$. Hence by Result 2.7, G is connected. For any vertex u in G, $d^*(u) = 2d(u)$ and $d'(u) = n$. Since $S(G) \cong CS(G)$, we have $d(u) = n/2$ for all $u \in V(G)$. That is, G is an $n/2$ – regular graph on n vertices.

Let $V(G) = \{u_1, u_2, ..., u_n\}$ and let $v_1, v_2, ..., v_n$ be the newly added vertices in $S(G)$. From the definition of splitting graph, for every vertex v_i, there exists a unique vertex $u_k \not\in N(v_i)$ in G such that $N(u_k) \cap V(G) = N(v_i)$ by Result 1.1. Since $S(G) \cong CS(G)$, there will be a one to one correspondence between the newly added vertices in $S(G)$ and $CS(G)$. Therefore from the definition of cosplitting graph, corresponding to every v_i, there exists a unique vertex $u_m \in N(v_i)$ in G such that $N(v_i) = V(G) \setminus N(u_m)$ by Theorem 2.12.

Combining the above two conditions we get $N(u_m) \cup N(u_k) = V(G), N(u_m) \cap N(u_k) = \emptyset$. Then clearly u_k and u_m are adjacent. Thus u_k and u_m are two adjacent vertices in G, whose neighbour sets form a partition of $V(G)$. In a similar manner, we can pair off vertices of G such that each pair has distinct neighbour set whose union is $V(G)$ itself. Thus by the above theorem, G is isomorphic to $CR(H)$ for some H.

Conversely, assume that G is a co – regular graph of a graph H. Let $V(G) = \{u_1, u_2, ..., u_n, w_1, w_2, ..., w_n\}$ such that $\langle \{u_1, u_2, ..., u_n\} \rangle \cong \langle \{w_1, w_2, ..., w_n\} \rangle \cong H$. Without loss of generality, let u_i be the isomorphic image of w_i. Let $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$ and $c_1, c_2, ..., c_n, d_1, d_2, ..., d_n$ be the newly added vertices in $S(G)$ and $CS(G)$ respectively corresponding to the vertices $u_1, u_2, ..., u_n, w_1, w_2, ..., w_n$. Then a function $f: S(G) \rightarrow CS(G)$ defined by $f(u_i) = u_i, f(w_i) = w_i, f(a_i) = c_i, f(b_i) = d_i, c_i = c_i$, where $1 \leq i \leq n$, can be easily verified to be an isomorphism. Hence the theorem is proved.

References

