
 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 27

Structuring Distributed Algorithms for Mobile Hosts
 R.Karthikeyan

1
, Jayaprakash S

2
, Dharmalingam P

3

1
 (Asst.Prof, Dept of MCA, Gnanamani college of Technology, Namakkal, INDIA)

2
(P.G.Scholar, Dept of MCA, Gnanamani college of Technology, Namakkal, INDIA)

3
(P.G.Scholar, Dept of MCA, Gnanamani college of Technology, Namakkal, INDIA)

Abstract:

Mobile Ad-hoc network is a self-configuring

network of mobile routers connected by wireless links.

This union forms a random topology. Mutual Exclusion in

distributed mobile ad-hoc network ensures that only one

process can access shared resources at a time. If at that

time, other process requests for those shared resources,

then the requesting process has to wait until the resources

have been released. For mobility management, we present

a algorithm which changes its communication according to

the topology changes. In this algorithm we shows that the

nodes are make communicate only with their current

neighbors which yields more performance to adapt the

mobility.

Keywords — mobile adhoc networks, Distributed

Mutual Exclusion, token based algorithms, dynamic

nodes, mobility.

1. Introduction

In the wireless communication, mobile ad hoc network

is a network wherein a pair of nodes communicates by sending

messages either over a direct wireless link, or over a sequence of

wireless links including one or more intermediate nodes. Direct

communication is possible only between pairs of nodes that lie

within one another’s transmission radius. Wireless link

“failures” occurs when previously communicating nodes move

such that they are no longer within transmission range of each

other. Likewise, wireless link “formation” occurs when nodes

that were too far separated to communicate move such that they

are within transmission range of each other. Characteristics that

distinguish ad hoc networks from existing distributed networks

include frequent and unpredictable topology changes and highly

variable message delays. These characteristics make ad hoc

networks challenging environments in which to implement

distributed algorithms.

The mutual exclusion problem involves a group of processes,

each of which intermittently requires access to a resource or a

piece of code called the critical section (CS). At most one

process may be in the CS at any given time. Providing shared

access to resources through mutual exclusion is a fundamental

problem in computer science, and is worth considering for the

ad hoc environment, where stripped down mobile nodes may

need to share resources. Distributed mutual exclusion algorithms

that rely on the maintenance of a logical structure to provide

order and efficiency may be inefficient when run in a mobile

environment, where the topology can potentially change with

every node movement. We present an algorithm which

dynamically modifying the logical structure to adapt to the

changing physical topology in the ad hoc environment.

User Applications

Distributed Routing Protocol
Primitives

Ad Hoc Network

Existing distributed algorithms will run correctly on top

of ad hoc routing protocols, since these protocols are designed to

hide the dynamic nature of the network topology from higher

layers in the protocol stack. Routing algorithms on ad hoc

networks provide the ability to send messages from any node to

any other node. However, our contention is that efficiency can

be gained by developing a core set of distributed algorithms, or

primitives, that are aware of the underlying mobility in the

network, as shown in figure. In this paper, we present a mobility

aware distributed mutual exclusion algorithm to illustrate the

layering approach in figure. Distributed mutual exclusion

algorithms that rely on the maintenance of a logical structure to

provide order and efficiency may be inefficient when run in a

mobile environment, where the topology can potentially change

with every node movement. Badrinath et al. [3] solve this

problem on cellular mobile networks, where the bulk of the

RESEARCH ARTICLE OPEN ACCESS

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 28

computation can be run on wired portions of the network.

We present a mutual exclusion algorithm that induces a

logical directed acyclic graph (DAG) on the network,

dynamically modifying the logical structure to adapt to the

changing physical topology in the ad hoc environment.

2. Related Work

Token based mutual exclusion algorithms provide

access to the CS through the maintenance of a single token that

cannot simultaneously be present at more than one node in the

system. Requests for CS entry are typically directed to

whichever node is the current token holder. Raymond [1]

introduced a token based mutual exclusion algorithm in which

requests are sent, over a static spanning tree of the network,

toward the token holder; this algorithm is resilient to non-

adjacent node crashes and recoveries, but is not resilient to link

failures. Chang et al. [3] extend Raymond’s algorithm by

imposing a logical direction on a sufficient number of links to

induce a token oriented DAG in which, for every node i, there

exists a directed path originating at i and terminating at the

token holder. Allowing request messages to be sent over all

links of the DAG provides resilience to link and site failures.

However, this algorithm does not consider link recovery, an

essential feature in a system of mobile nodes. Dhamdhere and

Kulkarni [5] show that the algorithm of [3] can suffer from

deadlock and solve this problem by assigning a dynamically

changing sequence number to each node, forming a total

ordering of nodes in the system. The token holder always has the

highest sequence number, and, by defining links to point from a

node with lower to higher sequence number, a token oriented

DAG is maintained. Due to link failures, a node i that want to

send a request for the token may find itself with no outgoing

links to the token holder. In this situation, i flood the network

with messages to build a temporary spanning tree. Once the

token holder becomes part of such a spanning tree, the token is

passed directly to node i along the tree, bypassing other requests.

Since priority is given to nodes that lose a path to the token

holder, it seems likely that other requesting nodes could be

starved as long as link failures continue. Also, flooding in

response to link failures and storing messages for delivery after

link recovery make this algorithm ill-suited to the highly

dynamic ad hoc environment. Our token based algorithm

combines ideas from several papers. The partial reversal

technique from [4], used to maintain a destination oriented DAG

in a packet radio network when the destination is static, is used

in our algorithm to maintain a token oriented DAG with a

dynamic destination. Like the algorithms of [3,5,1], each node in

our algorithm maintains a request queue containing the

identifiers of neighboring nodes from which it has received

requests for the token. Like [5], our algorithm totally orders

nodes. The lowest node is always the current token holder,

making it a “sink” toward which all requests are sent. Our

algorithm also includes some new features. Each node

dynamically chooses its lowest neighbor as its preferred link to

the token holder. Nodes sense link changes to immediate

neighbors and reroute requests based on the status of the

previous preferred link to the token holder and the current

contents of the local request queue. All requests reaching the

token holder are treated symmetrically, so that requests are

continually serviced while the DAG is being re-oriented and

blocked requests are being rerouted.

3. Assumptions

The system contains a set of n independent mobile

nodes, communicating by message passing over a wireless

network. Each mobile node runs an application process and a

mutual exclusion process that communicate with each other to

ensure that the node cycles between its REMAINDER section

(not interested in the CS), its WAITING section (waiting for

access to the CS), and its CRITICAL section. Assumptions on

the mobile nodes and network are:

���� the nodes have unique node identifiers,

���� node failures do not occur,

���� communication links are bidirectional and FIFO,

���� a link-level protocol ensures that each node is aware of

the set of nodes with which it can currently directly

communicate by providing indications of link

formations and failures,

���� Incipient link failures are detectable, providing reliable

communication on a per-hop basis, and
���� Partitions of the network do not occur.

4. Reverse Link (RL) Mutual Exclusion Algorithm

In this section we first present the data structures

maintained at each node in the system, followed by an overview

of the algorithm, the algorithm pseudocode, and examples of

algorithm operation. Throughout this section, data structures are

described for node i, 0 ≤ i ≤ n − 1. Subscripts on data structures

to indicate the node are only included when needed.

� Data structures

• status: indicates whether node is in the

WAITING, CRITICAL, or REMAINDER section.

Initially, status = REMAINDER.

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 29

• N: the set of all nodes in direct wireless contact with node i.

Initially, N contains all of node i’s neighbors.

• myHeight: a three-tuple (h1, h2, i) representing the height of

node i. Links are considered to be directed from nodes with

higher height toward nodes with lower height, based on

lexicographic ordering. For instance, if myHeight1 = (2, 3, 1)

and myHeight2 = (2, 2, 2), then myHeight1 > myHeight2 and the

link between these nodes would be directed from node 1 to node

2. Initially at node 0, myHeight0 = (0, 0, 0) and, for all i ≠ 0,

myHeighti is initialized so that the directed links form a DAG in

which every node has a directed path to node 0.

• height[j]: an array of tuples representing node i’s view of

myHeightj for all j Ni . Initially, height[j] = myHeightj, for all
j Ni . In node i’s viewpoint, if j N, then the link between i and j

is incoming to node i if height[j] > myHeight, and outgoing

from node i if height[j] < myHeight.

• tokenHolder: flag set to true if node holds token and set to

false otherwise. Initially,
tokenHolder = true if i = 0, and tokenHolder = false otherwise.

• next: when node i holds the token, next = i, otherwise next is

the node on an outgoing link.
Initially, next = 0 if i = 0, and next is an outgoing neighbor

otherwise.

• Q: queue containing identifiers of requesting neighbors.

Operations on Q include Enqueue(), which enqueues an item

only if it is not already on Q, Dequeue() with the usual FIFO

semantics, and Delete(), which removes a specified item from

Q, regardless of its location. Initially, Q = .

• receivedLI[j]: Boolean array indicating whether Link-Info

message has been received from node j, to which a Token

message was recently sent. Any height information received at

node i from a node j for which receivedLI[j] is false will not be

recorded in height[j]. Initially, receivedLIi[j] = true for all j Ni .

when node i requests access to the CS
1. status := waiting

2. Enqueue(Q,i)

3. if (not tokenHolder)

4. if (|Q| = i) ForwardRequest()

5. else GiveTokenToNext()

when node i releases the CS

1. if (|Q| > 0) GiveTokenToNext()

2. status := REMAINDER

forming[j]: Boolean array set to true when link to node j has

been detected as forming and reset to false when first LinkInfo

message arrives from node j . Initially, formingi[j] = false for all

j Ni .

formHeight[j]: an array of tuples storing value of myHeight

when new link to j first detected. Initially, formHeighti[j] =

myHeighti for all j Ni .

� Overview of the RL algorithm

The mutual exclusion algorithm is event-driven. An

event at a node i consists of receiving a message from another

node j ≠ i, or an indication of link failure or formation from the

link layer, or an input from the application on node i to request

or release the CS. Each message sent includes the current value

of myHeight at the sender. Modules are assumed to be executed

atomically.

� Requesting and releasing the CS: When node i

requests access to the CS, it enqueues its own identifier

on Q and sets status to WAITING. If node i does not

currently hold the token and i has a single element on

its queue, it calls ForwardRequest() to send a Request

message. If node i does hold the token, i can set status

to CRITICAL and enter the CS, since it will be at the

head of Q. When node i releases the CS, it calls

GiveTokenToNext() to send a Token message if Q is

non-empty, and sets status to REMAINDER.

� Request messages: When a Request message sent by a

neighboring node j is received at node i, i ignores the

Request if receivedLI[j] is false. Otherwise, i changes

height[j], and enqueues j on Q if the link between i and

j is incoming at i. If Q is non-empty, and status =

REMAINDER, i calls GiveTokenToNext(), provided i

holds the token. Non-token holding node i calls

RaiseHeight() if the link to j is now incoming and i has

no outgoing links or i calls ForwardRequest() if Q = [j

] or if Q is non-empty and the link to next has reversed.
 ���� Token messages: When node i receives a Token message from some neighbor j , i sets tokenHolder = true. Then i lowers its height to be lower than that of the last token holder, node j, informs all its outgoing neighbors of its newheight by sending LinkInfo messages, and calls GiveTokenToNext(). Node i also informs j of its new height so that j will know that i received the token. LinkInfo messages. If receivedLI[j] is true when a

LinkInfo message is received at node i from node j , j ’s

height is saved in height[j]. If receivedLI[j] is false, i checks if

the height of j in the message is what it was when i sent the

Token message to j. If so, i sets receivedLI[j] to true. If forming[j

] is true, the current value of myHeight is compared to the value

of myHeight when the link to j was first detected, formHeight[j

]. If myHeight and formHeight[j] are different, then a LinkInfo

message is sent to j . Identifier j is added to N and forming[j] is

set to false. If j is an element of Q and j is an outgoing link, then

j is deleted from Q. If node i has no outgoing links and is not the

token holder, i calls RaiseHeight() so that an outgoing link will

be formed. Otherwise, if Q is non-empty, and the link to next

has reversed, i calls ForwardRequest() since it must send

another Request for the token.

���� Link formation: When node i detects a new link to

node j , i sends a LinkInfo message to j with myHeight,

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 30

sets forming[j] to true, and sets formHeight[j] =

myHeight.

���� Procedure ForwardRequest: Selects node i’s lowest

height neighbor to be next. Sends a Request message to

next.

���� Procedure GiveTokenToNext: Node i dequeues the

first node on Q and sets next equal to this value. If next

= i, i enters the CS. If next ≠ i, i lowers height[next] to

(myHeight.h1, myHeight.h2 − 1, next), so any incoming

Request messages will be sent to next, sets

tokenHolder= false, sets receivedLI[next] to false, and

then sends a Token message to next. If Q is non-empty

after sending a Token message to next, a Request

message is sent to next immediately following the

Token message so the token will eventually be returned

to i.

���� Procedure RaiseHeight: Called at non-token holding

node i when i loses its last outgoing link. Node i raise

its height using the partial reversal method, and inform

all its neighbors of its height change with LinkInfo

messages. All nodes on Q to which links are now

outgoing are deleted from Q. If Q is not empty at this

point, ForwardRequest() is called since i must send

another Request for the token.

5. Correctness of Reverse Link Algorithm

The following theorem holds because there is only one

token in the system at any time.

Theorem 1:

The algorithm ensures mutual exclusion. To prove no

starvation, we first show that, after link changes cease,

eventually the system reaches a “good” configuration, and then

we apply a variant function argument. We will show that after

link changes cease, the logical directions on the links imparted

by height values will eventually form a “token oriented” DAG.

Since the height values of the nodes are totally ordered, there

cannot be any cycles in the logical graph, and thus it is a DAG.

The hard part is showing that this DAG is token oriented,

defined next.

Definition 1:

A node i is the token holder in a configuration if

tokenHolderi = true or if a Token message is in transit from node

i to nexti .

Definition 2:

 The DAG is token oriented in a configuration if for
every node i, i {0, . . . ,n − 1}, there exists a directed path
originating at node i and terminating at the token holder. To
prove lemma 3, that the DAG is eventually token oriented, we
first show, in lemma 1, that this condition is equivalent to the
absence of “sink” nodes [13], as defined below. We then show,
in lemma 2, that eventually there are no more calls to
RaiseHeight(). Throughout, we assume that eventually link
changes cease.

Definition 3:

A node i is a sink in a configuration if (tokenHolderi =

false) and ((myHeighti < heighti[j]), for all j Ni).

Lemma 1: In every configuration of every execution, the DAG

is token oriented if and only if there are no sinks.

Proof: The only-if direction follows from the definition of a

token oriented DAG. If direction is proved by contradiction,

Assume, in contradiction, that there exists a node i in a

configuration such that tokenHolderi = false and for which there

is no directed path starting at i and ending at the token holder.

Since there are no sinks, i must have at least one outgoing link

that is incoming at some other node. Since the number of nodes

is finite, the network is connected, and all links are logically

directed such that no logical path can form a cycle, there must

exist a directed path from i to the token holder, a contradiction.

To show that eventually there are no sinks (lemma 3), we show

that there are only a finite number of calls to RaiseHeight().

Lemma 2:

 In every execution with a finite number of link

changes, there exists a finite number of calls to RaiseHeight().

Proof: In contradiction, consider an execution with a finite

number of link changes but an infinite number of calls to

RaiseHeight(). Then, after link changes cease, some node calls

RaiseHeight() infinitely often. We first note that if one node

calls RaiseHeight() infinitely often, then every node calls

RaiseHeight() infinitely often. To see this, consider that a node i

would call RaiseHeight() infinitely often only if it lost all its

outgoing links infinitely often. But this would happen infinitely

often at node i only if a neighboring node j raised its height

infinitely often, and neighboring node j would only call

RaiseHeight() infinitely often if its neighbor k raised its height

infinitely often, and so on. However, claim 1 shows that at least

one node calls RaiseHeight() only a finite number of times.

Claim 1: No node that holds the token after the last link change

ever calls RaiseHeight() subsequently.

Proof: Suppose the claim is false, and some node that holds the

token after the last link change calls RaiseHeight()

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 31

subsequently. Let i be the first node to do so. By the code, node i

does not hold the token when it calls RaiseHeight(). Suppose

that node i sends the token to neighboring node j at time t1,

setting its view of j to be outgoing, and at a later time, t3, node i

calls RaiseHeight(). The reason i calls RaiseHeight() at time t3

is that it lost its last outgoing link. Thus, at time t2 between time

t1 and t3, the link between i and j has reversed direction in i’s

view from outgoing to incoming. By the code, the direction

change at node i must be due to the receipt of a LinkInfo or

Request message from node j . We discuss these cases separately

below.

Case 1: The direction change at node i is due to the receipt of a

LinkInfo message from node j at time t2. By the code, when i

sends the token to j at t1, it sets receivedLI[j] to false.

Therefore, when the LinkInfo message is received at i from j at

time t2, node i must have already reset receivedLI[j] to true or i

would still see the link to j as outgoing and would not call

RaiseHeight() at time t2. Since i called RaiseHeight() after

receiving the LinkInfo message from j at time t2, i must have

received the LinkInfo message node j sent when it received the

token from i before time t2, by the FIFO assumption on message

delivery. Then node j must have received the token and sent it to

another node, k _= i, after which j raised its height and sent the

LinkInfo message that node i received at time t2. However, this

violates our assumption that i is the first node to call

RaiseHeight() after the last link change, a contradiction.

Case 2: The direction change at node i is due to the receipt of a

Request message from node j at time t2. By a similar argument

to case 1, any Request received from node j would be ignored at

node i as long as receivedLI[j] is false. But this means that node

j must have called RaiseHeight() after it received the token from

node i and subsequently sent the Request received by i at time

t2. Again, this violates the assumption that i is the first node to

call RaiseHeight() after the last link change, a contradiction.

Therefore, node i will not call RaiseHeight() at time t2 and the

claim is true. Therefore, by claim 1, there is only a finite number

of calls to RaiseHeight() in any execution with a finite number

of link changes. Lemma 3 follows from lemma 2, since if a node

becomes a sink, it will eventually be informed via LinkInfo

messages and will then call RaiseHeight().

Lemma 3:

Once link changes cease, the logical direction on links

imparted by height values will eventually always form a token

oriented DAG. Consider a node that is WAITING in an

execution at some point after link changes and calls to

RaiseHeight() have ceased. We first define the “request chain”

of a node to be the path along which its request has propagated.

Then we modify the variant function argument to show that the

node eventually gets to enter the CS.

Definition 4:

 Given a configuration, a request chain for any node l

with a non-empty request queue is the maximal length list of

node identifiers p1 = l,p2, . . . ,pj , where for each i, 1 < i ≤ j ,

• pi ’s queue is not empty,

• pi = nextpi−1 ,

• the link between pi−1 and pi is outgoing at pi−1 and incoming

at pi ,

• no Request message is in transit from pi−1 to pi, and

• no Token message is in transit from pi to pi−1.

Lemma 4 gives useful information about what is going on at the

end of a request chain:

Lemma 4:

The following is true in every configuration. Let l be a

node with a non-empty request queue and let p1 = l,p2, . . .

,pj be l’s request chain. Then

(a) l is in Ql iff l is WAITING,

(b) pi−1 is in Qpi , 1 < i _ j, and

(c) either

• pj is the token holder,

• or a Token message is in transit to pj ,

• or a Request message is in transit from pj to nextpj ,

• or a LinkInfo message is in transit from nextpj to pj with nextpj
higher than pj ,
• or nextpj sees the link to pj as failed.

Proof: By induction on the execution. Property (a) can easily be

shown to hold, since a node enqueues its own identifier when its

application requests access to the CS, at which point it changes

its status to WAITING. By the code, at no point will a node

dequeue its own identifier until just before it enters the CS and

sets its status to CRITICAL. Properties (b) and (c) are

vacuously true in the initial configuration, since no node has a

non-empty queue. Suppose (b) and (c) are true in the (t −1)st

configuration, Ct−1, of the execution. It is possible to show

these properties are true in the t th configuration, Ct , by

considering in turn every possibility for the tth event. Most of

the events applied to Ct−1 are easily shown to yield a

configuration Ct in which properties (b) and (c) are true. Here

we discuss the events for which the outcome is less clear by

presenting the problematic cases that can appear to disrupt a

request chain. We note that, in the following cases, non-token

holding nodes are often required to find an outgoing link due to

link reversals or failures. It is not hard to show that a node I that

is not the token holder can always find an outgoing link due to

the performance of RaiseHeight().

Case 1: Node i receives a Request(h) from node j and does not

enqueue j on its request queue. To ensure that j ’s Request is not

overlooked, causing possible starvation, we show that either a

LinkInfo or a Token message is sent to j from i if a Request from

j is received at i and j is not enqueued.

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 32

Case 1.1: receivedLI[j] is false at i. It must be that i sent the

token to j in some previous configuration and i has not yet

received the LinkInfo message that j must send to i upon receipt

of the token. If the token is not in transit from i to j or held by j

in Ct−1, then earlier j had the token and passed it on. The

Request received by i was sent before the LinkInfo message that

j must send to i upon receipt of the token. So if j is WAITING in

Ct−1, it has already sent a newer Request and properties (b) and

(c) hold for this request chain in Ct by the inductive hypothesis.

Case 1.2: receivedLI[j] is true at i. Then if j is not enqueued on

i’s request queue, it must be that myHeighti > h. Since j viewed i

as outgoing when it sent the Request, node i must have either

called RaiseHeight() after j was in Ni or the relative heights of i

and j changed between the time link (i, j) was first detected and

before j was added to Ni. In either case, node j must eventually

receive a Linkinfo message from i and see that its link to nextj

has reversed, in which case j will take action resulting in the

eventual sending of another Request.

Case 2: Node i receives an input causing it to delete identifier j

from its request queue. To ensure that j ’s Request is not

forgotten when i calls Delete(Q, j), we show that either node j

received a Token message prior to the deletion, in which case j

’s Request is satisfied, or node j is notified that the link to i

failed, in which case j will take the appropriate action to reroute

the request chain.

Case 2.1: Node i calls Delete(Q, j) because it receives a

LinkInfo message from j indicating that i’s link to j has become

outgoing at i. Then, since i enqueued j, it must be that in some

earlier configuration i saw the link to j as incoming. Since the

receipt of the LinkInfo message from j caused the link to change

from incoming to outgoing in i’s view, it must be that the

LinkInfo was sent by j when j received the token and lowered its

height. If the token is not held by j in Ct−1, then earlier j had the

token and passed it on. If j is WAITING in Ct−1, it has already

sent a newer Request and properties (b) and (c) hold for this

request chain in Ct by the inductive hypothesis.

Case 2.2: Node i calls Delete(Q, j) because it received an

indication that link (i, j) failed. Then j must receive the same

indication, in which case it can take appropriate action to

advance any request chains.

Case 3: Node i receives an input which makes it see the link to

nexti as incoming or failed. In this case, any request chains

including node i in Ct−1 end at i in Ct. We show that node i

takes the correct action to propagate these request chains by

sending either a new Request or a LinkInfo message.

Case 3.1: Node i receives a LinkInfo message from neighbor j =

nexti indicating that i’s link to j has become incoming at i. If the

link to j was i’s last outgoing link, then in Ct i will call

RaiseHeight(). Node i will delete the identifiers of any nodes on

outgoing links from its request queue. Node i will send a

LinkInfo message to each neighbor, including nodes whose

identifiers were removed from i’s request queue. If i’s request

queue is non-empty it will call ForwardRequest() and send a

Request message to the node chosen as nexti in Ct .

Case 3.2: Node i receives an indication that the link to nexti has

failed. In Ct , i will take the same actions as it did in case 3.1,

when its link to nexti reversed. Therefore, no action taken by

node i can make properties (b) and (c) false and the lemma

holds.

Lemma 5:

 Once link changes and calls to RaiseHeight() cease,

for every configuration in which a node l’s request chain does

not include the token holder, then there is a later configuration in

which l’s request chain does include the token holder.

Lemma 6:

Vl is a variant function.

Proof: The key points to prove are:
(1) Vl never has more than n entries and every entry is

between 1 and n + 1, so the range of Vl is well-founded.

(2) Most events can be easily seen not to increase Vl. Here

we discuss the remaining events.
When the Request message at the end of l’s request

chain is received by node j from node
pm, l’s request chain increases in length to m + 1, Vl

decreases from (v1, . . . ,vm, n + 1)
to (v1, . . . ,vm, v’m+1, . .), where v’m+1 < n + 1 since

v’m+1 is pm’s position in Qj after
the Request message is received. When a Token message

is received by the node pm at the
end of l’s request chain, it is either

• kept at pm, so Vl decreases from (v1, . . . ,vm−1, vm) to (v1, . .

,vm−1, vm – 1), r sent toward l, so Vl decreases from (v1, . . . ,

vm−1, vm) to (v1, . . . ,vm−1), or sent away from l, followed by

a Request message, so Vl decreases from (v1, . . . ,vm−1, vm) to

(v1, . . . ,vm−1, vm − 1,
n + 1).

(3) To see that the events that cause Vl to decrease will continue

to occur, consider the following two cases:

Case 1: The token holder is not in l’s request chain. By lemma

5, eventually the token holder will be in l’s request chain.

Case 2: The token holder is in l’s request chain. Since no node

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 33

stays in the CS forever, at some later time the token will be sent

and received, decreasing the value of Vl, by part (2) of this

proof. Once Vl equals _1_, l enters the CS. We have:

Theorem 2: If link changes cease, then every request is

eventually satisfied.

6. Simulation Results

In this section we discuss the static and dynamic

performance of the Reverse Link (RL) algorithm compared to a

mutual exclusion algorithm designed to operate on a static

network. We simulated Raymond’s token based mutual

exclusion algorithm as if it were running on top of a “routing”

layer that always provided shortest path routes between nodes.

In this section, we will refer to this simulation as “Raymond’s

with routing” (RR). Raymond’s algorithm was used because it is

the static algorithm from which the RL algorithm was adapted

and because it does not provide for link failures and recovery

and must rely on the routing layer to maintain logical paths if

run in a dynamic network. Complexity comparison of a routing

protocol is complicated by the fact that the number of messages

and amount of time needed to maintain routes can be amortized

over the number of applications using those routes. In order to

make our results more generally applicable, we made best-case

assumptions about the underlying routing protocol used with

Raymond’s algorithm: that it always provides shortest paths and

its time and message complexity is zero. If our simulation shows

that the RL algorithm is better than the RR combination in some

scenario, then the RL algorithm will also be better than

Raymond’s algorithm in that scenario when any real ad hoc

routing algorithm is used. If our simulation shows that the RL

algorithm is worse than the RR combination in some scenario,

then it might or might not be worse in an actual situation,

depending on how much worse it is in the simulation and what

are the costs of the routing algorithm. A 30 node system was

simulated under various scenarios. A 30 node system was

chosen, in part, because for networks larger than 30 nodes the

time needed for simulation was very high. Also, ad hoc

networks are generally envisioned to be much smaller scale than

wired networks like the Internet. Typical numbers of nodes used

for simulations of ad hoc networks range from 10 to 50.

In all our experiments, each CS execution took one

time unit and each message delay was one time unit. Requests

for the CS were modeled as a Poisson process with arrival rate

λreq. Thus the time delay between when a node left the CS and

made its next request to enter the CS is an exponential random

variable with mean 1/λreq time units. Link changes were

modeled as a Poisson process with arrival rate λmob. Hence, the

time delay between each change to the graph is an exponential

random variable with mean 1/λmob time units. Each change to

the graph consisted of the deletion of a link chosen at random

(whose loss did not disconnect the graph) and the formation of a

link chosen at random.

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org

Page 34

7. Conclusion and Discussion

We presented a distributed mutual exclusion algorithm

for mobile adhoc networks, to adapt the node mobility, and the

results showing the performance of this algorithm to that of a

static token based mutual exclusion algorithm running on top of

an ideal ad hoc routing protocol. Here, the assumptions are no

partitions in the network throughout this paper; if partitions

occur, can be handled in adhoc routing protocol.
Our algorithm which uses the adhoc routing protocol

generally provides better average waiting time per CS entry. Our

results shows that the message complexity per CS would not be

greater than the message complexity for nodes in static mobility

when running in the top of the adhoc routing algorithm.

References

1. topology, IEEE Transactions on Communications C-

29(1) (1981) 11–18.

2. D.M. Dhamdhere and S.S. Kulkarni, A token based k-

resilient mutual exclusion algorithm for distributed

systems, Information Processing Letters 50 (1994)

151–157.

3. R.Karthikeyan,”A Survey on Sensor Networks” in the

International Journal for Research & Development in

Technology Volume 7, Issue 1, Jan 2017, Page No:71-

77.

4. R.Karthikeyan, & et all “Web Based Honeypots

Network”,in the International journal for Research &

Development in Technology.Volume 7.Issue 2 ,Jan

2017,Page No.:67-73 ISSN:2349-3585.

5. R.Karthikeyan, & et all,“A Simple Transmit Diversity

Technique for Wireless Communication”,in the

International journal for Engineering and Techniques.

Volume 3. Issue 1, Feb 2017, Page No.:56-61

ISSN:2395-1303.

6. R.Karthikeyan, & et all “Strategy of Trible – E on

Solving Trojan Defense in Cyber Crime Cases”,

International journal for Research & Development in

Technology.Volume 7.Issue 1 ,Jan 2017,Page No.:167-

171.

7. D.B. Johnson and D.A.Maltz, Dynamic source routing

in ad hoc wireless networks, in: Mobile Computing,

eds. T. Imielinski and H. Korth (Kluwer Academic,

1996) pp. 153–181.

8. Karthikeyan, & et all”Advanced Honey Pot

Architecture for Network Threats Quantification” in the

international journal of Engineering and Techniques,

Volume 3 Issue 2, March 2017, ISSN:2395-1303, PP

No.:92-96.

9. R.Karthikeyan, & et all ”Estimating Driving Behavior

by a smart phone” in the international journal of

Engineering and Techniques, Volume 3 Issue 2, March
2017, ISSN:2395-1303,PP No.:84-91.

10. R.Karthikeyan, & et all ”SAMI: Service- Based

Arbitrated Multi-Tier Infrastructure for Cloud

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 35

Computing” in the international journal for Research &

Development in Technology, Volume 7 Issue 2, Jan

2017,ISSN(0):2349-3585, Pg.no:98-102

11. R.Karthikeyan, & et all ”FLIP-OFDM for Optical

Wireless Communications” in the international journal

of Engineering and Techniques, Volume 3 Issue 1, Jan

- Feb 2017, ISSN:2395-1303,PP No.:115-120.

12. R.Karthikeyan, & et all ”Application Optimization in

Mobile Cloud Computing” in the international journal

of Engineering and Techniques, Volume 3 Issue 1, Jan

- Feb 2017, ISSN:2395-1303,PP No.:121-125.

13. R.Karthikeyan, & et all ”The Sybil Attack” in the

international journal of Engineering and Techniques,

Volume 3 Issue 3, May - Jun 2017, ISSN:2395-

1303,PP No.:121-125.

14. R.Karthikeyan, & et all ”Securing WMN Using Hybrid

Honeypot System” in the international journal of

Engineering and Techniques, Volume 3 Issue 3, May -

Jun 2017, ISSN:2395-1303,PP No.:121-125.

15. R.Karthikeyan, & et all ”Automated Predictive big

data analytics using Ontology based Semantics” in the

international journal of Engineering and Techniques,

Volume 3 Issue 3, May – Jun 2017, ISSN:2395-

1303,PP No.:77-81.

16. R.Karthikeyan, & et all ”A Survey of logical Models

for OLAP databases” in the international journal of

Engineering and Techniques, Volume 3 Issue 3, May -

Jun 2017, ISSN:2395-1303,PP No.:171-181.

17. R.Karthikeyan, & et all ”A Client Solution for
Mitigating Cross Site Scripting Attacks” in the

international journal of Engineering Science &

Computing, Volume7,Issue6, June 2017,

ISSN(0):2361-3361,PP No.:13063-13067.

18. I. Keidar and D. Dolev, Efficient message ordering

in dynamic networks, in: Proc. of 15th Annual

Symp. on Prin. of Dist. Computing (1996) pp. 68–

76.

19. Y.B. Ko and V.H. Vaidya, Location-aided routing

(LAR) in mobile ad hoc networks, in: Proc. of 4th

ACM/IEEE Intl. Conf. on Mobile Computing and

Networking (1998) pp. 66–75.

20. R.Karthikeyan, & et all ”A Condensation Based

Approach to Privacy Preserving Data Mining” in the

international journal of Engineering Science &

Computing, Volume7,Issue6, June 2017,

ISSN(0):2361-3361,PP No.:13185-13189.

21. R.Karthikeyan, & et all ”Biometric for Mobile

Security” in the international journal of Engineering

Science & Computing, Volume7,Issue6, June 2017,

ISSN(0):2361-3361,PP No.:13552-13555.

22. R.Karthikeyan, & et all ”Data Mining on Parallel

Database Systems” in the international journal of

Engineering Science & Computing, Volume7,Issue7,

July 2017, ISSN(0):2361-3361,PP No.:13922-13927.

23. R.Karthikeyan, & et all ”Ant Colony System for Graph

Coloring Problem” in the international journal of

Engineering Science & Computing, Volume7,Issue7,

July 2017, ISSN(0):2361-3361,PP No.:14120-14125.

24. R.Karthikeyan, & et all ”Classification of Peer –To-

Peer Architectures and Applications” in the

international journal of Engineering Science &

Computing, Volume7,Issue8, Aug 2017,

ISSN(0):2361-3361,PP No.:14394-14397.

25. R.Karthikeyan, & et all ”Mobile Banking Services” in

the international journal of Engineering Science &

Computing, Volume7,Issue7, July 2017,

ISSN(0):2361-3361,PP No.:14357-14361.

26. P. Krishna, N.H. Vaidya, M. Chatterjee and D.K.

Pradhan, A clusterbased approach for routing in

dynamic networks, in: Proc. of ACM SIGCOMM

Computer Communication .

27. R.Karthikeyan, & et all ”Neural Networks for Shortest

Path Computation and Routing in Computer Networks”

in the international journal of Engineering and

Techniques, Volume 3 Issue 4, Aug 2017, ISSN:2395-

1303,PP No.:86-91.

28. R.Karthikeyan, & et all ”An Sight into Virtual

Techniques Private Networks & IP Tunneling” in the

international journal of Engineering and Techniques,

Volume 3 Issue 4, Aug 2017, ISSN:2395-1303,PP

No.:129-133.

 International Journal of Engineering and Techniques - Volume 4 Issue 2, Mar – Apr 2018

ISSN: 2395-1303 http://www.ijetjournal.org Page 36

29. R.Karthikeyan, & et all “Routing Approaches in

Mobile Ad-hoc Networks” in the International Journal

of Research in Engineering Technology, Volume 2

Issue 5, Aug 2017, ISSN:2455-1341, Pg No.:1-7.

30. M.L. Neilsen and M. Mizuno, A DAG-based

algorithm for distributed mutual exclusion, in: Proc.

of Intl. Conf. on Dist. Comp. Systems (1991) pp. 354–

360.

