A NOTE OF NEIGHBOR-TOUGHNESS OF GRAPHS

Zongtian Wei and Yinkui Li

Abstract. In this note, we point out some mistakes in Kürkçü and Aksan (2016, [2]). We also give the correct definition of neighbor-toughness. Finally, some examples, comments and generalized results related to the computation of the parameter are presented.

1. Introduction

Let \(G = (V, E) \) be a graph and \(u \in V(G) \). We call \(N(u) = \{v \in V(G) | u \neq v, u \) and \(v \) are adjacent\} the open neighborhood of \(u \), and \(N[u] = N(u) \cup \{u\} \) the closed neighborhood of \(u \). A vertex \(u \) of \(G \) is said to be subverted if its closed neighborhood \(N[u] \) is deleted from \(G \). A set of vertices \(S \subseteq V(G) \) is called a vertex subversion strategy of \(G \) if each of the vertices in \(S \) is subverted from \(G \). By \(G/S \) we denote the survival subgraph that remains after each vertex of \(S \) is subverted from \(G \). A vertex set \(S \) is called a cut strategy of \(G \) if the survival subgraph \(G/S \) is disconnected, or is a clique, or is empty.

Kürkçü and Aksan [2] claim that they introduce a new vulnerability parameter, neighbor-toughness. The parameter is defined as

\[NT(G) = \min \{\frac{|S|}{\omega(G/S)} : \omega(G/S) \geq 1\}, \]

where \(S \) is any vertex subversion strategy of \(G \) and \(\omega(G/S) \) is the number of connected components in the graph \(G/S \). By two examples, the authors assert that the neighbor-toughness is a better parameter than the neighbor scattering.
number. This parameter, mentioned above is defined as \[VNS(G) = \max_{S \subseteq V(G)} \{\omega(G/S) - |S|\}, \]
where the maximum is taken over all \(S \), the cut-strategy of \(G \), and \(\omega(G/S) \) is the number of components of \(G/S \).

We have sufficient reason to show that the above definition and statement in [2] are not proper. To the best of our knowledge, the concept of neighbor-toughness appeared firstly in [4]. In the next section, we will discuss and revise these items.

2. Main result

In 2013, Wei et al. [4] introduced the concept neighbor-toughness (for connected, non-complete graphs) as

\[t_{VN}(G) = \min \left\{ \frac{|S|}{\omega(G/S)} \right\}, \]

where \(S \) is any cut strategy of \(G \) and \(\omega(G/S) \) is the number of components in \(G/S \). A set \(S^* \subseteq V(G) \) is called a \(t_{VN}\)-set of \(G \) if

\[t_{VN}(G) = \frac{|S^*|}{\omega(G/S^*)}. \]

For the complete graph, subverting any one vertex will betray the entire graph, its neighbor-toughness is defined to be 0.

The mistake of the definition in [2] is that \(S \) should be a cut strategy instead of a vertex subversion strategy.

For example, consider the graph \(C_6 \) in Figure 1. By the definition in [2], \(\{u\} \) is a \(t_{VN}\)-set of \(C_6 \), since \(\frac{|\{u\}|}{\omega(G/\{u\})} = 1 < 2 = \frac{|\{u,v\}|}{\omega(G/\{u,v\})} \). But in [2], the authors show that \(t_{VN}(C_6) = 2 \), a contradiction. In fact, \(\{u\} \) is not a \(t_{VN}\)-set of \(C_6 \), because \(C_6/\{u\} \) is \(P_3 \), a connected graph. Obviously, \(\{u,v\} \) is a \(t_{VN}\)-set(cut strategy) of \(C_6 \) and \(t_{VN}(C_6) = 2 \).

On the other hand, consider the Petersen graph \(P(5, 2) \). Although \(\frac{|\{x\}|}{\omega(P(5, 2)/\{x\})} = 1 \), \(\{x\} \) is not a \(t_{VN}\)-set of \(P(5, 2) \), since \(P(5, 2)/\{x\} \) is \(C_6 \), a connected graph. By the definition of neighbor-toughness in [4], \(\{x, y\} \) is a real \(t_{VN}\)-set(cut strategy) of \(P(5, 2) \).

It can be concluded from the above discussion and [1, 6] that the definition of neighbor-toughness in [2] is wrong, and the definition in [4] is correct.
As two new graph parameters, neighbor-toughness and neighbor scattering number can be used to measure the invulnerability of spy networks. Undoubtedly, although formally related, they are independent. Which is a better parameter? It cannot be said simply by special examples. In fact, contrary to the author’s examples (see [2], $VNS(G_1) = VNS(G_2) = 1$, but $NT(G_1) = \frac{1}{4}$, $NT(G_2) = \frac{1}{2}$), there are more examples to show that neighbor scattering number is “better” than neighbor-toughness. Both of the following two graphs are with order 12, and they have equal connectivity and neighbor connectivity 1, as well as equal neighbor-toughness $\frac{1}{2}$, but $VNS(G_1) = 1$, $VNS(G_2) = 2$.

![Graphs G1 and G2](image)

At last, we generalize a result about the neighbor-toughness of bipartite graphs given in [2]. For a bipartite graph $K_{m,n}$, Kürkçü and Aksan prove that

$$t_{VN}(K_{m,n}) = \begin{cases} \frac{1}{m-1}, & \text{if } n < m; \\ \frac{1}{n-1}, & \text{if } n \geq m. \end{cases}$$

We show that the above formula is a corollary of the following theorem 2.1 (it is obvious, so we omit the proof).

Theorem 2.1. Let K_{n_1,n_2,\ldots,n_k} be a complete k-partite graph, where $n_1 + n_2 + \cdots + n_k \geq k + 1$. Then

$$t_{VN}(K_{n_1,n_2,\ldots,n_k}) = \frac{1}{\max\{n_1-1,n_2-1,\ldots,n_k-1\}}.$$

A comet, denoted by $C_{n,k}$, is a graph by coincide an end point of path P_{n-k} with the center point of a star $S_{1,k}$, where $1 \leq k \leq n - 2$ and $n \geq 4$. The order of comet $C_{n,k}$ is n.

Theorem 2.2. Let $C_{n,k}$ be a comet with order $n(\geq 5)$ and $k \leq n - 2$. Then

$$t_{VN}(C_{n,k}) = \begin{cases} \frac{1}{k+1}, & \text{if } k \leq n - 4; \\ \frac{1}{k^2}, & \text{if } k = n - 2 \text{ or } n - 3. \end{cases}$$

Proof. It is easy to know that the vertex in P_{n-k} which is adjacent to the center of star $S_{1,k}$ is a t_{VN}-set of $C_{n,k}$. When $n \geq 5$ and $k \leq n - 4$, $n - k \geq 4$, the survival subgraph is a path P_{n-k-3} with k isolated vertex; when $k = n - 2$ or $n - 3$, the survival subgraph is k isolated vertex, the conclusion holds. □

It is more meaningful to consider the neighbor-toughness computation of general graphs such as trees, Cartesian Product or composition of paths, cycles [1]. This is the work we are doing.
References

Received by editors 23.02.2018; Revised version 02.03.2018; Available online 12.03.2018.

ZONGTIAN WEI: SCHOOL OF MATHEMATICS, XI’AN UNIVERSITY OF ARCHITECTURE AND TECHNOLOGY, XI’AN, 710055, CHINA

E-mail address: ztwei@xauat.edu.cn

YINKUI LI: SCHOOL OF MATHEMATICS AND STATISTICS, QINGHAI NATIONALITIES UNIVERSITY, XING, 810000, CHINA

E-mail address: 1yk6538163.com