Protective role of marine macroalgae extracts against STZ induced diabetic rats

Lavanya Rayapu1, Fasina Makkar2, Suresh Karanam Anandan1, Anusree Maneesh2, Kajal Chakraborty2, Lokanatha Valluru1*

1Department of Biotechnology, Dravidian University, Kuppam-517426, AP, India
2Central Marine Fisheries Research Institute (CMFRI), Cochin-682001, Kerala, India

ARTICLE INFO

Article history:
Received 9 Oct 2017
Received in revised form 2 Nov 2017
Accepted 9 Nov 2017
Available online 20 Nov 2017

Keywords:
Marine macroalgae
Streptozotocin
Oligosaccharide conjugates
Diabetes
Sulphated galactopyran
Antioxidants

ABSTRACT

Objective: To study the anti-diabetic activity of marine macroalgae extracts (n = 31), purification and characterization of sulphated galactopyran (SGP) from Gracilaria opuntia (FM4) in diabetic rats.

Methods: The animals were separated into groups and STZ (55 mg/kg body weight) was used to induce diabetics. Glucose, HbA1c, insulin, C-peptide levels and in vivo antioxidant levels were estimated and histopathological studies were done in STZ-induced diabetic and marine macroalgae treated rats.

Results: Based on glucose and HbA1c levels and in vivo antioxidant levels, among the 31 marine macroalgae extracts, FM4 has showed high anti-diabetic activity. Hence, FM4 was purified and characterized by 1H-NMR spectra and FT-IR as sulphated galactopyran. During the survival analysis, SGP at dose of 100 mg/kg showed significant (P < 0.05) survival rate and elevations in C-peptide and insulin levels. The histopathological modulations of SGP were observed in diabetic rat tissues such as liver, kidney and brain. Hence obtained results reveal that SGP treated diabetic rats has significant changes in C-peptide and insulin levels which regulates the blood glucose levels and recovered the histopathological changes.

Conclusions: Marine macroalgae have significant anti-diabetic activity. Hence, they could be used as nutraceutical supplement or natural green remedy against diabetes mellitus.

1. Introduction

Diabetes mellitus (DM) is a group of chronic metabolic disorders leading to hyperglycemia. Globally, estimated occurrence of diabetes and projection for the year 2040, as given by International Diabetes Federation (IDF) is 642 million[1,2]. DM is a major risk factor during cardiovascular disorders such as cerebral stroke, ischemic disease and peripheral artery disease that increased mortality during diabetics[3]. DM was characterized by persistent hyperglycemia with changes in carbohydrate, fat, and protein metabolism resulting from defects in insulin secretion, insulin action, or both[4]. The long term effects of chronic DM include progressive development on the specific complications like retinopathy, nephropathy, neuropathy and cardiovascular diseases[5].

According to Indian Council of Medical Research (ICMR), it has been recently identified that DM is one of the refractory disease in which allopathic system of medicine is not satisfactory, therefore investigations on herbal medicines are preferred for treating DM[6]. Herbal treatments for diabetes have been used in patients with insulin dependent and non-insulin dependent diabetes. Scientific validation of several Indian plant species (nearly 45 000) has proved to be effective in reducing the sugar levels, with different mode of action and phytoconstituents[7]. Seaweeds are group of non-flowering marine plants commonly known as macroalgae having increased demand in cosmetic, pharmaceutical and food additives[8,9]. They are photosynthesizing organisms in marine environment and produce the basic biomass in the intertidal zone and have a rich source of bioactive compounds, such as carotenoids, proteins, oligosaccharides, essential fatty acids, antioxidants, vitamins and minerals useful in medical and pharmaceutical industries[10-12].

Anti-diabetic, anti-inflammatory and anti-hypertensive effects have been reported from salt-resistant marine halophytes and

*Corresponding author: Dr. Lokanatha Valluru, Assistant Professor, Department of Biotechnology, Dravidian University, Kuppam-517426, Andhra Pradesh, India.
Tel: +91-9652840923
E-mail: lokanatha.valluru@gmail.com

All experimental procedures involving animals were conducted in accordance to CPCSEA guidelines and approved by Institutional Animal Ethical Committee (IAEC) of PES Medical College, Kuppam, India (Vide No. PESIMSR/Pharma/IAEC/20/2014-2015/date 08.12.14).

Foundation Project: Supported by DST-Science and Engineering Research Board (No. SBR/SOC-06/2013 Dr. 20.11.2013), New Delhi, Government of India.

The journal implements double-blind peer review practiced by specially invited international editorial board members.
marine algae. This is due to the presence of oligosaccharides, glycolipids, phenolic compounds and small molecular weight bioactive compounds and their effect was proved in experimental animals. Marine algae produce a wide range of new secondary metabolites with various biological activities which may have potential applicability in the field of pharmaceutical industry to provide a stable platform for medicine industries. Several bioactive compounds from red algae such as Rhodomela confervoides, Symphyocladia lattissula, Polysiphonia urceolata and brown marine algae have been experimentally tested for their biomedical efficacy.

In the sight of above information, the current study endeavors to (a) evaluate the anti-diabetic properties of the aqueous, ethanolic/methanolic extracts, polysaccharide and oligosaccharide conjugates of seaweeds; (b) analyze the antioxidant enzymes and histopathological modulations during streptozotocin (STZ) induced diabetes; (c) investigate characterization of sulphated galactopyran from Gracilaria opuntia (G. opuntia) and its efficacy against diabetes.

2. Materials and methods

2.1. Chemicals

STZ, butylated hydroxyl toluene (BHT), thiobarbituric acid (TBA), tris base, ethylene diamine tetra acetic acid (EDTA), 5,5′-dithiobis-2-nitrobenzoic acid (DTNB), dinitrophenyl hydrazine (DNPH), glutathione (GSH), trichloro acetic acid (TCA), NADPH, triton X-100, reduced glutathione (GR), oxidised glutathione (DNPH), glutathione (GSH), trichloro acetic acid (TCA), NADPH, dithiobis-2-nitrobenzoic acid (DTNB), dinitrophenyl hydrazine (DNPH), glutathione (GSH), trichloro acetic acid (TCA), NADPH, dithiobis-2-nitrobenzoic acid (DTNB), dinitrophenyl hydrazine (DNPH), glutathione (GSH), trichloro acetic acid (TCA), NADPH, dithiobis-2-nitrobenzoic acid (DTNB), dinitrophenyl hydrazine (DNPH), glutathione (GSH), trichloro acetic acid (TCA), NADPH, dithiobis-2-nitrobenzoic acid (DTNB), dinitrophenyl hydrazine (DNPH), glutathione (GSH), trichloro acetic acid (TCA), NADPH, dithiobis-2-nitrobenzoic acid (DTNB), dinitrophenyl hydrazine (DNPH).

2.2. Collection of marine macroalgae material

Brown marine macroalgae used in this study were Turbinaria conoides (T. conoides), Sargassum wightii (S. wightii), Sargassum myriocystum (S. myriocystum), Padina gymnospora (P. gymnospora), Padina tetrastomatica (P. tetrastomatica), and Turbinaria ornata (T. ornata) (Table 1). The red marine macroalgae were G. opuntia, Kappaphycus alvarezii (K. alvarezii), Laurencia papillosa (L. papillosa), Jania rubens (J. rubens), Hypnea musciformis, and Hypnea valentiae. The identities of the marine macroalgae considered in the present study were ascertained with the sample specimens maintained in the Marine Biodiversity Museum of Central Marine Fisheries Research Institute. The marine macroalgae were collected freshly from the Gulf of Mannar in Mandapam region located between 8°48′ N, 78°9′ E and 9°14′ N, 79°14′ E on the south east coast of India during the months spanning between August and April. Samples collected (2 kg) were washed in running water and shade dried before being pulverized to a minimum particle size.

Table 1

<table>
<thead>
<tr>
<th>Solvent (methanol, ethanol) and aqueous extracts of red and brown seaweeds.</th>
<th>Extracts</th>
<th>Sample code</th>
<th>Genus name</th>
<th>Sample code</th>
<th>Genus name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous</td>
<td>FS4</td>
<td>G. opuntia</td>
<td>PS1</td>
<td>T. conoides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FS1</td>
<td>K. alvarezii</td>
<td>A1</td>
<td>S. wightii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM2</td>
<td>L. papillosa</td>
<td>A2</td>
<td>S. myriocystum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM3</td>
<td>J. rubens</td>
<td>G1</td>
<td>P. gymnospora</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM1</td>
<td>K. alvarezii (Polysaccharide conjugate)</td>
<td>EM9</td>
<td>P. tetrastomatica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM4</td>
<td>G. opuntia (Oligosaccharide conjugate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic</td>
<td>F1</td>
<td>G. opuntia</td>
<td>SF1</td>
<td>T. conoides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>K. alvarezii</td>
<td>PH1</td>
<td>S. wightii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV1</td>
<td>L. papillosa</td>
<td>S1</td>
<td>S. myriocystum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1</td>
<td>J. rubens</td>
<td>F1</td>
<td>P. gymnospora</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FS2</td>
<td>Hypnea musciformis</td>
<td>S3</td>
<td>P. tetrastomatica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM1</td>
<td>Hypnea valentiae</td>
<td>S4</td>
<td>T. ornata</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>FM2</td>
<td>G. opuntia</td>
<td>S7</td>
<td>S. wightii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM3</td>
<td>K. alvarezii</td>
<td>AE3</td>
<td>T. conoides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FS5</td>
<td>L. papillosa</td>
<td>SF</td>
<td>S. myriocystum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S1</td>
<td>T. ornata</td>
<td></td>
</tr>
</tbody>
</table>

*Polysaccharide and oligosaccharide conjugates of seaweeds were derived from the ethanol precipitated residue of the supernatant of the aqueous extracts. For detailed description the methodology section to be referred.

2.3. Preparation of marine macroalgae extracts

The powdered marine macroalgae samples (1 000 g) were extracted with n-hexane (600 mL × 2), at room temperature for 24 h, and the pigments were separated. The residue was filtered through Whatman No. 1 filter paper and extracted three times with methanol (MeOH) and ethanol (EtOH) (50–60 °C, 3 h), respectively, filtered through Whatman No. 1 filter paper, and the obtained filtrate was concentrated at 50 °C in rotary vacuum evaporator (Heidolf, Germany) to get the dark brown viscous mass of MeOH (112 g) and EtOH fractions (96 g), respectively. The aqueous extracts of the seaweed were prepared by extracting the dried marine macroalgae powder (500 g) with 80–90 °C hot water for 3–4 h. The contents were thereafter cooled (4 °C) and centrifuged at 8,500 r/min for 15 min (Sorvall Biofuge Stratos, Thermo Scientific, USA) to remove the solid residues that were freeze-dried to get the crude aqueous extract (27 g). By using rotational vacuum concentrator (Martin Christ RVC 2-33 IR, Martin Christ, Germany) the latter of the aqueous extract of G. opuntia was concentrated before precipitated with alcohol (500 mL). The precipitate was lyophilized to get a dried oligosaccharide fraction of G. opuntia (FM1) was condensed up to 1/4th of the original volume, cooled, and incubated at 4 °C for overnight by adding three volumes of ethanol for the precipitation of polysaccharide conjugates. The aqueous extract of G. opuntia was concentrated before precipitated with alcohol (500 mL). The precipitate was lyophilized to get a dried oligosaccharide fraction of G. opuntia (FM1). This was then powdered and packed in vacuum packed bags and stored in refrigerator until further use.

2.4. Purification and characterization of oligosaccharide fraction of G. opuntia

The precipitated oligosaccharide conjugate of G. opuntia (FM4)
was purified by anion exchange column chromatography using DEAE (diethylaminoethyl)-cellulose anion exchange resin. A glass column (25 cm × 4 cm) with a mesh sieve was mounted vertically on a stand and rinsed with water. DEAE-cellulose (3 g) was made into slurry with minimum amount of water and loaded into the column. The polysaccharide fraction (1 g) was dissolved in 2–3 mL of water to make a suspension and loaded into the previously packed column. The column was initially eluted with water to get the first fraction. This was followed by step-wise elution with 0.1, 0.3, 0.5 and 1 mol/L sodium chloride (NaCl) gradient until the absence of positive reaction of the phenol-sulphuric acid assay in the test tubes containing eluted fractions. The eluted fractions were lyophilized to get the purified oligosaccharide fractions. The oligosaccharide enriched fraction was referred as sulphated galactopyran and the motif was characterized from G. opuntia by using Fourier-transform infrared (FT-IR) (Perkin-Elmer 16 PC spectrometer, Boston, USA) and nuclear magnetic resonance (NMR) spectroscopy[19,20].

2.5. Maintenance of animals

The study was carried out on male albino Wister rats (Rattus norvigicus) weighing (190 ± 10) g selected as experimental animals, which were housed in cages separately. The animals were purchased at Sri Venkateswara Enterprises Pvt. Ltd. (Bangalore, Karnataka, India) and maintained at room temperature of (23 ± 2) °C, humidity of 45%–55% with 12 h light-dark cycle and allowed to eat and drink. The rats were fed with standard rodent diet during the experimental procedure (Sri Venkateswara Enterprises Pvt. Ltd., Bangalore, Karnataka, India). All experimental procedures involving animals were conducted in accordance to CPCSEA guidelines and approved by Institutional Animal Ethical Committee (IAEC) of PES Medical College, Kuppam, India (Vide No. PESIMSR/Pharma/IAEC/20/2014-2015/date 08.12.14).

2.6. Preparation of STZ

55 mg of STZ was dissolved in 100 mmol/L cold sodium citrate buffer (pH 4.5)[21].

2.7. Induction of hyperglycemia and treatment

After acclimatization of the rats to the lab conditions the treatment was started. Diabetes was induced by a single intraperitoneal administration of STZ (55 mg/kg body weight). Control rats received the buffer as vehicle alone. After inducing diabetes 10% glucose water was given in the night to protect the rats from sudden hypoglycemic period that occurs due to pancreatic islets cells lysis by STZ[22]. After 48 h of development of diabetes the rat’s glucose levels were checked in fasting by using Accu-check meter (Roche Group, Mannheim, Germany) developed from the basic method of glucose oxidase[23] and HbA1c method[24]. Glucose levels are more than 200 mg/dL and HbA1c levels more than 6.3% were considered as diabetic rats and used for the experiment[21,24].

2.8. Experimental design

2.8.1. Treatment with crude marine macroalgae extracts in STZ induced rats

The treatment was initiated after inducing diabetes with STZ by selecting different marine macroalgae extracts (n = 31). The animals were separated into 5 groups with 5 rats in each group. The experimental design is as follows:

2.8.2. Treatment with sulphated galactopyran (SGP) of G. opuntia

The treatment of sulphated galactopyran of G. opuntia (FM4) extract was initiated after inducing diabetes with STZ in the rats. The animals were separated into 9 groups with 6 rats in group. The experimental design is as follows:

2.9. Determination of ED50 and survival analysis of G. opuntia

Rats were divided into groups and the SGP of G. opuntia was administered orally by following a standard method[25]. Survival rate was observed continuously for 60 days to detect the mortality rate and behavioral changes. After induction of diabetes, a group was treated with saline and maintained as control. Based on the preliminary toxicity tests, the doses of 60, 80, 100, 125 and 150 mg/kg body weight of G. opuntia (FM4) extract were chosen for further experiments. By using the graphpad prism (6.07) the Kaplan-Maier survival analysis was estimated. ED50 was calculated by recording the mortality rate during the treatment by Miller and Tainter method[26].

2.10. Sample collection for analysis

The blood samples were collected weekly once from the retro-orbital vein and used for the estimation of blood glucose levels by Accu-check method (Roche Group, Mannheim, Germany) developed from the basic method of glucose oxidase method[23]. The glycosylated hemoglobin was estimated by HbA1c method[24].

2.11. Isolation of tissues

After treatment, rats were sacrificed by cervical decapitation and liver, kidney and brain tissues were collected and rinsed of any adhering blood. The tissues fragments were homogenized in phosphate buffers saline for further studies. The unused tissues were stored at –40 °C refrigerator for further analysis.

2.12. Biochemical analysis

The superoxide dismutase[27], catalase[28], glutathione peroxidase[29], glutathione S-transferase[30], reduced glutathione[31], lipid peroxidation[32] activity levels were resoluted in liver, kidney and brain tissues. Insulin and C-peptide were estimated by using the INVITRO 250 automated clinical chemistry analyser (Ortho clinical diagnostics, Bangalore, India) from the blood sample of diabetic and treated rats.
2.13. Histopathology

For histological examination, tissues like liver, kidney and brain were excised by euthanizing the rats after treatment. The tissues were fixed in 10% formaldehyde and dehydrated in 50%–100% ethanol, cleared in xylene and paraffin embedding. The sections (10 µm) were stained with haematoxylin and eosin (H & E) dye and examined under microscope.

Figure 1. Estimation of (A) blood glucose levels, (B) HbA1c levels in different experimental groups treated with extracts of different marine macroalgae, and (C) selected 5 potential bioactive extracts.

Male wister albino rats were injected with 55 mg/kg body weight of STZ to induce diabetes. The induction was confirmed after 48–72 h by measuring the blood glucose and HbA1c levels. The average glucose and HbA1c levels were plotted in the graphs. The marine macroalgae extracts were given to different experimental groups based on the solubility. C: Healthy control, D: Diabetic control, P: Positive control treated with glibenclamide (20 mg/kg body weight). The remaining groups were treated with different marine macroalgae extracts (n = 31) with two different concentrations such as 175 mg/kg body weight (solid line) and 125 mg/kg body weight (dotted line). Among these two concentrations, 125 mg/kg body weight showed more effect on reducing glucose and HbA1c levels in STZ induced rats. (C) Five potential bioactive extracts were selected based on the glucose and HbA1c levels during STZ-induced diabetes.
2.14. Statistical analysis

The obtained data were analyzed by using the statistical package of social sciences (SPSS, 16.0 version). Comparison between the control and experimental animals results were done by One-way ANOVA followed by Tukey’s multiple comparison test. *P < 0.01 was considered as significant difference. All the values were expressed as mean ± SD (n = 5).

3. Results

In the present investigation a total of thirty-one different marine macroalgae extracts were selected for screening of the anti-diabetic properties in STZ induced diabetic rats (Table 1). In earlier reports, some of the red and brown marine algae have showed significant recovery at 50, 100, 125, 150 and 200 mg/kg body weight in STZ induced diabetic rats. Hence, 125 and 175 mg/kg concentrations of some of the red and brown marine algae have showed significant properties in STZ induced diabetic rats (Table 1). In earlier reports, macroalgae extracts were selected for screening of the anti-diabetic by using the selected five potential extracts during STZ induced diabetic rats.

The modulations of in vivo antioxidant enzyme levels of STZ induced diabetic and marine macroalgae extracts (AE3, FS4, FM4, PH1 and SF1) treated rat tissues such as liver, kidney and brain were evaluated (Figure 2). The antioxidant enzyme levels such as SOD (3.01 ± 0.19, 4.65 ± 1.03, 0.98 ± 0.28 IU/mg of protein), CAT (63.08 ± 6.13, 59.55 ± 5.72, 8.58 ± 1.24 µmol of H2O2 metabolised/mg protein/min), GPx (10.34 ± 2.18, 8.34 ± 1.12, 0.64 ± 0.12 µmol of GSH per mg protein/min) and GST (20.83 ± 4.26, 18.57 ± 3.72, 0.34 ± 0.08 nmol of CDNB conjugate formed/mg protein/min) in 125 mg/kg body weight treated groups compared to diabetic group (383.7 ± 42.3 mg/dL; 14.2% ± 1.3%).

Among 31 marine macroalgae extracts AE3, FS4, FM4, PH1 and SF1 were selected. The five compounds were selected mainly based on the blood glucose and HbA1c levels (Figure 1C). The perturbations of the in vivo antioxidant enzyme levels were studied by using the selected five potential extracts during STZ induced diabetic rats.

Among the 31 marine macroalgae, ethanolic extract of T. conoides (FS4, 82.2 ± 9.7 mg/dL; 4.7% ± 0.3%), oligosaccharide extract of G. opuntia (FM4, 84.4 ± 8.2 mg/dL; 4.8% ± 0.1%), methanolic extracts of S. wightii (PH1, 83.8 ± 10.7 mg/dL; 4.7% ± 0.3%) and T. conoides (SF1, 84.8 ± 11.9 mg/dL; 4.80% ± 0.21%) showed significant (P < 0.01) reduction in glucose and HbA1c levels in 125 mg/kg body weight treated groups compared to diabetic group (383.7 ± 42.3 mg/dL; 14.2% ± 1.3%).

Among 31 marine macroalgae extracts AE3, FS4, FM4, PH1 and SF1 were selected. The five compounds were selected mainly based on the blood glucose and HbA1c levels (Figure 1C). The perturbations of the in vivo antioxidant enzyme levels were studied by using the selected five potential extracts during STZ induced diabetic rats.

The modulations of in vivo antioxidant enzyme levels of STZ induced diabetic and marine macroalgae extracts (AE3, FS4, FM4, PH1 and SF1) treated rat tissues such as liver, kidney and brain were evaluated (Figure 2). The antioxidant enzyme levels such as SOD (3.01 ± 0.19, 4.65 ± 1.03, 0.98 ± 0.28 IU/mg of protein), CAT (63.08 ± 6.13, 59.55 ± 5.72, 8.58 ± 1.24 µmol of H2O2 metabolised/mg protein/min), GPx (10.34 ± 2.18, 8.34 ± 1.12, 0.64 ± 0.12 µmol of GSH per mg protein/min) and GST (20.83 ± 4.26, 18.57 ± 3.72, 0.34 ± 0.08 nmol of CDNB conjugate formed/mg protein/min) in 125 mg/kg body weight treated groups compared to diabetic group (383.7 ± 42.3 mg/dL; 14.2% ± 1.3%).

Among 31 marine macroalgae extracts AE3, FS4, FM4, PH1 and SF1 were selected. The five compounds were selected mainly based on the blood glucose and HbA1c levels (Figure 1C). The perturbations of the in vivo antioxidant enzyme levels were studied by using the selected five potential extracts during STZ induced diabetic rats.

The modulations of in vivo antioxidant enzyme levels of STZ induced diabetic and marine macroalgae extracts (AE3, FS4, FM4, PH1 and SF1) treated rat tissues such as liver, kidney and brain were evaluated (Figure 2). The antioxidant enzyme levels such as SOD (3.01 ± 0.19, 4.65 ± 1.03, 0.98 ± 0.28 IU/mg of protein), CAT (63.08 ± 6.13, 59.55 ± 5.72, 8.58 ± 1.24 µmol of H2O2 metabolised/mg protein/min), GPx (10.34 ± 2.18, 8.34 ± 1.12, 0.64 ± 0.12 µmol of GSH per mg protein/min) and GST (20.83 ± 4.26, 18.57 ± 3.72, 0.34 ± 0.08 nmol of CDNB conjugate formed/mg protein/min) in 125 mg/kg body weight treated groups compared to diabetic group (383.7 ± 42.3 mg/dL; 14.2% ± 1.3%).

Among 31 marine macroalgae extracts AE3, FS4, FM4, PH1 and SF1 were selected. The five compounds were selected mainly based on the blood glucose and HbA1c levels (Figure 1C). The perturbations of the in vivo antioxidant enzyme levels were studied by using the selected five potential extracts during STZ induced diabetic rats.

Figure 2. Analysis of marine macroalgae compound on antioxidant enzyme activities in liver, kidney and brain tissues of STZ induced diabetic rats. After induction of diabetes by STZ, the SOD, CAT, GPx, GST, GSH levels were decreased and MDA levels were increased compared to normal rats. In the treatment with the five potential macroalgae extracts, the enzymes activities were recovered in STZ-induced diabetes compared to their controls. Data were expressed in mean ± SD (n = 6). *: Comparison between healthy control and diabetic control (STZ), P < 0.01. **: Comparison between STZ + Glb and FM4 P < 0.01. $: Comparison between STZ and FM4 P < 0.01. There is no significance between STZ + Glb and FM4 treated groups.
The sulphated polygalactan was elucidated by the extensive analysis of 1H-NMR spectra. The polysaccharide fraction has resolved signals of anomic protons (δ 4.4 – 5.5), methylene and methane hydrogens (δ 3.6 – 4.9) of the sulphated polygalactan moiety in 1H-NMR spectra. Characteristic signal at δ 3.4 has revealed the region of additional number of alkoxy (O-CH₃) replacements in the sulfated polygalactans. In addition to the characteristic peaks for sulfated polygalactan units, xylose and anhydrogalactose units were in minor constituents in the fraction, which were often found in red seaweed polysaccharides. The presence of positively and negatively charged ions of sulphate groups in the sulfated galactan moiety has sustained the structure. The FT-IR spectra demonstrated a strong absorption band at 1 210–1 260 cm⁻¹ corresponds to =S=O groups (sulphate ester groups). Characteristic bands for –OH groups at 3 200–3 400 cm⁻¹ has substantiated the structure of the sulfated polygalactan (Figure 3).

The survival analysis results demonstrated that the survival percentage in control (100%), STZ (25%), STZ + Glb (66.6%) and STZ + 100 mg/kg (83.3%) was observed (Figure 4a). STZ + FM4 100 mg/kg has shown more survival rate compared to other treated groups. The SGP of G. opuntia when orally administrated in the possible doses of 60, 80, 100, 125 and 150 mg/kg in STZ induced diabetic rats, the mortality rate was obtained. Among five concentrations, 100 mg/kg body weight has shown significant survival rate (83.3%) compared to STZ (25%) group (Figure 4a).

The ED₅₀ of sulphated galactopyran (SGP) of G. opuntia was studied in STZ induced diabetic rats. The rats treated with five different concentrations such as 60, 80, 100, 125 and 150 mg/kg body weight. The present study showed that all the concentrations have significant recovery compared to STZ group. Based on the survival analysis, among the five concentrations 100 mg/kg body weight has shown significant (P < 0.05) recovery compared to the other treated groups (Figure 4a). ED₅₀ was measured for SGP as 100 mg/kg body weight based on glucose and HbA1c levels respectively,
in STZ induced diabetic rats (Figure 4b). After determining ED$_{50}$ for SGP as 100 mg/kg body weight, the perturbations of the biochemical changes were studied by using the selected concentration i.e., 100 mg/kg body weight during STZ induced diabetic rats.

The insulin and C-peptide levels were significantly ($P < 0.01$) decreased in STZ induced diabetic rats (15.5 ± 1.96 µU/mL; 2.14 ± 0.56 ng/mL) compared to control rats (26.84 ± 2.46; 6.68 ± 0.26). Upon treating with SGP (100 mg/kg body weight) the insulin and C-peptide levels were altered (22.46 ± 2.04; 4.72 ± 0.48) (Figure 5). Based on the insulin and C-peptide levels, the results duly revealed that the SGP of G. opuntia showed greater anti-diabetic properties. Hence SGP treated animal tissues were selected for further histopathological studies.

Histopathological changes in liver, kidney and brain tissues of diabetic and treated (100 mg/kg body weight) rats are shown in Figure 6. The disordered structure of liver in diabetic rats was observed because of necrosis of hepatocells, extensive vacuolization with disappearance of nuclei and microcellular fatty changes (Figure 6A–6C). In diabetic rat kidney, uneven thickening of the basement membrane, endolysis, local fusion of the foot process of the podocytes and glomerular capillary endothelium swelling were observed (Figure 6D–6F). In brain moderate glial shrubberies, necrosis of multifocal neurons and deterioration of cells were observed in diabetic rats. However these changes were reestablished with SGP derived from G. opuntia compound treatment (Figure 6G–6I).

Figure 5. Effect of SGP of G. opuntia (FM4) on insulin and C-peptide levels of normal and STZ induced diabetic rats. Insulin and C-peptide levels were decreased in STZ induced diabetes. After treating with SGP at 100 mg/kg body weight, it has shown the significant recovery compared to STZ groups. There was no significant change in SGP alone treated group compared to control group. Data were expressed as mean ± SD of 6 individual observations.

* Comparison between control and STZ group ($P < 0.01$).

† Comparison between STZ and STZ + Glb ($P < 0.01$).

* Comparison between STZ + Glb and SGP + 100 mg/kg ($P < 0.01$).

** Comparison between STZ and SGP (100 mg/kg).

Figure 6. Photomicrographs of liver, kidney and brain.
A: Control; B: Diabetic control; C: Diabetic + SGP (100 mg/kg body weight) treated in liver tissue, showing degradation of hepatocytes and necrosis of cells in diabetic control and recovered by treating with SGP. D: Control; E: Diabetic control; F: Diabetic + SGP (100 mg/kg body weight) treated in kidney, showing mesangial accumulation and necrosis of cells in diabetic control and this was regenerated after treating with SGP. G: Control; H: Diabetic control; I: Diabetic + SGP (100 mg/kg body weight) treated in brain, showing multifocal neural necrosis and moderate glial shrudderries and degeneration of cells in diabetic control and this was recovered with the SGP compound treatment. Scale bar = 10 µm; Lens = 10×.
4. Discussion

To study the diabetogenic activities, STZ induced diabetic rats serves as an useful experimental model[33]. In the present study the effect of marine macroalgal extracts in STZ induced diabetic rats were revealed and oligosaccharide conjugate of G. opuntia (FM4) was purified and characterized.

STZ induced hyperglycemia is mainly due to the depletion of insulin producing β-cells of pancreas which leads to reduction in insulin secretion[34]. Our results demonstrated that the increased blood glucose and HbA1c levels were significantly decreased upon treatment (125 mg/kg body weight) with 31 marine macroalgal extracts (Figure 1A and 1B). This might be due to regeneration of pancreatic β-cells and increases of the insulin secretion that directly reflects on conversion of stored glucose to glycogen[35]. This was previously reported in some of the marine algae such as Sargassum ringgoldianum, S. wightii and Ulva fasciata[36,37]. The free amino group of hemoglobin (Hb) reacted with glucose is a non-enzymatic reaction that produces HbA1c (glycated haemoglobin)[38]. The decrease in Hb and increase in HbA1c is directly proportional to the blood glucose levels[39]. Decrease in HbA1c levels might be due to improved glycemic control produced by marine macroalgal extracts (Figure 1B). Mohapatra et al.[37] and El-Desouki et al.[40] had been reported that HbA1c levels were decreased upon treating with Ulva fasciata and Spirulina. Of the tested 31 marine macroalgal extracts, the ethanolic extract of T. conoides (AE3), methanolic extract of S. wightii and T. conoides (PH1 and SF1), aqueous extract of G. opuntia (FS4) and oligosaccharide conjugate of G. opuntia (FM4) have showed more activity in reducing the STZ induced diabetes in rats (Figure 1C)[41].

Antioxidant enzymes play a prominent role in protecting the cell/tissue from STZ induced diabetic damage. SOD plays an important role in all physiological conditions that convert superoxide anions to H2O2 and O2 and then converted into H2O2 by CAT and GPx enzymes which protect the cells against detoxification of oxidative free radicals[42]. GPx diminishes H2O2 and reacts against superoxide anion to obtain the prolonged half life[43]. CAT plays an important role in elimination of H2O2 and inactivation of superoxide radicals and glycation of enzymes. The reduced CAT activity leads to the reduction of GPx levels in the tissues[44]. This might be due to increased consumption of GPx and GSH, and increased utilization of free radical scavenging activity. GSH synthesizes important macromolecules and implication in protection against oxygen compounds[45]. The malondialdehyde (MDA) is an indicator of lipid peroxidation (LPerx). The earlier studies reported that in diabetes hypoinsulinemia increases the activity of enzymes that initiated the oxidation of fatty acids, results in lipid peroxidation impairment of membrane fluidity which leads to cell injury[46]. In the present study, our results demonstrated that the selected five potential marine macroalgae extracts (AE3, FS4, FM4, PH1 and SF1) modulated the antioxidant enzymes and lipid peroxidation levels in liver, kidney and brain tissues of STZ induced diabetic rats (Figure 2). This was previously reported in Ulva pertus, Ulva lactusa, Spirulina and sulphated polysaccharide of Porphyra haitanesis[47-49]. Unnikrishnan et al.[50] has reported that some of the green marine algae such as Chaetomorpha aerea, Enteromorpha intestinalis, Cladophora rupestris also recovered the antioxidant activities in diabetic rats.

The present study illustrates that among five potential marine macroalgae extracts, the oligosaccharide conjugate of red macroalgae, particularly oligosaccharide conjugate of G. opuntia (FM4) exhibited greater anti-diabetic properties. The potential anti-diabetic activity of FM4 indicates the fact that they are the reservoirs for anti-diabetic agents and are used as food as well as pharmaceutical products in place of synthetic derivatives. Therefore, FM4 was selected to characterize and to evaluate further studies in STZ induced diabetic rats. The structure of FM4 was characterized by 1H-NMR and FT-IR analysis and demonstrated as sulphated galactopyran.

The survival analysis and ED50 was measured for SGP in diabetic rats. Among the five different concentrations 100 mg/kg has shown significant recovery of altered C-peptide and insulin levels; and the survival rate was more compared to STZ induced diabetic rats (Figure 4). 100 mg/kg body weight is determined as ED50 for SGP and this concentration has been chosen for the further analysis.

C-peptide and insulin are the important products in proinsulin enzymatic cleavage that secreted into the circulation in equimolar concentrations[51]. C-peptide and insulin levels were decreased significantly in diabetes rats. This might be due to the destruction of pancreatic β-cells and thereby induces hyperglycemia[52]. In the present study the significant increase in the levels of insulin and C-peptide was observed in SGP administrated diabetic rats (Figure 5). This might be due to increased insulin secretion from pancreatic β-cells. This was previously reported in STZ induced diabetic rats treated with synaptic acid[53].

The histopathological changes of liver, kidney and brain were observed in purified oligosaccharide fraction of FM4 in diabetic rats. The organs such as liver and kidney play a prominent role in detoxification and excretion of many metabolites[54]. Hence these tissues may be damaged intracellularly during STZ induced diabetes. Brain is an important organ of nervous system and the central nervous system was damaged during the STZ induced diabetes[55]. The necrosis of hepatocytes, changes in microcellular fats, extensive vacuolization with disappearance of nuclei was observed in diabetic rat liver[56]. This was salvaged after treatment with SGP (Figure 6A–6C). It was previously hypothesized that hepatoprotective activity of Sargassum polycystum has recovered the damaged liver tissues[57]. In diabetic kidney, due to increased glucose levels H2O2 was produced in murine mesangial cells which causes swelling in glomerular capillary endothelium that leads to endolysis[58]. The tissues were regenerated after treating with the SGP (Figure 6D–6F). It was previously reported that some of the marine algae such as Kappaphycus alvarezi and Sargassum polycystum and some brown seaweeds have also shown the recovery of kidney tissue damages caused due to diabetes mellitus[59,60]. The cerebral tissue of diabetic rats showed necrosis in multifocul neurons and moderate glialshrubberies and cell degeneration[14]. This was recovered after
treating with SGP derived from *G. opuntia* (Figure 6G–6I). It was previously reported that some of the marine algae such as *Ulva rigidia* have also shown the recovery of damaged brain tissue caused by diabetes mellitus[60].

In conclusion, marine algae were demonstrated to be the valuable natural source of bioactive compounds with potential activities against type-2 diabetes. This study showed that the ethanolic extract of *T. conoides* (AE3), methanolic extracts of *S. wightii* and *T. conoides* (PH1 and SF1), aqueous extract of *G. opuntia* (FS4) and oligosaccharide conjugate of *G. opuntia* (FM4) have significantly reduced the glucose, HbA1c and antioxidant enzymes activity levels. Among the five extracts, the FM4 has showed higher anti-diabetic activity. The FM4 was purified by anion exchange column chromatography method. The SGP derived from FM4 showed a significant anti-diabetic activity. The ED₅₀ of SGP was found to be 100 mg/kg body weight. The present study reveals that SGP has potent anti-diabetic activity in STZ induced diabetic rats. Further comprehensive chemical and pharmacological investigations are needed to elucidate the exact mechanism of the hyperglycemic effect of SGP of *G. opuntia*.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

Dr. Lokamatha Valluru is highly thankful to DST-Science and Engineering Research Board (No. SR/S1/OC-96B/2013 Dt. 20.11.2013), New Delhi, Government of India, for providing financial assistance in the form of research grant.

References

Press; 1965, p. 300.

