In vitro antifungal activity against Candida species of Sri Lankan orthodox black tea (Camellia sinensis L.) belonging to different agro-climatic elevations

Wanigasekara Daya Ratnasooriya1*, Sachitra Gayanthi Ratnasooriya2, Chatura Dayendra Tissa Ratnasooriya3, Ranga Dissanayake4

1Department of Basic Sciences, Faculty of Allied Health Sciences, General Sir John Kothalawala Defense University, Werehara, Sri Lanka
2Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
3Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
4Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka

ARTICLE INFO

Objective: To investigate the antifungal potential of different grades of Sri Lankan orthodox black tea [orange pekoe, broken orange pekoe fannings (BOPF) and Dust No. 1] belonging to the three agro-climatic elevations (low, mid and high).

Methods: Antifungal activity was assessed in vitro using methanolic extracts (300 µg/disc) and agar disc diffusion bioassay technique against three Candida species, Candida albicans, Candida glabrata, and Candida tropicalis. Ketoconazole and itraconazole mixture was used as positive control (10 µg/disc) and methanol was used as the negative control. The minimum inhibitory concentrations were also determined using standard protocols.

Results: None of the extracts were effective against Candida tropicalis. Furthermore, orange pekoe grade tea belonging to all agro-climatic elevations did not induce any antifungal activity against C. albicans and C. glabrata as well. Conversely, Dust No. 1 belonging to all three agro-climatic elevations and low-grown BOPF showed moderate antifungal activity against C. albicans and C. glabrata. Interestingly, the severity of the antifungal effect varied with agro-climatic elevations. The minimum inhibitory concentrations ranged from 64.00–128.00 µg/mL against C. glabrata and 128.00–256.00 µg/mL against C. albicans.

Conclusions: Sri Lankan Dust No. 1 and BOPF have marked antifungal activity in vitro and offer promise to be used as a supplementary beverage in prophylaxis and during drug treatment in candidiasis.

Article history:
Received 29 Sep 2016
Accepted 24 Oct 2016
Available online 13 Dec 2016

Keywords: Camellia sinensis
Black tea
Candida species
Antifungal activity
Orange pekoe
Broken orange pekoe fannings
Dust No. 1

1. Introduction

Fungi are ubiquitous but few are pathogenic to humans and animals. Over the last three decades, there has been an unprecedented increase in the incidence and diversity of life-threatening invasive fungal diseases including candidiasis[1,2]. However, at present, only few orally active drugs are available for treatment of fungal infections/mycoses[1-3]. These are usually expensive (especially in developing countries), and often associated with undesirable side effects some of which are serious: fever, chills, nausea, dry mouth, metallic taste, alopecia, skin rashes, visual disturbances, muscle weakness, hepatotoxicity and nephrotoxicity[1-3]. Further, there is an increasing clinical and microbial resistance of Candida species to several antifungal agents, which becomes a serious problem[2]. As such, there is an imperative need to identify and develop novel antifungal agents which are effective, selective, orally active, safe and also cheap. However, developing an antifungal agent having these characteristics are rather difficult as fungi have metabolic pathways relatively similar to humans[1,2].

In this connection, this study was undertaken to investigate the antifungal activity of three grades of Sri Lankan black tea manufactured by orthodox technique, namely, Dust No. 1, broken orange pekoe fannings (BOPF) and orange pekoe (OP), belonging to three agro-climatic elevations [low grown: below 600 m above
mean sea level (AMSL); mid grown: 600-1 200 m AMSL; high grown: above 1 200 m AMSL[4]. The antifungal activity was assessed in vitro using agar disc diffusion bioassay technique against three Candida species: Candida albicans (ATCC 90028) (C. albicans), Candida glabrata (ATCC 90030) (C. glabrata), and Candida tropicalis (ATCC 13803) (C. tropicalis). Candida species are opportunistic fungi which cause life-threatening candidiasis, especially in immune-compromised individuals[1,2]. Furthermore, now, candidiasis is one of the most common fungal diseases globally and the most common species responsible for it is C. albicans[1,2].

2. Materials and methods

Black tea samples used in this study (Dust No. 1, BOPF and OP) were manufactured using orthodox rotavane technique with the top most immature leaves and unopened buds of Camellia sinensis (C. sinensis) plant harvested during August 2015 in three tea factories belonging to three agro-climatic elevations: Mattakale tea factory, Tallawakelle (1 382 m AMSL; high grown, latitude 34'12" N, longitude 2'24" E) and Kottawally, Galle (0 m AMSL; low grown, latitude 6'24" N, longitude 80'12" E), Sri Lanka. Tea samples were packed in triplicate laminated aluminum-foil bags and stored at –20 °C until use.

2.1. Sieve analysis

The composition of ‘true to size particles’ defined for each grade of tea samples was determined in triplicate using a sieve shaker with standard set of sieves with the shaking speed of 50 vibrations/min for 10 min as described by Samaraweera et al.[5].

2.2. Organoleptic profile analysis

Typical characters (leaf characteristics, infused leaf characteristics, and liquor characteristics) of each grade of tea samples belonging to the three agro-climatic elevations were organoleptically evaluated by professional tea tasters attached to Sri Lanka Tea Board, Colpitty, Sri Lanka.

2.3. Preparation of methanolic tea extracts

Five grams of each grade of tea belonging to the three agro-climatic elevations were separately extracted into 100 mL of 100% methanol continuously for 5 days with sonication at room temperature (30–32 °C) (n = 9). The extracts were filtered through Whatman No. 1 filter paper and the filtrates were evaporated to dryness under reduced pressure in a rotary evaporator.

2.4. In vitro antifungal activity

Each of the methanolic extracts of tea samples belonging to the three agro-climatic elevations was assessed for the antifungal activity against three pathogenic fungal species, namely, C. albicans, C. glabrata, and C. tropicalis, using standard agar disc diffusion bioassay and Muller Hamilton agar medium as described by Clinical and Laboratory Institute[6]. The concentration of different tea samples used was 300 µg/disc. Ketoconazole and itraconazole mixture (10 µg/disc each) was used as the positive control and methanol was used as the negative control. The incubation temperature was 37 °C and incubation period was 24 h. At the end of the incubation period, the diameter of the transparent inhibition zone around each disc was measured using a pair of vernier calipers. All the experiments were conducted in triplicate. A tea sample was considered to have an effective antifungal activity if the inhibition growth zone around the disc was equal or greater than 7 mm.

2.5. Evaluation of minimum inhibitory concentration (MIC)

Methanolic tea extracts that demonstrated an effective antifungal activity against C. albicans and C. glabrata were subjected to the determination of MIC using broth micro-dilution method with slight modifications using Miller-Hamilton broth as the medium and plate reader (to determine optical density of the microbial growth at 600 nm) as described by the National Committee for Clinical Laboratory Standard[6]. Fungal culture concentration inoculated was 0.5 McFarland standards (~1.0 × 108 colony-forming unit/mL). The initial concentration of tea samples used was 265 µg/mL, which was serially diluted. Amphotericin was used as the positive control (concentration series used: 2.0–0.004 µg/mL). Results were presented as mean inhibition zone diameter ± SEM.

3. Results

3.1. Sieve analysis

Sieve analysis showed that more than 80% of tea particles were in the size range specified for each grade: Dust No. 1, 300–500 µm; BOPF 500–800 µm; OP 2000–4000 µm.

3.2. Organoleptic profile

Organoleptic evaluation by professional tea tasters revealed that their leaf characteristics, infusion leaf characteristics and liquor characteristics can be accepted as typical to each grade and their agro-climatic elevations.

3.3. Assessment of in vitro antifungal activities

The results obtained are summarized in Tables 1 and 2. As shown in Table 1, none of the tea extracts was effective against fungal candidiasis pathogen, C. tropicalis. Furthermore, extracts of OP grade tea belonging to the three agro-climatic elevations also did not exert any fungal activity against the other tea pathogens, C. albicans and C. glabrata. On the other hand, mid grown Dust No. 1 [(7.0 ±
0.2) mm, low grown Dust No. 1 [(8.0 ± 0.4) mm] and low grown BOPF [(7.2 ± 0.4) mm] exhibited mild (in terms of diameter of the inhibitory growth zone) antifungal activity against C. albicans. Antifungal activity of positive control (ketoconazole and itraconazole mixture) was (14.6 ± 2.1) mm which was 1.8–2.0 fold higher than the effective tea samples.

With respect to C. glabrata, all Dust No. 1 samples belonging to the three agro-climatic elevations [low grown: (8.1 ± 0.6) mm; mid grown: (7.8 ± 0.3) mm; high grown: (8.0 ± 0.6) mm] and BOPF belonging to the low grown elevation [(7.2 ± 0.6) mm] showed moderate antifungal activity. However, the antifungal activity [(15.4 ± 1.5) mm] of the positive control (ketoconazole and itraconazole mixture) was considerably higher (1.9–2.9 fold) than that of the tea samples.

Table 1
In vitro antifungal activity of different grades of Sri Lankan black tea belonging to the three agro-climatic elevations against C. albicans, C. glabrata and C. tropicalis.

<table>
<thead>
<tr>
<th>Grade of black tea</th>
<th>Antifungal activity (mm)</th>
<th>C. albicans</th>
<th>C. glabrata</th>
<th>C. tropicalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>High grown BOPF</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dust No. 1</td>
<td>No</td>
<td>8.0 ± 0.6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>OP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mid grown BOPF</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dust No. 1</td>
<td>7.0 ± 0.2</td>
<td>7.8 ± 0.3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>OP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Low grown BOPF</td>
<td>7.2 ± 0.7</td>
<td>7.2 ± 0.6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dust No. 1</td>
<td>8.0 ± 0.4</td>
<td>8.1 ± 0.6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Positive control</td>
<td>14.6 ± 2.1</td>
<td>15.4 ± 1.5</td>
<td>14.6 ± 2.1</td>
<td></td>
</tr>
<tr>
<td>Negative control</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Data were expressed by mean inhibition zone diameter ± SEM in mm.

MIC values of different black tea extracts against C. albicans and C. glabrata were shown in Table 2. The lowest MIC value of 64.00 µg/mL was shown by low grown Dust No. 1 and the highest, 256.00 µg/mL was shown by low grown BOPF, whilst both high and mid grown Dust No. 1 samples displayed a MIC value of 128.00 µg/mL. Conversely, positive control had MIC values of 0.50 µg/mL and 0.25 µg/mL for C. albicans and C. glabrata, respectively.

Table 2
MIC values of different grades of Sri Lankan black tea belonging to the three agro-climatic elevations against C. albicans and C. glabrata.

<table>
<thead>
<tr>
<th>Grade of black tea</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. albicans</td>
</tr>
<tr>
<td>High grown BOPF</td>
<td>-</td>
</tr>
<tr>
<td>Dust No. 1</td>
<td>-</td>
</tr>
<tr>
<td>OP</td>
<td>-</td>
</tr>
<tr>
<td>Mid grown BOPF</td>
<td>-</td>
</tr>
<tr>
<td>Dust No. 1</td>
<td>256.00</td>
</tr>
<tr>
<td>OP</td>
<td>-</td>
</tr>
<tr>
<td>Low grown BOPF</td>
<td>256.00</td>
</tr>
<tr>
<td>Dust No. 1</td>
<td>128.00</td>
</tr>
<tr>
<td>Positive control</td>
<td>0.50</td>
</tr>
<tr>
<td>Negative control</td>
<td>-</td>
</tr>
</tbody>
</table>

Grade wise, the overall, order of potency of ranking for antifungal activity was Dust No. 1 > BOPF > OP for both C. albicans and C. glabrata. Agro-climatic wise rank order of potency against C. albicans was low grown > mid grown > high grown for Dust No. 1 and low grown > mid grown = high grown for BOPF. In contrast, agro-climatic wise order of potency against C. glabrata was low grown > high grown > mid grown for both Dust No. 1 and BOPF.

4. Discussion

This study examined the antifungal activity of three grades of Sri Lankan orthodox black tea (Dust No. 1, BOPF, and OP) belonging to the three agro-climatic elevations (low, mid and high) of the country[4]. The *in vitro* technique used to ascertain the antifungal activity was a widely employed inexpensive and well-established method[7,8]. Methanolic extracts were employed since they were the most common solvent used in investigation of plant products for anti-fungal activity[9,10]. The tea samples used were typical and representative to each grade and agro-climatic elevation in the country (in terms of sieve analysis, organoleptic properties and external appearance)[11,12], unblended and garden fresh. We believe that these characteristics make this study superior and more meaningful. Pharmacological and physiological activities of black tea are known to vary with several factors including the country of origin, agro-climatic elevation, processing method, harvesting season, grade of tea or particle size[13,14].

The results clearly showed for the first time that Sri Lankan orthodox black tea Dust No. 1 and BOPF had promising antifungal activities against C. albicans and C. glabrata but not against C. tropicalis. Interestingly, the antifungal activity was similar against both these two *candida* species. However, antifungal activity was found to be significantly (about 50%) lower than the referenced drug. Nevertheless, antifungal activity of the tea extract is noteworthy since we have used the pure and active form of the positive drug whilst the tea samples used are crude methanolic extracts. In contrast, somewhat surprisingly, none of the OP grade teas belonging to the three agro-climatic elevations exhibited any antifungal activity against all the three *Candida* species tested. Our previous studies on anti-bacterial activity of these selected tea grades showed least activity in OP grade[15]. However, Dust No. 1 and BOPF grades also showed anti-bacterial activity, although anti-fungal activity was absent in this study.

Among the grades of tea tested, the order of potency was found to be Dust No. 1 > BOPF > OP. In agreement with this study, a similar order of potency was evident with anti-rheumatoid arthritic activity[16], sunscreen[17] or antibacterial activity[15]. This could be due to differences in particle size of the different grades of tea used in this study. Dust No. 1 has the smallest particle size while OP has the largest. Smaller the particle size larger the surface area to volume ratio[18] and greater the release of active phytoconstituent[16,17], thus increases the severity of the pharmacological activity. Alternatively, the ranking order of potency, agro-climatic elevation wise, was different against the two *Candida* species: against C. glabrata it was low grown > mid grown > high grown for Dust No. 1 and low grown > mid grown = high grown for BOPF; and against C. albicans it was low grown > high grown > mid grown for both Dust No. 1
On the basis of our results, it is concluded that Sri Lankan Dust No. and many more other compounds [11,12,19]. It is possible that the constituents such as catechins, theaflavins and thearubingins.

References