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1. Introduction

   Solid wastes (carcasses, skin, bones, fins and heads) discarded 
during fish processing are potential sources of biologically active 
molecules of industrial interest[1-5]. The proteases recovered from 
these sources have physicochemical and kinetic properties similar 
to the mammalian enzymes commonly employed in the production 
processes of the textile, pharmaceuticals and foods[6]. Moreover, the 
use of neglected fish viscera contributes to reducing environmental 
damage. In this context, fish enzymes can minimize production 
costs and can be a cost-effective alternative to biomolecules for the 

fishery and aquaculture production chain[7,8].
   Trypsin and chymotrypsin are hydrolases that can be obtained 
from processed fish residues[9]. Digestive serine proteases have 
already been extracted from the guts of different types of fishes, 
such as trypsin from the Silver mojarra Diapterus rhombeus[7], 
sardinelle Sardinella aurita[10], zebra blenny Salaria basilisca[11], 
barbel Barbus callensis[12], pirarucu Arapaima gigas[8], crevalle 
jack Caranx hippos[1], tropical gar Atractosteus tropicus[13] and 
Nile tilapia Oreochromis niloticus[14]; and chymotrypsin from 
the cuttlefish Sepia officinalis[15], monterey sardine Sardinops 
sagax caerulea[16], tropical gar A. tropicus[13] and Nile tilapia O. 
niloticus[9].
   Collagenolytic activity is a property also found in discarded solid 
waste from tropical and neotropical fishes and involves the cleavage 
of the collagen triple helix[5]. Serinocollagenases from aquatic 
sources have been reported in a mixture of haddock, herring, ground 
fish and flounder crude extracts[17] and intestinal viscera of smooth 
weakfish Cynoscion leiarchus[4]. To date, no fibrinolytic proteases 
have been identified in fish species, and these species constitute 
alternative sources because of the industrial/biomedical importance 
of this enzyme as a thrombolytic agent. Thus, this study aimed to 
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investigate the presence of enzymes of industrial interest (trypsin and 
chymotrypsin) as well as the collagenolytic and fibrinolytic activities 
from the neglected processing waste (digestive viscera) of greater 
amberjack Seriola dumerili.

2. Materials and methods

2.1. Materials

   Tris (hydroxymethyl) was purchased from Sigma (St. Louis, 
MO, USA). Glycine was acquired from Amersham Biosciences. 
Hydrochloric acid (HCl) was obtained from Merck. The 
spectrophotometer used was Bio-Rad Smartspec™ 3000. The 
centrifuges were product of BioAgency Bio-Spin.

2.2. Use of digestive viscera and process of extraction

   The digestive viscera of greater amberjack S. dumerili were kindly 
provided by the fishermen’s colony of Ponta Verde, Maceió, Alagoas, 
Brazil after the evisceration process by fishermen as discarded 
products. Samples of 300 g intestine were collected, packaged in 
plastic containers, kept on ice and transported to the Laboratory of 
Enzymology, Center of Biological Sciences, Federal University of 
Pernambuco, Recife, Pernambuco, Brazil. The enzymatic extraction 
was performed according to the method described by Oliveira et 
al.[4]. The ratio of viscera to extraction buffer (0.05 mol/L Tris-HCl, 
pH 7.5, containing 5 mmol/L CaC12) was 1:5 (w/v). The intestinal 
waste was homogenized for 5 min by a homogenizer with speed 
adjustment to 10 000–12 000 r/min (4 °C) (IKA RW 20D S32, China). 
The homogenate was then centrifuged (Sorvall Superspeed Centrifuge 
RC-6, North Carolina, USA) at 10 492 r/min for 30 min at 4 °C. The 
final supernatant was defined as the crude extract and stored at –25 °C.

2.3. Trypsin and chymotrypsin activity and protein determination

   Protease activity was measured using Nα-benzoyl-DL-arginine-p-
nitroanilide (BApNA) and Succinyl-DL-phenylalanine-p-nitroanilide 
(Suc-Phe-p-Nan) dissolved in aminomethane and dimethyl sulfoxide 
(DMSO) as specific substrate for trypsin and chymotrypsin, 
respectively. The final concentration used was 8 mmol/L. The substrate 
(30 μL) was incubated in wells of microplate with the enzyme (30 
μL) and 140 μL of 0.05 mol/L Tris-HCl buffer (pH 7.5) containing 
5 mmol/L CaCl2. The release of p-nitroaniline was measured as an 
increase in absorbance at 405 nm in a microplate reader. The test for 
controls was performed without enzyme. One unit (IU) of enzyme 
activity is considered as the amount of enzyme able to produce 1 μmol 
of p-nitroaniline per minute[9]. The specific activity, calculated as the 
ratio between the protease activity (IU/mL) and the total protein in the 
sample (mg/mL), was expressed in IU/mg. The protein concentration 
of all tissue extracts was determined according to method of Smith et 
al.[18], using bovine serum albumin (BSA) as a standard.

2.4. Michaelis–Menten kinetic assay (Km and Vmax)

   The substrates used in the kinetic tests were BApNA and Suc-
Phe-p-Nan, with final concentrations varying from 0 to 4.5 mmol/
L and dissolved in DMSO. The reaction was performed in triplicate 
in microplates and consisted of a mixture of crude extract (30 μL), 
0.5 mol/L Tris–HCl buffer (140 μL, pH 7.5) and substrate (30 μL). 
The release of p-nitroaniline was monitored by a microplate reader 
at 405 nm and the enzymatic activity was calculated as described 
in section 2.3. The activity values obtained for each substrate 
concentration were plotted on a Michaelis–Menten graph using the 
MicroCal™ Origin襆 Version 8.0 (MicroCal, Northampton, MA, 
USA)[8].

2.5. Physicochemical properties

2.5.1. Optimum temperature and thermal stability
   The effect of temperature on the enzyme activity and stability was 
evaluated at temperatures ranging from 25 to 80 °C. For optimal 
temperatures, the assays were carried out by incubating the crude 
extract with the substrates, 8 mmol/L BApNA or Suc-Phe-p-Nan, in 
a water bath. To test thermal stability, the enzyme was incubated in a 
water bath for 30 min and the remaining activity was then measured at 
25 °C. The activity was calculated as the ratio between the enzymatic 
activity at the end of each incubation run and that at the beginning, and 
expressed as percentage (%)[7].

2.5.2. Optimum pH and stability
   These experiments were carried out in different pH ranges using the 
buffers: 0.5 mol/L citrate–phosphate (pH 4.0–7.0), 0.1 mol/L Tris–HCl 
(pH 7.5–8.5) and 0.1 mol/L glycine–NaOH (pH 9.0–12.0), containing 
5 mmol/L CaCl2, using 8 mmol/L BApNA and Suc-Phe-p-Nan as 
substrate. For the optimum pH, the crude extract was mixed with 140 
μL of buffer solutions, then 30 μL of substrate was added and incubated 
for 10 min at 25 °C. The influence of pH on enzyme stability was 
determined by incubating the enzyme with various buffer solutions at a 
ratio of 1:1 for 1 h at 25 °C. Then, 30 μL aliquots were withdrawn and 
used to assess the activity of the enzyme at the optimum pH presented 
using 8 mmol/L substrate. The activity was calculated as the ratio 
between the enzymatic activity observed at the end of each incubation 
run and that at the beginning, and expressed as percentage (%)[8].

2.6. Sensitivity to metal ions and inhibitors

   For the test for sensitivity to metal ions, samples of crude extract 
(30 μL) were added to a 96-well microtitre plate with 1 mmol/L (30 
μL) of the ions Mn2+, Cu2+, Cd2+, Zn2+, Hg2+, Mg4+, Al3+, Fe3+ and Pb2+. 
Deionized water was used to prepare the solutions of all metals. After 
1 h of incubation, 110 μL of 0.05 mol/L Tris-HCl buffer (pH 7.5) 
with 5 mmol/L CaCl2, and 30 μL of 8 mmol/L BApNA or Suc-Phe-p-
Nan were added. The test for sensitivity to inhibitors was performed 
by incubating the crude extract (30 μL) for 1 h at 25 °C with protease 
inhibitors (30 μL, 8 mmol/L): phenylmethylsulphonyl fluoride (PMSF); 
N-p-tosyl-L-lysin chloromethyl ketone (TLCK); benzamidine; N-tosyl-
L-phenylalaninechloromethyl ketone (TPCK); ethylenediamine tetra-
acetic acid (EDTA); and β-mercaptoethanol. After incubation, 8 mmol/
L BApNA was added and the release of p-nitroaniline was measured as 
the increase in absorbance at 405 nm[8].

2.7. Collagenolytic activity

   The test for collagenolytic activity of the crude extract was performed 
according to method of Oliveira et al.[4], using Azo dye-impregnated 
collagen (azocoll) as substrate. A reaction mixture containing azocoll (5 
mg), 50 mmol/L Tris–HCl buffer (500 μL, pH 7.5, contained 5 mmol/
L CaCl2) and crude extract (500 μL) was typically incubated at 55 °C 
for 30 min with stirring. Thereafter, trichloroacetic acid (200 μL) was 
added and incubated to stop the reaction. After 10 min, the samples 
were centrifuged at 10 492 r/min for 10 min at 4 °C. The sample reading 
was performed using a spectrophotometer at a wavelength of 595 nm. 
One enzyme unit was defined as the amount of enzyme required to 
increase the absorbance of 0.01 at 595 nm.

2.8. Fibrinolytic activity

   The fibrinolytic activity (FA) was determined using the 
spectrophotometric method. First, 0.4 mL of 0.72% fibrinogen was 
placed in a test tube with 0.1 mL of 245 mmol/L phosphate buffer 
(pH 7.0) and incubated at 37 °C for 5 min. Then, 0.1 mL of a 20 
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IU/mL thrombin solution was added. The solution was incubated 
at 37 °C for 10 min, then 0.1 mL of diluted enzyme solution was 
added, and incubation continued at 37 °C. At 60 min, 0.7 mL of 
0.2 mol/L trichloroacetic acid (TCA) was added, and mixed. The 
reaction mixture was centrifuged at 11 730 r/min for 10 min. Then, 
1 mL of the supernatant was collected and the absorbance at 275 
nm was measured. In this assay, 1 unit (fibrin degradation unit, 
FU) was defined as the increase of 0.01 in absorbance per minute 
at 275 nm[19].

2.9. Statistical analysis

   All  values were presented as mean ± SD. Data were 
statistically analyzed for normal distribution by Shapiro–Wilk 
and Kolmogorov–Smirnov tests and homogeneity of variances 
by Levene’s test. One-way ANOVA followed by Tukey’s test 
was used for normally distributed data, whereas Kruskal–Wallis 
ANOVA would be used in case of non-normally distributed data. 
Differences between groups were accepted as significant at a 
confidence level of 95% (P < 0.05).

3. Results

   The crude extract of greater amberjack S. dumerili presented 
total protein of (3.29 ± 0.01) mg/mL and enzymatic activity of 
(1.460 0 ± 0.001 1) and (0.710 0 ± 0.007 9) IU/mg protein for 
trypsin and chymotrypsin, respectively. The specific activity of 

chymotrypsin was lower than trypsin at species studied.
   Kinetic parameters of BApNA and Suc-Phe-p-Nan hydrolysis 
were examined in the present study. The Michaelis-Menten (Km) 
constant for the crude extract was (0.35 ± 0.09) and (0.34 ± 0.07) 
mmol/L for trypsin and chymotrypsin, respectively. The Vmax 
was found to be (391.07 ± 12.80) and (108.08 ± 2.56) IU/mg for 
trypsin and chymotrypsin, respectively.
   The effect of temperature on trypsin activity is illustrated in 
Figure 1A. The optimum temperature for trypsin was 60 °C, and 
the activity of trypsin remained stable at 25–60 °C (Figure 1B). 
The optimum temperature for chymotrypsin was 40 °C (Figure 
1C), and the activity of chymotrypsin remained stable at 25–45 °C 
(Figure 1D). The optimum pH for trypsin activity was 9.0 (Figure 
2A), and the activity maintained its stability in the pH range of 6.0 
to 12.0 (Figure 2B). The optimum pH for chymotrypsin was 8.0 
(Figure 2C), remaining stable between 6.5 and 8.5 (Figure 2D).
   The effect of the metal ions and inhibitors on enzyme activity 
was evaluated and presented in Table 1. In this work, the trypsin 
and chymotrypsin were inhibited by the following ions in 
decreasing order: Fe3+ > Cu2+ > Zn2+ > Cd2+ > Hg2+ > Pb2+ > Mg4+ 

> Al3+ > Mn2+; and Hg2+ > Fe3+ > Zn2+ > Cd2+ > Mn2+ > Cu2+ > Al3+ 

> Pb2+ > Mg4+ respectively. The trypsin inhibitors (TLCK and 
benzamidine) were those that exerted the greatest inhibitory 
effect on the activity of both enzymes (trypsin and chymotrypsin). 
The crude intestinal extract analyzed showed collagenolytic and 
fibrinolytic activity of (42.44 ± 0.01) IU/mg and (26.70 ± 0.05) 
IU/mL, respectively.
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Figure 1. The thermal stability and effect of temperature on the activity of serine proteases extracted from greater amberjack S. dumerili. 
A: Optimum temperature for trypsin activity in a range of 25–80 °C; B: Thermal stability of trypsin after 1 h incubation at temperature in the range of 
25–80 °C; C: Optimum temperature for chymotrypsin activity in a range of 25–80 °C; D: Thermal stability of chymotrypsin after 1 h of incubation in the 
temperature range of 25–80 °C.
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Table 1 
Effect of ions and inhibitors on the residual activity (%) of trypsin and 
chymotrypsin from greater amberjack Seriola dumerili.

Ions and inhibitors S. dumerili
BApNA  Suc-Phe-p-Nan

Metal ions* (1 mmol/L)
Mn2+ 100.98a   21.49b

Zn2+   55.20b   17.05b

Fe3+   41.71b     2.14b

Cu2+   55.14a   22.39b

Hg2+   65.61b     0.00b

Mg4+   78.91a 100.62a

Cd2+   59.20b   19.41b

Al3+   79.69b   25.45b

Pb2+   69.74b   52.14b

Inhibitor* (8 mmol/L)
PMSF      62.18b,ab    68.04a,a

TPCK     54.03b,a    87.56a,a

TLCK     26.71b,c    26.28b,b

Benzamidine     19.11b,c    48.30b,b

β-Mercaptoethanol     43.40b,c     66.84b,ab

EDTA      45.02b,bc     67.82b,ab

*: In the controls, determinations were performed without ions or inhibitors. The 
activities of controls were 1.11 IU/mg (trypsin) and 0.54 IU/mg (chymotrypsin).
The data followed by different letters are significantly different. In the values for 
inhibitors, the first superscript letter (before coma) represents comparison with 
control group that was considered as 100% (a). The second superscript letter 
is related to comparison between inhibitors. The initial concentration used for 
the assay with inhibitors was 8 mmol/L. The final concentration used for the 
assay with ions was 1 mmol/L. Different superscript letters represent statistical 
differences (P < 0.05).

4. Discussion

   The activity of the trypsin from crude extract tested in the present 
study was higher than that from crude extract of Japanese sea bass 
Lateolabrax japonicus (0.30 IU/mg)[20], zebra blenny Salaria 
basilisca (0.12 IU/mg)[11], pirarucu A. gigas (0.37 IU/mg[8], tropical 
gar A. tropicus (0.000 006 IU/mg)[13] and hybrid catfish (Clarias 
microcephalus x Clarias gariepinus) (0.18 IU/mg)[21].
   The chymotrypsin activity obtained in this study was higher than 
that reported for A. tropicus (0.001 2 IU/mg)[13]. Cuenca-Soria et 
al.[22] observed the chymotrypsin activity of 0.52 and 0.8 IU/mg for 
the Mayan cichlid Cichlasoma urophthalmus. Zhou et al.[23] reported 
that chymotrypsin of marine fish that acclimated to cold regions has 
higher catalytic activities and S. dumerili is a species that acclimated 
to cold water. Falcón-Hidalgo et al.[24] reported increasing activity 
of trypsin and chymotrypsin of Cuban Limia vittata and Cuban 
gambusia Gambusia punctate during the development of the species. 
   One of the characteristics of fish proteases is to have a higher 
affinity to the specific substrate (lower Km) when compared to the 
enzymes from other sources, such as bovine trypsin; this is mainly 
due to differences in the region of substrate breakdown[6]. The Km is 
used to assess the affinity of the tested enzyme to the substrate and 
constitutes one of the characteristics observed by the industry during 
the prospection process for novel commercial enzymes. The results 
for trypsin showed similar values to that of alkaline trypsin from 
silver mojarra D. rhombeus[7], pirarucu A. gigas[8] and crevalle jack 
C. hippos[1]; while chymotrypsin values diverged from that reported 
by Castillo-Yañez et al.[25].
  The effect of temperature on the activity of trypsin in this work was 
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Figure 2. Effect of pH on the activity and stability of serine proteases extracted from greater amberjack S. dumerili . 
A: Optimal pH for the activity of trypsin, using different buffers in the pH range from 4.5 to 12.0, expressed as percentage of the maximum obtained 
in 0.05 mol/L Tris-HCl buffer; B: pH stability of trypsin after incubation for 1 h in the pH range 4.0 to 12.0; C: The optimum pH for the activity of 
chymotrypsin using different buffers in the pH range from 4.5 to 12.0, expressed as percentage of the maximum obtained in 0.05 mol/L Tris-HCl buffer; 
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similar to that of Brownstripe red snapper Lutjanus vitta[26] and zebra 
blenny Salaria basilisca[11]. The loss of activity presumably was due 
to heat treatment. Another similar result was reported for pirarucu 
A. gigas[8], with optimal temperature at 65 °C. Results of optimum 
temperature for chymotrypsin from Monterey sardine Sardinops 
sagax caerulea[25] are in accordance with that found in the present 
work. Guerrero-Zárate et al.[13] reported optimum temperature of 
60 °C for alkaline proteases (trypsin and chymotrypsin) in juveniles 
of tropical gar A. tropicus. For affecting the folding of proteins 
due to the breaking of disulfide bonds, the temperature influences 
the enzymatic activity[6]. Because of less disulfide bonds, when 
compared to trypsin, chymotrypsin becomes more sensitive to the 
temperature. The chymotrypsin activity of fish species presents low 
tolerance to temperature variations[23].
   Optimum pH of trypsin is consistent with that reported by Ben 
Khaled et al.[10], Freitas-Junior et al.[8], Ktari et al.[11] and Sila et 
al.[12] for the fish species sardinelle S. aurita, pirarucu A. gigas, 
zebra blenny S. basilisca and barbel B. callensis, respectively, 
indicating an optimum pH range between 8.0 and 10. In this study, 
peak activity of trypsin was found in the pH 9.0. Similar reports 
have showed the  optimum activity of enzymatic crude extracts from 
Brownstripe red snapper Lutjanus vitta[26], Japanese sea bass L. 
japonicus[20] and pirarucu A. gigas[8] in the range from 8.5 to 10.0. 
These results are consistent with those reported for trypsin from 
fish species in literature[6]. Trypsin stability to pH variation was 
similar to the findings reported by Silva et al.[7] for silver mojarra D. 
rhombeus remaining stable in a range of alkaline pH (8.5–11.0) and 
being unstable in pH below 8.5 and showing negligible activity at 
pH 4.5, while Cai et al.[20] reported recovery of activity for Japanese 
sea bass L. japonicus in the pH range from 7.0 to 11.0.
   Optimum pH of chymotrypsin was similar to the reports for 
Monterey sardine S. sagax caeruleus[25], showing a relatively 
high activity in the pH range of 8.0–10.0. Here, the optimum pH 
range (7.5–9.0) found for chymotrypsin indicated denaturation 
when subjected to extensive acidic pH range (below 5.0) or for 
long time to high alkaline pH ranges (> 12.0). In the stability test, 
chymotrypsin was more sensitive to changes in pH than trypsin. 
Sudden changes in pH lead to changes in charge and consequently in 
the conformational structure of the protein. Strong acidic or alkaline 
solutions cause irreversible denaturation of the enzyme, leading to 
the loss or inactivation of the activity[7].
   The results obtained for the optimum temperature and pH and the 
recovery of the activity for both enzymes (trypsin and chymotrypsin) 
when subjected to thermal stress and pH fluctuations are in 
agreement with parameters considered by the industry in several 
industrial sectors. In addition, the alkaline proteases derived from 
fish processing residues present biotechnological potential for textile, 
food and biomedical applications[6,23].
   The results of in vitro exposure to metal ions for trypsin are 
in accordance with those obtained for zebra blenny Salaria 
basilisca[11]. Costa et al.[1] observed inhibition on trypsin activity 
from crevalle jack C. hippos after incubation with Cd2+, Al3+, Zn2+, 
Cu2+, Pb2+ and Hg2+ at 1 mmol/L, revealing high sensitivity of the 
enzyme to metal ions. Silva et al.[7] reported reduction in trypsin 
activity of silver mojarra D. rhombeus when it was incubated in 
the presence of Fe2+, Cd2+, Cu2+ and Al3+ in a proportion of 20% to 
35%, while ions Hg2+ and Zn2+ inhibited about 53.11% and 71.23%, 
respectively. According to these reports, the Pb2+ ions completely 
inhibited the enzymatic activity. The chymotrypsin was susceptible 

to various metal ions, such as Mg2+ and inactivated by the ions Fe2+, 
Mn2+, Cu2+ and Zn2+ as reported by Yang et al.[27] for crucian carp C. 
auratus. In the present work, the ion Hg2+ completely inhibited the 
activity of chymotrypsin from S. dumerili.
   The results of inhibition on trypsin by benzamidine and TLCK 
are similar to those reported by Silva et al.[7], Freitas Junior et al.[8], 
Costa et al.[1] and França et al.[3]. When subjected to a potent serine 
protease inhibitor (PMSF), activity of 62.18% was detected for 
trypsin of S. dumerili. Cuenca-Soria et al.[22] reported a high degree 
of inhibition on alkaline proteases (trypsin and chymotrypsin) from 
extracts of C. urophthalmus by specific inhibitors such as TPCK, 
TLCK, and EDTA (greater than 80%) and PMSF (60%). When 
using the specific inhibitor of chymotrypsin (TPCK), residual trypsin 
activity of 54.03% was detected for S. dumerili. Chymotrypsin 
has sensitivity to certain natural and synthetic specific inhibitors, 
which may result in partial decrease or complete loss of enzymatic 
activity. In this study, chymotrypsin activity was poorly influenced 
by specific inhibitors, when compared with the other inhibitors 
tested, especially when subjected to trypsin inhibitors, TLCK and 
benzamidine.
   High collagenolytic activity was reported for intestinal crude 
extract of smooth weakfish Cynoscion leiarchus (72.5 IU/mg)[4], and 
Daboor et al.[17] reported the collagenolytic activity (11.63 IU/mg) 
using a mixture of haddock, herring, flounder and ground fish crude 
extracts. Souchet and Laplante[28] also detected the collagenolytic 
activity (13.3 IU/mg) in byproducts of snow crab Chionoecetes 
opilio. Currently, much of the collagenase used in the market is of 
microbial origin. The fibrinolytic activity found in the extracts of 
greater amberjack S. dumerili indicates the biotechnological potential 
of these neglected digestive wastes. Thrombolytic agents are used 
for thrombosis of the cardiac valve[29], in the enzymatic debridement 
of the pleural cavity[30], cancer therapy[31] and pathophysiological 
action in the nervous system[32]. To our knowledge, no record of 
fibrinolytic agents from fish processing residues has been reported to 
date; the present study was the first report.
   The rapid processing and high catalytic efficiency of proteases 
from fish residues, such as the gut, make this material an alternative 
and promising source in the supply of biomolecules with viable 
applications in the industrial market, mainly because they have 
desirable physicochemical properties in the productive chains of 
food, textile and pharmacological products. In this work, internal 
viscera of greater amberjack S. dumerili provided enzymes with 
resistance to high temperature and maintenance of its functionality 
in a wide range of pH. Thus, this material can be used as an 
alternative source after technological purification of the appropriate 
enzyme to the needs of each industrial sector, reducing costs, adding 
value to the fishery byproducts and contributing to the reduction of 
environmental impact.
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