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Abstract 

This paper presents a new optimization algorithm called Adaptive Charged System Search 

Algorithm (ACA) for solving optimal power problem. Coulomb law from electrostatics and the 

Newtonian laws of mechanics are forming the basics of the proposed algorithm. Adaptive 

Charged System Search Algorithm (ACA) is a multi-agent approach in which each agent is a 

Charged Particle (CP) & they affect each other based on their fitness values, separation of 

distances. The quantity of the resultant force is determined by using the electrostatics laws and 

the quality of the movement is determined using Newtonian mechanics laws. Proposed Adaptive 

Charged System Search Algorithm (ACA) has been tested in Standard IEEE 57,118 bus systems 

& real power loss has been comparatively reduced with voltage profiles are within the limits. 
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1. Introduction 
 

Optimal reactive power problem plays most important role in the stability of power system 

operation and control. In this paper the main aspect is to diminish the real power loss and to keep 

the voltage variables within the limits. Previously many mathematical techniques like gradient 

method, Newton method, linear programming [4-7] has been utilized to solve the optimal 

reactive power dispatch problem and those methods have many difficulties in handling inequality 

constraints. Voltage stability and voltage collapse play an imperative role in power system 

planning and operation [8].  Recently Evolutionary algorithms like genetic algorithm have been 

already utilized to solve the reactive power  flow problem [9,10].In [11-20] Genetic algorithm, 

Hybrid differential evolution algorithm, Biogeography Based algorithm, fuzzy based 

methodology, improved evolutionary programming has been used to solve   optimal reactive 

power flow problem and all the algorithm successfully handled the reactive power problem. The 

Artificial Bee Colony (ABC) algorithm was introduced by Karaboga [21] as a technical report, 
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and then its performance was measured using benchmark optimization functions [22-33]. This 

paper presents a new optimization algorithm called Adaptive Charged System Search Algorithm 

(ACA) for solving optimal power problem. Coulomb law from electrostatics and the Newtonian 

laws of mechanics are forming the basics of the proposed algorithm. Adaptive Charged System 

Search Algorithm (ACA) is a multi-agent approach in which each agent is a Charged Particle 

(CP) [34-37] & they affect each other based on their fitness values, separation of distances. The 

quantity of the resultant force is determined by using the electrostatics laws and the quality of the 

movement is determined using Newtonian mechanics laws. Proposed Adaptive Charged System 

Search Algorithm (ACA) has been tested in Standard IEEE 57,118 bus systems & real power 

loss has been comparatively reduced with voltage profiles are within the limits. 
  

2. Objective Function 

 
2.1. Active Power Loss 

  

The objective of the reactive power dispatch problem is to minimize the active power loss and 

can be defined in equations as follows: 

F = PL = ∑ gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij)                                                                             (1) 

 

Where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of 

transmission lines in power systems.  

 
2.2. Voltage Profile Improvement 

  

To minimize the voltage deviation in PQ buses, the objective function can be written as: 

F = PL + ωv × VD                                                                                                                        (2) 

 
Whereωv: is a weighting factor of voltage deviation. 

 

VD is the voltage deviation given by: 

VD = ∑ |Vi − 1|Npq
i=1                                                                                                                        (3) 

 
2.3. Equality Constraint  

  

The equality constraint of the problem is indicated by the power balance equation as follows: 

PG = PD + PL                                                                                                                                 (4) 

 
Where the total power generation PG has to cover the total power demand PD and the power 

losses PL. 

 
2.4. Inequality Constraints 

 

The inequality constraint implies the limits on components in the power system in addition to the 

limits created to make sure system security. Upper and lower bounds on the active power of 

slack bus, and reactive power of generators are written as follows: 

Pgslack
min ≤ Pgslack ≤ Pgslack

max                                                                                                              (5) 
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Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng                                                                                                          (6) 

 

Upper and lower bounds on the bus voltage magnitudes:          

Vi
min ≤ Vi ≤ Vi

max , i ∈ N                                                                                                              (7) 

 

Upper and lower bounds on the transformers tap ratios: 

Ti
min ≤ Ti ≤ Ti

max , i ∈ NT                                                                                                            (8) 

 

Upper and lower bounds on the compensators  

Qc
min ≤ Qc ≤ QC

max , i ∈ NC                                                                                                           (9) 

 

Where N is the total number of buses, NT is the total number of Transformers; Nc is the total 

number of shunt reactive compensators. 

 

3. Adaptive Charged System Search Algorithm (ACA) 

 
In this section, a new efficient optimization algorithm is established utilizing the aforementioned 

physics laws, which is called Adaptive Charged System Search Algorithm (ACA). In the 

Adaptive Charged System Search Algorithm (ACA), each solution candidate X i containing a 

number of decision variables i.e ( Xi = {xi,j} ) is considered as a charged particle [34-37]. The 

charged particle is affected by the electrical fields of the other agents. The quantity of the 

resultant force is determined by using the electrostatics laws and the quality of the movement is 

determined using the Newtonian mechanics laws. It seems that an agent with good results must 

exert a stronger force than the bad ones, so the amount of the charge will be defined considering 

the objective function value, fit (i). In order to introduce ACA, the following rules are developed: 

Rule 1 Many of the natural evolution algorithms maintain a population of solutions which are 

evolved through random alterations and selection. Similarly, ACA considers a number of 

Charged Particles (CP). Each CP has a magnitude of charge (qi) and as a result creates an 

electrical field around its space. The magnitude of the charge is defined considering the quality 

of its solution, as follows: 

 

qi = 
fit (i)−fitworst

fitbest−fitworst
, i = 1,2, … , N,                                                                                              (10) 

 

where, fitbest and fitworst are the so far best and the worst fitness of all particles; fit (i) 

represents the objective function value or the fitness of the agent i; and N is the total number of 

CPs. The separation distance rij between two charged particles is defined as follows: 

rij =  
‖Xi−Xj‖

‖
(Xi+Xj)

2
−Xbest‖+ε

,                                                                                                                 (11) 

 
Where Xi and Xj are the positions of the i th and j th CPs, Xbest is the position of the best 

current CP, and ε is a small positive number to avoid singularities. 

 

Rule 2 the initial positions of CPs are determined randomly in the search space 

xi,j
(0)

=  xi,min + rand ∙ (xi,max − xi,min), i = 1,2, . . , n    (12) 
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where xi,j
(0)

 determines the initial value of the i th variable for the j th CP; xi,min andxi,max are the 

minimum and the maximum allowable values for the i th variable; rand is a random number in 

the interval [0,1]; and n is the number of variables. The initial velocities of charged particles are 

zero 

vi,j
(0)

= 0 , i = 1,2, . . , n.                                                                                                                (13) 

 

Rule 3 Three conditions could be considered related to the kind of the attractive forces: Any CP 

can affect another one; i.e., a bad CP can affect a good one and vice versa (pij = 1). A CP can 

attract another if its electric charge amount (fitness with revise relation in minimizing problems) 

is better than other. In other words, a good CP attracts a bad CP:  

pij =  {
1         fit(j) > 𝑓𝑖𝑡(i),

0   else                            
                                                                                                     (14) 

 

All good CPs can attract bad CPs and only some of bad agents attract good agents, considering 

following probability function: 

pij = {
1 

fit(i)−fitbest

fit(j)−fit(i)
 > rand˅fit(j) > fit(i)

0 else                                                                       
                                                                 (15) 

           

According to the above conditions, when a good agent attracts a bad one, the exploitation ability 

for the algorithm is provided, and vice versa if a bad CP attracts a good CP, the exploration is 

provided. When a CP moves toward a good agent it improves its performance, and so the self-

adaptation principle is guaranteed. Moving a good CP toward a bad one may cause losing the 

previous good solution or at least increasing the computational cost to find a good solution. To 

resolve this problem, a memory which saves the best-so-far solution can be considered. 

Therefore, it seems that the third kind of the above conditions is the best rule because of 

providing strong exploration ability and an efficient exploitation. 

 

 

Figure 1: Determination of the resultant electrical force acting on a CP 
 

Rule 4 the value of the resultant electrical force acting on a CP is 

 

Fj = qj ∑ (
qi

a3 rij ∙ i1 +
qi

rij
2 ∙ i2)i,i≠j pij(Xi − Xj), {

j = 1,2, . . , N                   
i1 = 1, i2 = 0⬄rij < 𝑎

i1 = 0, i2 = 1⬄rij ≥ a
                                   (16) 
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Where Fj is the resultant force acting on the j th CP, as illustrated in Fig. 1. 

 

In this algorithm, each CP is considered as a charged sphere with radius a, which has a uniform 

volume charge density. In this paper, the magnitude of set to unity; however, for more complex 

examples, the appropriate value for a must be defined considering the size of the search space. 

One can utilize the following equation as a general formula: 

 

a=0.10 X max({xi,max − xi,min| i = 1,2, . . , n}).                                                                          (17) 

 

According to this rule, in the first iteration where the agents are far from each other the 

magnitude of the resultant force acting on a CP is inversely proportional to the square of the 

separation between the particles. Thus the exploration power in this condition is high because of 

performing more searches in the early iterations. It is necessary to increase the exploitation of the 

algorithm and to decrease the exploration gradually. After a number of searches where CPs are 

collected in a small space and the separation between the CPs becomes small, say 0.1, then the 

resultant force becomes proportional to the separation distance of the particles instead of being 

inversely proportional to the square of the separation distance. Therefore, the parameter a 

separates the global search phase and the local search phase, i.e., when majority of the agents are 

collected in a space with radius a, the global search is finished and the optimizing process is 

continued by improving the previous results, and thus the local search starts. Besides, using these 

principles controls the balance between the exploration and the exploitation. It should be noted 

that this rule considers the competition step of the algorithm. Since the resultant force is 

proportional to the magnitude of the charge, a better fitness (great qi) can create a stronger 

attracting force, so the tendency to move toward a good CP becomes more than toward a bad 

particle. 

Rule 5 the new position and velocity of each CP is 

Xj,new = randj1 ∙ ka ∙
Fj

mj
∙ ∆t2 + randj2 ∙ kv ∙ Vj,old ∙ ∆t + Xj,old,               (18) 

Vj,new =
Xj,new−Xj,old

∆t
,                                                                                              (19) 

 

Where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence of 

the previous velocity; and rand j1 and rand j2 are two random numbers uniformly distributed in 

the range of (0,1). Here, m j is the mass of the jth CP which is equal to qj ∙ ∆tis the time step and 

is set to unity. The effect of the pervious velocity and the resultant force acting on a CP can be 

decreased or increased based on the values of the kv and ka, respectively. Excessive search in the 

early iterations may improve the exploration ability; however, it must be decreased gradually, as 

described before. Since ka is the parameter related to the attracting forces, selecting a large value 

for this parameter may cause a fast convergence and vice versa a small value can increase the 

computational time. In fact ka t is a control parameter of the exploitation. Therefore, choosing an 

incremental function can improve the performance of the algorithm. Also, the direction of the 

pervious velocity of a CP is not necessarily the same as the resultant force. Thus, it can be 

concluded that the velocity coefficient kv controls the exploration process and therefore a 

decreasing function can be selected. Thus, kv and ka are defined as, 

kv=0.5(1 − iter itermax⁄ ), ka = 0.5(1 + iter itermax⁄ )                                                            (20) 
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Where iter is the actual iteration number and itermax is the maximum number of iterations. With 

this equation, kv decreases linearly to zero while ka increases to one when the number of 

iterations rises. In this way, the balance between the exploration and the fast rate of convergence 

is saved. Considering the values of these parameters, Eqs. (21) and (22) can be rewritten as 

Xj,new = 0.5randj1 ∙ (1 + iter itermax⁄ ) ∙ ∑ (
qi

a3 rij ∙ i1 +
qi

rij
2 ∙ i2)i,i≠j pij(Xi − xj) + 0.5randj2 ∙

(1 + iter itermax⁄ ) ∙ Vj,old + Xj,old                                                                                          (21) 

 

Vj,new = Xj,new − Xj,old,                                                                                (22) 

 

Figure 5 illustrates the motion of a CP to its new position using this rule. The rules 5 and 6 

provide the cooperation step of the CPs, where agents collaborate with each other by information 

transferring. 

 

Rule 6 considering a memory which saves the best CP vectors and their related objective 

function values can improve the algorithm performance without increasing the computational 

cost. To fulfill this aim, Charged Memory (CM) is utilized to save a number of the best so far 

solutions. In this paper, the size of the CM (i.e. CMS) is taken as N/4. Another benefit of the CM 

consists of utilizing this memory to guide the current CPs. In other words, the vectors stored in 

the CM can attract current CPs according to Eq. (16). Instead, it is assumed that the same number 

of the current worst particles cannot attract the others. 
 

 

Figure 2: The movement of a CP to the new position 

 

Rule 7 There are two major problems in relation to many meta-heuristic algorithms; the first 

problem is the balance between exploration and exploitation in the beginning, during, and at the 

end of the search, and the second is how to deal with an agent violating the limits of the 

variables. The first problem is solved naturally through the application of above-stated rules; 

however, in order to solve the second problem, one of the simplest approaches is utilizing the 

nearest limit values for the violated variable. Alternatively, one can force the violating particle to 

return to its previous position, or one can reduce the maximum value of the velocity to allow 

fewer particles to violate the variable boundaries. Although these approaches are simple, they are 

not sufficiently efficient and may lead to reduce the exploration of the search space. This 

problem has previously been addressed and solved using the harmony search-based handling 
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approach [38]. According to this mechanism, any component of the solution vector violating the 

variable boundaries can be regenerated from the CM as 

xi,j = {
w. p. CMCR           
w. p. (1 − CMCR)

                                                                                 (23) 

 

 Subject to  

⇒Select a new value for a variable from CM 

⇒w.p (1-PAR) do nothing  

⇒w.p.PAR choose a neighbouring value  

⇒select a new value  

 

where “w.p.” is the abbreviation for “with the probability”; xij is the i th component of the CP j ; 

The CMCR (the Charged Memory Considering Rate) varying between 0 and 1 sets the rate of 

choosing a value in the new vector from the historic values stored in the CM, and (1 – 

CMCR)sets the rate of randomly choosing one value from the possible range of values. The pitch 

adjusting process is performed only after a value is chosen from CM. The value (1−PAR) sets 

the rate of doing nothing, and PAR sets the rate of choosing a value from neighbouring the best 

CP.  

 
Rule 8 the terminating criterion is one of the following: 

Maximum number of iterations: the optimization process is terminated after a fixed number of 

iterations, for example, 1,000 iterations. Number of iterations without improvement: the 

optimization process is terminated after some fixed number of iterations without any 

improvement. Minimum objective function error: the difference between the values of the best 

objective function and the global optimum is less than a pre-fixed anticipated threshold. 

Difference between the best and the worst CPs: the optimization process is stopped if the 

difference between the objective values of the best and the worst CPs becomes less than a 

specified accuracy. Maximum distance of CPs: the maximum distance between CPs is less than a 

pre-fixed value. Now we can establish a new optimization algorithm utilizing the above rules.  

 

Adaptive Charged System Search Algorithm (ACA) For Solving Optimal Power Problem 

 

Level 1: Initialization 

Step 1: Initialization. Initialize ACA algorithm parameters; Initialize an array of Charged 

Particles with random positions and their associated velocities (Rules 1 and 2). 

Step 2: CP ranking. Evaluate the values of the fitness function for the CPs, compare with each 

other and sort increasingly. 

Step 3: CM creation. Store the CMS number of the first CPs and their related values of the 

objective function in the CM. 

Level 2: Search 

Step 1: Attracting force determination. Determine the probability of moving each CP toward 

others (Rule 3), and calculate the attracting force vector for each CP (Rule 4). 

Step 2: Solution construction. Move each CP to the new position and find the velocities (Rule 5). 

Step 3: CP position correction. If each CP exits from the allowable search space, correct its 

position using Rule 7. 
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Step 4: CP ranking. Evaluate and compare the values of the objective function for the new CPs, 

and sort them increasingly. 

Step 5: CM updating. If some new CP vectors are better than the worst ones in the CM, include 

the better vectors in the CM and exclude the worst ones from the CM (Rule 6) 

Level 3: Terminating criterion controlling 

Repeat search level steps until a terminating criterion is satisfied (Rule 8). 

 

4. Simulation Results 

 

At first Adaptive Charged System Search Algorithm (ACA) has been tested in standard IEEE-57 

bus power system. The reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 

and 12 are PV buses and bus 1 is selected as slack-bus. The system variable limits are given in 

Table 1.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 

Pload = 12.118 p.u. Qload = 3.074 p.u. 

The total initial generations and power losses are obtained as follows: 

∑ 𝑃𝐺 = 12.462 p.u. ∑ 𝑄𝐺  = 3.3152 p.u. 

Ploss = 0.25848 p.u. Qloss = -1.2062 p.u. 

Table 2 shows the various system control variables i.e. generator bus voltages, shunt 

capacitances and transformer tap settings obtained after optimization which are within the 

acceptable limits. In Table 3, shows the comparison of optimum results obtained from proposed 

methods with other optimization techniques. These results indicate the robustness of proposed 

approaches for providing better optimal solution in case of IEEE-57 bus system. 

  

Table 1: Variable Limits 

Reactive Power Generation Limits  

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin Vgmax vpqmin Vpqmax tkmin tkmax 

0.9 1.0 0.91 1.05 0.9 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
 

 
Table 2: Control variables obtained after optimization 

Control Variables  ACA 

V1 1.10 

V2 1.038 

V3 1.037 

V6 1.026 

V8 1.025 

V9 1.004 
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V12 1.010 

Qc18 0.0663 

Qc25 0.200 

Qc53 0.0472 

T4-18 1.001 

T21-20 1.049 

T24-25 0.868 

T24-26 0.877 

T7-29 1.056 

T34-32 0.875 

T11-41 1.014 

T15-45 1.030 

T14-46 0.910 

T10-51 1.020 

T13-49 1.060 

T11-43 0.910 

T40-56 0.900 

T39-57 0.950 

T9-55 0.950 

 

Table 3: Comparison results 

S.No. Optimization Algorithm Finest Solution Poorest Solution Normal Solution 

1 NLP [39] 0.25902 0.30854 0.27858 

2 CGA [39] 0.25244 0.27507 0.26293 

3 AGA [39] 0.24564 0.26671 0.25127 

4 PSO-w [39] 0.24270 0.26152 0.24725 

5 PSO-cf [39] 0.24280 0.26032 0.24698 

6 CLPSO [39] 0.24515 0.24780 0.24673 

7 SPSO-07 [39] 0.24430 0.25457 0.24752 

8 L-DE [39] 0.27812 0.41909 0.33177 

9 L-SACP-DE [39] 0.27915 0.36978 0.31032 

10 L-SaDE [39] 0.24267 0.24391 0.24311 

11 SOA [39] 0.24265 0.24280 0.24270 

12 LM [40] 0.2484 0.2922 0.2641 

13 MBEP1 [40] 0.2474 0.2848 0.2643 

14 MBEP2 [40] 0.2482 0.283 0.2592 

15 BES100 [40] 0.2438 0.263 0.2541 

16 BES200 [40] 0.3417 0.2486 0.2443 

17 Proposed ACA 0.22058 0.23012 0.22236 

 

Then Adaptive Charged System Search Algorithm (ACA) has been tested in standard IEEE 118-

bus test system [41].The system has 54 generator buses, 64 load buses, 186 branches and 9 of 

them are with the tap setting transformers. The limits of voltage on generator buses are 0.95 -1.1 

per-unit., and on load buses are 0.95 -1.05 per-unit. The limit of transformer rate is 0.9 -1.1, with 
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the changes step of 0.025. The limitations of reactive power source are listed in Table 4, with the 

change in step of 0.01. 

 

Table 4: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 

The statistical comparison results of 50 trial runs have been list in Table 5 and the results clearly 

show the better performance of proposed Adaptive Charged System Search Algorithm (ACA) in 

reducing the real power loss.  

 

Table 5: Comparison results 

Active power loss (MW) BBO 

[42] 

ILSBBO/ 

strategy1 

[42] 

ILSBBO/ 

strategy1 

[42] 

Proposed 

ACA 

Min 128.77 126.98 124.78 116.04 

Max 132.64 137.34 132.39 120.98 

Average  130.21 130.37 129.22 118.76 

 

5. Conclusion 

 
In this paper a novel approach Adaptive Charged System Search Algorithm (ACA) used to solve 

optimal reactive power problem, by considering various generator constraints. To handle the 

mixed variables a flexible representation scheme was proposed. Adaptive Charged System 

Search Algorithm (ACA) is a multi-agent approach in which each agent is a Charged Particle 

(CP) & they affect each other based on their fitness values, separation of distances. The quantity 

of the resultant force is determined by using the electrostatics laws and the quality of the 

movement is determined using Newtonian mechanics laws. Proposed Adaptive Charged System 

Search Algorithm (ACA) has been tested in Standard IEEE 57,118 bus systems & real power 

loss has been comparatively reduced with voltage profiles are within the limits. 
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