A randomized comparative study on brachial plexus block using nerve stimulator: infraclavicular - coracoid approach vs supraclavicular approach

A.Niranjan Kumar1,*, NV. Madhava Krishna2, V.J. Karthik3, S. Mahalakshmi4

1,2,3,4Assistant Professor, Dept. of Anaesthesiology, Stanley Medical College, Chennai

*Corresponding Author:
Email: dr.a.niranjankumar@gmail.com

Abstract
Introduction: Pain relief with peripheral nerve block (PNB) is devoid of side effects such as somnolence, nausea, vomiting, hemodynamic instability and voiding difficulties inherent to general and central neuraxial anesthesia.
Aim: To compare the clinical efficacy of infraclavicular and supraclavicular approach of brachial plexus block by using peripheral nerve stimulator.
Materials & Methods: Sixty patients of ASA grade I and II undergoing upper limb surgeries were randomly assigned into two groups, Group I and Group S
 group I: received infraclavicular block by coracoid approach,
 group S: received Supraclavicular block.
Surgeries below the level of elbow were selected for this study.
Parameters observed were – block performance time, sensory and motor blockade, and its quality, duration of post op analgesia, and block related complications.
Results: Time to perform block, onset of both motor and sensory blockade, duration of post op analgesia were not different in group I and Group S. Success rate of blocking four nerves to the elbow (musculocutaneous, ulnar, radial, median,) was comparable between the groups. The incidence of complications in the form of vascular puncture was not significant in both group I and Group S.
Conclusion: From our study it is inferred that nerve locator guided Infraclavicular block of brachial plexus by coracoid approach is at least as rapidly executed as nerve locator guided Supraclavicular approach and produces a similar degree of surgical anaesthesia with similar complication rates.

Introduction
Many approaches can be used for brachial plexus block; axillary, supraclavicular and infraclavicular approaches. They were commonly performed by blind techniques or neurostimulation or using ultrasound guidance. supraclavicular block is fast and the blockade is deep as the nerves are very tightly packed but pneumothorax can occur due to the proximity of the pleura. Pneumothorax can be avoided by ultrasonic visualization of the pleura and by proper technique. Infra clavicular brachial plexus block was first described by Bazy in the early 20th century and was even included in LABAT’s text book: regional anesthesia in 1922.1 In 1998 WILSON et al2 described infraclavicular coracoid technique –In the past few years infraclavicular block has become a method of increased interest. This block targets the musculocutaneous and axillary nerves at the level of the cords before these nerves leave the brachial plexus “sheath”. This block carries no risk of accidental intrathecal, epidural, intravertebral injection, stellate ganglion block or paralysis of hemi diaphragm. Peripheral nerve stimulator technology utilizes objective end points for nerve localization and does not depend on patient’s subjective feeling for effective nerve localization when used along with ultrasound it increases block success rate.

In our study we compared the clinical efficacy of infraclavicular and supraclavicular approach of brachial plexus block by using peripheral nerve stimulator alone.

Aim of the Study
To compare the ease of technique & efficacy of block between supraclavicular and infraclavicular approaches for brachial plexus block using nerve locator.

Materials and Methods
This is a prospective randomized study conducted at Government Stanley Hospital, attached to Stanley Medical College, Chennai. Sixty patients of ASA grade I or II of either sex undergoing surgery on the elbow, forearm or hand (mostly orthopedic plastic surgeries) were randomly allocated into two equal groups. Randomization techniques: computer generated random numbers
Blinding not done as the two different procedures are used and all the cases were done by the investigator.
 group I- Surgery was done under Infraclavicular-coracoid approach
 group S- Surgery was done under Supraclavicular – subclavian perivascular approach

Procedure
After ethical committee approval informed consent was obtained from the patients. Intravenous access was
obtained. Anaesthesia machine checked resuscitative
equipment’s and drugs were kept ready.

Inclusion criteria:
- Age 18 - 60 yrs
- Both sex
- PS I & II undergoing surgery for both elective/emergency
- Hand, wrist, Fore arm and elbow

Exclusion criteria
- Infection at the puncture site
- Coagulopathy
- Allergy to amide local anaesthetics
- Pregnancy
- Severe pulmonary pathology
- Mental incapacity or language barrier
- BMI more than 35
- Anatomical variations
- Standard monitoring was applied, an IV line was secured and sedation (midazolam 1-2mg iv) and analgesia (fentanyl 50-100mic iv) were given.(The dose titrated depending on the patient’s age, weight and degree of anxiety.

Technique

Infraclavicular Block: The block was performed with
the patient lying in supine position with his head turned
in the direction opposite the limb to be anesthetized.
The arm abducted to 110°. We identified by palpation
the coracoid process and marked, with the help of a ruler,
the point of entry of the needle – 2cm caudad and
2cm medial to the coracoid process, as previously
described by Wilson et al.[10] Using a sterile technique,
a 100mm 22 gauge insulated short bevel stimulating
needle was inserted perpendicular to the skin and
connected to a nerve stimulator that was programmed
with the following variables: current 2.0mA and
frequency 2HZ.In the absence of an upper extremity
motor response, the needle was redirected either
ephalad or caudal but never medially to avoid the
pleura. In the presence of an upper extremity motor
response, the intensity of the current was then
progressively reduced to 0.5mA and 0.5 ml/ kg of LA
mixture containing 0.25% bupivacaine and 1%
Lignocaine with 5µg/ml of adrenaline is injected (not
exceeding 30 ml) after a negative aspiration for blood.

Goal: Is to achieve a hand twitch (preferably flexion of
finger and thumb) using a current of 0.2-0.3mA.

Parameters Observed
1. **Time to perform block**- from the time of skin
 disinfection to the end of injection. If adequate
 response was not obtained within 20 minutes the
 procedure was taken as a failure with performance
time of 20 minutes.
2. **Successful block**- defined as a blockade in the four
erve territories to the elbow (musculocutaneous, median,
ulnar and radial). If a nerve territory was spared a
rescue block was administered. If the patient still
experiences pain or discomfort general anaesthesia
was administered.
3. **Onset of sensory block** - Onset of sensory block
 was taken as abolition of temperature sensation
 using ice over the distribution of musculocutaneous, radial,
ulnar and median nerves compared to the contralateral side was assessed
every minute after the performance of the block.
 Surgery was allowed after all the four nerves were
 completely blocked.
4. **Onset of motor blockade** - Onset of motor
 blockade was assessed every 2 minute after the
 block using four point scale
 Normal power, weakness but able to move arm, not
 able to move arm but the fingers & complete motor
 Blockade.
 Attaining a score of 2 was considered as the onset
 of motor Block
5. **Duration of motor Blockade** - When (3) in the
 four point scale changes to (2) the motor blockade
 is said to be reversed. The duration of motor block
 is noted from the time from scale (3) to scale (2).
6. **Post op analgesia** - The time interval between the
 onset of sensory block to the first requirement of
 post op analgesia was recorded in every patient.
 The patient was observed every 30 minutes after
 the surgery is over till the motor block reverses and
 thereafter hourly for 6 hrs; second hourly for next 6 hrs
 and then at 24 hours.
7. **Vital parameters:** Pulse rate, Blood pressure,
oxygen saturation & ECG
8. **Complications:** Pneumothorax, Accidental vessel
 puncture, Haematoma & Paraesthesia in the post-
 operative period.
Observation and Results
Statistical Tools: The information collected regarding all the selected cases were recorded in a Master Chart. Data analysis was done with the help of computer using SPSS software. Data was expressed as mean +/- Standard deviation. Quantitative Analysis was compared with Student’s ‘t’ test and the Fisher’s exact test for 2 x 2 contingency tables were used. A ‘p’ value < 0.05 was considered significant.

There was no statistically significant difference among the two groups with respect to the age, sex and weight.

Time to Perform Block: Time to perform block in Group S 4.61± 0.959, and in Group-I 3.9±1.028. The ‘p’ value was not significant.

Time of onset of Motor Block: Time of onset of motor block in Group_S 5.33min ±1.093 and in Group-I, 5.53min ±1.907 min. P value insignificant.

Time for onset of sensory block: Time for onset of sensory block in Group_S 08.2 min± 0.846, and in group-I, 8.03min± 2.189. P value insignificant.

Post-Operative Analgesia time: Total duration of post-operative analgesia in Group-S, 11.42± 1.42hrs, and in Group-I 10.93± 2.31 hrs. P value insignificant.

Successful Block: Successful block, that is involvement of four terminal nerves: In Group-S, 3 out of four nerves were blocked in 1 patient (3-3 %) and all four nerves were blocked in 29 patients (96.7 %). In group I 3 out of four nerves were blocked in 3 patients (10 %) and all four nerves were blocked in 27 patients (90 %). Applying Chi square tests, it was found to be statistically insignificant. The ‘p’ value of 0.554 was statistically insignificant.

Complications: The number of vessel punctures in Group S was 2 (6.7%). There were no vessel punctures in Group I. Applying Chi square tests, the ‘p’ value was 0.150 which is statistically insignificant. No other complication was recorded in both the group S and group I. P value insignificant.

Discussion
Time to perform block: Time to perform block in Group-S 4.61min± 0.959, and in Group-I 3.9min± 1.028, with a p value of 0.04393, which is not significant. Results were comparable with the study done by Genevieve Arcand, Stephen Williams, et al they showed that Performance times were significantly shorter in the last 20 patients than in the first 20 patients of Group I (5.65 min versus 2.35 min; P = 0.001), whereas in Group S a similar trend towards shorter performance times was not quite significant (5.65 min versus 3.65 min; P = 0.06). Group I performance times also became shorter than those in Group S (P = 0.03). Block quality also improved in Group I as the study progressed. Sandhu and Chan(32) have surmised that approximately 20 blocks are needed to achieve a high degree of proficiency with USG techniques.

Successful block: In Group-S, 3 out of four nerves were blocked in 1 patient (3-3%) and all four nerves were blocked in 29 patients (96.7 %). In group I 3 out of four nerves were blocked in 3 patients (10%) and all four nerves were blocked in 27 patients (90 %). No patient in either group underwent general anaesthesia. Applying Chi square tests, it was found to be statistically insignificant.('p’ vaule 0.554)- similar to study of Genevieve Arcand, Stephen Williams, et al in their study they observed Radial block quality was significantly worse in Group I compared with Group S for the first 20 patients (0.77 versus 0.99, respectively; P_ 0.02) but was not significantly different in any territory for the last 20 patients. Ootaki et al(31) used USG infraclavicular block, in which the anesthetic was placed using 2 injection sites to completely surround the axillary artery, achieved surgical blocks in 95% of patients and complete sensory block of the radial territory in 95% of patients.

The increased incidence of sparing can be explained by the fact that although the cords of the brachial plexus are compactly arranged around the axillary artery, the posterior cord is deeper from the point of needle entry which may explain the sparing of the radial nerve in the infraclavicular group.

The onset of motor and sensory blockade and duration of motor and sensory blockade was comparable and no significant difference among the two groups. These results were similar to the study done by Genevieve Arcand, Stephen Williams, et al.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Group S</th>
<th>Group I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Less than 20 years</td>
<td>7</td>
<td>23.3</td>
</tr>
<tr>
<td>21-30 years</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>31-40 years</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>40 and above years</td>
<td>11</td>
<td>36.7</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>Group S</th>
<th>Group I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Mean</td>
<td>18-60 years</td>
<td>18-60 years</td>
</tr>
<tr>
<td>S.D.</td>
<td>29.8 years</td>
<td>34.9 years</td>
</tr>
<tr>
<td>12.41 years</td>
<td>12.48 year</td>
<td></td>
</tr>
</tbody>
</table>

| ‘p’ | 0.117992 | Not significant |

<table>
<thead>
<tr>
<th>Sex</th>
<th>Group S</th>
<th>Group I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Males</td>
<td>24</td>
<td>80</td>
</tr>
<tr>
<td>Females</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

Chi square value | 0.800 | Not significant |
| ‘p’ | 0.371 | not significant |
A randomized comparative study on brachial plexus block using nerve stimulator

<table>
<thead>
<tr>
<th>Weight (in kgs)</th>
<th>Group S</th>
<th>Group I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>40-70</td>
<td>30-70</td>
</tr>
<tr>
<td>Mean</td>
<td>54.96</td>
<td>55.46</td>
</tr>
<tr>
<td>S.D.</td>
<td>6.69</td>
<td>10.39</td>
</tr>
</tbody>
</table>

| ‘p’ | 0.825001 |
| | Not significant |

<table>
<thead>
<tr>
<th>Time to perform block (in minutes)</th>
<th>Group S</th>
<th>Group I</th>
<th>t-value</th>
<th>‘p’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.1±0.959 (3-6)</td>
<td>3.9±1.028 (3-7)</td>
<td>0.4393</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time for onset of motor block (in minutes)</th>
<th>Group S</th>
<th>Group I</th>
<th>t-value</th>
<th>‘p’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.33±1.093 (4-8)</td>
<td>5.5±1.907 (3-10)</td>
<td>0.6201</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time for onset of sensory block (in minutes)</th>
<th>Group S</th>
<th>Group I</th>
<th>t-value</th>
<th>‘p’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.2±0.846 (7-10)</td>
<td>8.03±2.189 (5-15)</td>
<td>0.6987</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of motor block (in minutes)</th>
<th>Group S</th>
<th>Group I</th>
<th>t-value</th>
<th>‘p’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130.66±11.79 (100-150)</td>
<td>130.83±21.21 (90-180)</td>
<td>0.970133</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of Post op analgesia (in hours)</th>
<th>Group S</th>
<th>Group I</th>
<th>t-value</th>
<th>‘p’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.1±1.42 (10-15)</td>
<td>10.93±2.31 (9-20)</td>
<td>0.738380</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complications</th>
<th>Group S</th>
<th>Group I</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel puncture</td>
<td>2</td>
<td>0</td>
<td>6.7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No complications</td>
<td>30</td>
<td>30</td>
<td>93.3</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi square value</td>
<td>2.069</td>
<td>Not significant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘p’ value</td>
<td>0.150</td>
<td>Not significant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of nerves</th>
<th>Group S</th>
<th>Group I</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3.3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>27</td>
<td>96.7</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi square value</td>
<td>0.353</td>
<td>Not significant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘p’</td>
<td>0.554</td>
<td>Not significant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

From our study it is inferred that nerve locator guided Infraclavicular block of brachial plexus by
coracoid approach is at least as rapidly executed as nerve locator guided Supraclavicular approach and produces a similar degree of surgical anaesthesia with similar complication rates.

Acknowledgement
All authors affirm that they have no financial affiliation or involvement with any commercial organization with direct financial interest in the subject or materials discussed in this manuscript, nor have any such arrangements existed in the past 3 years.

Conflicts of Interest
The authors deny any conflicts of interest related to this study.

References