Review Article

PHYTOCHEMICAL CONSTITUENTS AND MEDICINAL PROPERTIES OF DIGITALIS LANATA AND DIGITALIS PURPUREA - A REVIEW

Ali Esmail Al-Snafi
Department of Pharmacology, College of Medicine, Thi qar University, Iraq.

Abstract:
Digitalis lanata and Digitalis purpurea of the family Plantaginaceae were grown in Iraq. Digitalis lanata and Digitalis purpurea contains cardiac glycosides, volatile oil, fatty matter, starch, gum and sugars. They possessed cardiovascular, cytotoxic, antidiabetic, antioxidant, insecticidal, immunological, hepato, neuro and cardioprotective effects. This review highlights the chemical constituents and pharmacological effects of Digitalis lanata and Digitalis purpurea.

Keywords: Digitalis lanata, Digitalis purpurea, pharmacology, phytochemistry

Corresponding author:
Ali Esmail Al-Snafi,
Department of Pharmacology,
College of Medicine,
Thi qar University, Iraq.
Cell: +9647801397994.
E mail: aboahmad61@yahoo.com

Please cite this article in press as Ali Esmail Al-Snafi, Phytochemical Constituents and Medicinal Properties of Digitalis Lanata and Digitalis Purpurea- A Review, Indo Am. J. P. Sci, 2017; 4(02).
INTRODUCTION:

Two thirds of the new chemicals identified yearly were extracted from higher plants. In the US, where chemical synthesis dominates the pharmaceutical industry, 25% of the pharmaceuticals are based on plant-derived chemicals. Seventy five percent of the world’s population uses plants for therapy and prevention [1]. However, plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives [2-35]. Digitalis lanata and Digitalis purpurea of the family Plantaginaceae were grown in Iraq. Digitalis lanata and Digitalis purpurea contains cardiac glycosides, volatile oil, fatty matter, starch, gum and sugars. They possessed cardiovascular, cytoxic, anti diabetic, antioxidant, insecticidal, immunological, hepato, neuro and cardioprotective effects. This review will highlight the chemical constituents and pharmacological effects of Digitalis lanata and Digitalis purpurea.

Synonyms [36-37]:

Digitalis lanata
Digitalis epiloggotidea Brera ex Steud., Digitalis erostachya Besser ex Rchb., Digitalis lanata var. abbreviata Hausskn., Digitalis nova Winterl ex Lindl., Digitalis orientalis Elmig. and Digitalis winterli Roth.

Digitalis purpurea
Digitalis alba Schrank, Digitalis campbelliana W. Baxter, Digitalis carnea Meigen & Weing., Digitalis fucata Ehrh., Digitalis gloxinioides Carrière, Digitalis gyspergerae Rouy, Digitalis intermedia Lapeyr., Digitalis libertiana Dumort., Digitalis longiflora Lej., Digitalis media Elmig., Digitalis miniana Samp., Digitalis nevadensis Kunze, Digitalis purpurascens Roth, Digitalis purpurascens Lej., Digitalis purpurea f. alba (Schrank) K.Werner, Digitalis purpurea var. albiflora Lej., Digitalis purpurea f. alpina K. Werner, Digitalis purpurea subsp. bocquetii Valdès, Digitalis purpurea f. carnea (Meigen & Weing.) K.Werner, Digitalis purpurea var. gyspergerae (Rouy) Fiori, Digitalis purpurea var. humilis Rouy, Digitalis purpurea f. humilis (Rouy) K.Werner, Digitalis purpurea var. miniana (Samp.) Cout., Digitalis purpurea var. nevadensis Amo, Digitalis purpurea var. parviflora Lej., Digitalis purpurea f. parviflora (Lej.) K. Werner, Digitalis purpurea var. tomentosa (Hoffmanns. & Link) Webb, Digitalis purpurea var. valida Merino, Digitalis purpureolutea G. Mey., Digitalis speciosa Salisb., Digitalis thapsi Bertero ex Nyman, Digitalis thapsi var. intermedia Lindl. and Digitalis tomentosa Hoffmanns. & Link.

Taxonomic classification:

Kingdom: Plantae; Subkingdom: Viridiplantae; Infrakingdom: Streptophyta; Superdivision: Embryophyta; Division: Tracheophyta; Subdivision: Spermatophyta; Class: Magnoliopsida; Superorder: Asteranae; Order: Lamiales; Family: Plantaginaceae; Genus: Digitalis; Species: Digitalis lanata (Grecian foxglove) and Digitalis purpurea (Purple foxglove) [38-39].

Common names [40-42]:

Digitalis lanata
Arabic: Zahr Alkishteban, Asabi athara swfia, Kameia, Asabi Swfia; English: digitalis, Grecian foxglove, woolly digitalis, woolly foxglove; French: digitale laineuse; German: wolliger Fingerhut; Spanish: digital; Swedish: grekisk fingerborgsblomma.

Digitalis purpurea
Arabic: Asabi athara hamra, kafaz elthalab,digital erjwani, kameiat riz; Ayurvedic: Hritpatri, Tilapushpi; Chinese: mao di huang; English: purple foxglove, digitalis, foxglove, common foxglove, fairy fingers, fairy gloves; Korean: digitalriseu; Swedish: fingerborgsblomma.

Distribution:

Digitalis lanata is native to Europe, now it is cultivated in Asia-Temperate, Western Asia and Europe (Moldova, Austria, Czech Republic, Hungary, Slovakia, Albania, Bulgaria, Croatia, Greece, Romania, Serbia, Ukraine). Digitalis purpurea is thought to be native to West, South-West and West Central Europe. It is distributed in Africa (Morocco, Cape Verde, Madeira Islands, Canary Islands), Europe (Belgium, Germany, Finland, Ireland, Norway, Sweden, United Kingdom, Albania, Italy, France, Portugal, Spain, Czech Republic, Denmark and Croatia) [41-42].

Description [43-44]:

Digitalis lanata
Digitalis is a biennial or perennial herb that grows up to about 1.2 meters height. Flower and Fruit: The inflorescence is long and densely flowered, with racemes facing all directions. The bracts are glandular-haired with ciliate edges. The flower structures are in fives. The sepals are fused, the calyx tubular. The petals are fused to a campanulate corolla, which is glandular-haired on the outside, white with yellow-brown spots, 18 to 25 mm long and unevenly bilabiate. The upper lip has 4 points, and is flat and hem-like. The lower lip is almost as long as the corolla tube and is turned away from it. There are 4 stamens, often stretching out of the corolla tube. The ovaries are superior, 2-chambered, clavate, glandular-haired, gradually merging into the stigmas. The fruit is a 10 mm long septicidal, brittle capsule. The seeds are approximately 1.5 mm long and red-brown. Leaves, Stem and Root: Digitalis lanata is a herbaceous biennial or perennial, upright, up to 1.2 m high. The leaves are sessile, simple, narrow-lanceolate, 15 to 35 cm long, entire and ciliate in the upper area of the shoot axis.
The stem is upright, usually green, grooved-edged, usually glabrous below and long woolly-haired in the upper half. The plant has a primary root with no shoot-bearing roots.

Digitalis purpurea

Digitalis is a biennial or perennial herb that grows up to about 1.2 meters height. Flower and Fruit: The flowers are carmine red with white edged spots on the inside. The flowers appear in long hanging racemes. They have 5 free, short-tipped sepals. The corolla is about 4 cm long, campanulate, bilabiata . with an obtuse upper lip and an ovate tip on the lower lip. The flower is glabrous on the outside and has a white awn on the inside. There are 2 long and 2 short stamens, and 1 superior ovary. The fruit is a 2-valved, ovate, glandular, villous capsule. The plant with a branched tap root. In the first year it develops a leaf rosette. In the second it produces a 2 m high, erect, unbranched, gray, tomentose stem. The leaves are alternate, ovate, tapering upward and petiolate. Almost all leaves are crenate; only the highest ones are entire-margined.

Traditional uses:

Earlier, digitalis Species were used to treat ulcers, boils, abscesses, headaches and paralysis. The leaves of the 1-year-old plant or the leaves of the 2-year-old plant collected at the beginning of flowering [43].

Parts used medicinally:

Digitalis lanata: The leaves are the medicinal part of the plant.

Digitalis purpurea: The medicinal parts are the dried leaves (in powder form), the ripe dried seeds, the fresh leaves of the 1-year-old plant or the leaves of the 2-year-old plant collected at the beginning of flowering [43].

Chemical constituents:

Digitalis lanata and *Digitalis purpurea* contained cardiac glycosides, volatile oil, fatty matter, starch, gum and sugars [44]. Cardiac glycosides from plant sources have been known for long time. The Major plant derived cardiac glycosides were included digitoxin, digoxin, ouabain, oleandrin and proscillaridin, which were extracted from *Digitalis purpurea*, *Digitalis lanata*, *Strophanthus gratus*, *Nerium oleander* and *Urginea maritima*. Cardiac glycosides were consisted of a steroidal nucleus linked with a sugar at C3 and a lactone ring at C17. Various sugar and lactones provide a large number of cardiac glycosides that, based on their lactone moieties, they can be divided into two groups, cardenolides, which contain a five-membered unsaturated butyro lactone ring, and bufadenolides, which contain a six-membered unsaturated pyrone ring. The core steroidal portion of each molecule has an A/B and C/D cisisconformation, which has significant pharmacological impact, while, the attached sugars (glucose, galactose, mannose, rhamnose, and digitalose), affected the pharmacodynamic and pharmacokinetic characteristics of cardiac glycosides [45-46].

Digitalis lanata contained cardioactive steroid glycosides (cardenolides) (0.5 to 1.5%) including: [Aglcylone digitoxigenin: including lanatoside A (0.05 to 0.25%), glucodigitoxigenin (0.01 to 0.15%), glaucovatromonoside (0.02 to 0.05%), digitin, alpha- and betaacetelydigoxin]; [Aglcylone gitoxigenin: lanatoside B (0.01 to 0.15%), glucogitoxigenin (0.02 to 0.12%), Digitalinum verum (0.02 to 0.12%), gitoxin, alpha- and betaacetelygitoxigenin]; [Aglcylone digoxigenin: lanatoside C (0.08 to 0.24%), desacetyl lanatoside C and digoxin]; [Aglcylone diginatigenin: lanatoside D, diginatin, diginatinigen gitoxolide]; [Aglcylone gitoxaligenin: lanatoside E, glucoverodoxin (0.01 to 0.14%), glucoveroxin (0.02 to 0.12%) and gitoxalin]; [Pregnane derivatives: including digifolein, glucodigifolein, digin, digipronin, lanafolein and gitonine]; [Steroid saponins: including lanatigosides I and II, tigogenin, desglucolanatigonin, aglycones including tigogenin, digitaligen, digitogenin and gitogenin] [43].

Phenylethyl glycosides, maxoside (=2-(3,4-dihydroxyphenyl)ethyl O-b-d-glucopyranosyl-(1!3)-O-[b-d-glucopyranosyl-(1!6)]-b-d-glucopyranoside 4-(2E)-3-(3,4-dihydroxyphenyl)prop-2-enolate); 3-O-methylmaxoside (=2-(3,4-dihydroxy phenyl)ethyl O-b-dglucopyranosyl-(1→3)-O-[b-d-glucopyranosyl-(1→6)-4-O-(E)-feruloyl-b-d-gluco pyranoside; digilanatosides A (=2-(3,4-dihydroxyphenyl)ethyl O-6-O-(E)-sinapoyl-b-d-glu pyranosyl-(13)]-4-O-(E)-cafeoyl-b-d-gluco pyranoside, and digilanatoside B (=2-(3,4-dihydroxyphenyl)ethyl O-6-O- (E)-(p-coumaroyl-b-d-glucopyranosyl-(13)]-4-O-(E)-caffeoyl-b-d-gluco pyranoside; 3) were isolated from the aerial parts of *Digitalis lanata* [47].

Digitalis purpurea contained cardioactive steroid glycosides (cardenolides 0.5 to 1.5%) including [Aglcylone digitoxigenin: purpurea glycoside A (primary glycoside), digitoxin (secondary glycoside)]; [Aglcylone gitoxigenin: purpurea glycoside B (primary glycoside), gitoxin (secondary glycoside)]; [Aglcylone gitoxigenin: glucoverodoxin, glucogitaloxin, gitoxin]; [Pregnane glycosides: including digipurpurin, digin, digotalonin]; [Steroid saponins: including desgalactotigogenin. digitonne, purpureagitoside]; [Anthracone derivatives: anthraquinones] [43].

Four different glycosides including acteoside, purpureaside A, calceolarioside B and plantainoside D were isolated from the leaves of *Digitalis purpurea* [48].
The minerals [Boron (B), Chromium (Cr), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Arsenic (As) and Lead (Pb)] in various plant parts of Digitalis purpurea and Digitalis lanata at pre- and post flowering stages were determined. The results revealed that the mineral concentrations in different parts were B 8.16±0.04 to 27.18±1.11, Cr 7.30±0.03 to 21.16±0.20, Mn 62.69±1.45 to 247.27±5.29, Co 0.65±0.08 to 6.13±0.05, Ni 9.19±0.01 to 16.15±0.05, Cu 0.02±0.0 to 25.27±0.20, As 0.83±0.04 to 4.98±0.06 and Pb 4.70±0.02 to 8.19±0.04 µg/g. The concentration of most of the minerals was higher at post flowering than that of pre flowering stage [49].

Pharmacological effects:
Cardiovascular effects:
Cardiac glycosides, are often called digitalis or digitalis glycosides, in particular digoxin and digitoxin, have been a cornerstone of the treatment of heart diseases for more than two centuries. However, the identification of angiotensin-converting enzyme inhibitors, β-adrenergic blockers and angiotensin-receptor blockers has significantly reduced their clinical use. The cardiac glycosides are with low therapeutic index. They possessed many cardiovascular effects by many mechanisms included [50-54]:
- Regulation of cytosolic calcium concentration: By inhibiting the Na+/K+-adenosine triphosphatase (ATPase) enzyme, digitalis reduced the ability of the myocyte to actively pump Na⁺ from the cell. This decreased the Na⁺ concentration gradient and, consequently, the ability of the Na⁺/Ca²⁺-exchanger to move calcium out of the cell. Furthermore, the higher cellular Na⁺ is exchanged for extracellular Ca²⁺ by the Na⁺/Ca²⁺-exchanger, increasing intracellular Ca²⁺. A small but physiologically important increase occurred in free Ca²⁺ that is available at the next contraction cycle of the cardiac muscle, thereby increasing cardiac contractility. When Na⁺/K⁺-ATPase is markedly inhibited by digitalis, the resting membrane potential may increase (~70 mV instead of ~90 mV), which making the membrane more excitable and increasing the risk of arrhythmias (toxicity).
- Increased contractility of the cardiac muscle: Digitalis increased the force of cardiac contraction, causing cardiac output to more closely resemble that of the normal heart. Vagal tone was also enhanced, so both heart rate and myocardial oxygen demand decreased. Digitalis slowed conduction velocity through the AV node, making it useful for atrial fibrillation.
- Neurohormonal inhibition: Although the exact mechanism of this effect has not been elucidated, low-dose digitalis inhibited sympathetic activation with minimal effects on contractility. This effect was the reason a lower serum drug concentration was targeted in heart failure with reduced ejection fraction.

Digoxin therapy was indicated in patients with severe heart failure with reduced ejection fraction after initiation of ACE inhibitor, β-blocker, and diuretic therapy. A low serum drug concentration of digoxin (0.5 to 0.8 ng/ml) was beneficial in heart failure with reduced ejection fraction and reduced heart failure admissions, along with improved survival. At higher serum drug concentrations, admissions are prevented, but mortality likely increased. Digoxin was not indicated in patients with diastolic or right sided heart failure unless the patient has concomitant atrial fibrillation or flutter.

- Electrophysiological effects: The major effect on cardiac rhythm of digitalis preparations was believed to be due to inhibition of the sodium pump. However, cells in various parts of the heart showed differing sensitivities to digitalis, and both direct and neurally mediated effects were occurred. Indeed, at therapeutic levels, these drugs decreased automaticity and increased maximum diastolic potential, effects that can be blocked by atropine, whereas higher (toxic) concentrations decreased diastolic potentials and increased automaticity. Similarly, the toxic arrhythmogenic effects of the cardiac glycosides were due to a combination of direct effects on the myocardiun and neurally mediated increases in autonomic activity. Both systolic and diastolic [Ca²⁺]i increased during digitalis-induced arrhythmias, increases that leading to the idea that intracellular (Ca²⁺ overload) contributes to the observed arrhythmogenic effects. Spontaneous cycles of Ca²⁺ release and reuptake then ensued, resulting in after depolarizations and after contractions. The after depolarization was the result of a Ca²⁺-activated transient inward current and was thought to be the macroscopic manifestation of Ca²⁺-activated nonspecific cation channels, plus Na⁺-Ca²⁺ exchange current [55].

Cytotoxic effects:
Extracts of Digitalis lanata and Digitalis purpurea were examined for anticancer activity in 10 human tumor cell lines. They produced cytotoxic effects, but the activity profiles were uncorrelated with those of the standard drugs, possibly indicating new pathways of drug-mediated cell death [56]. The saponin digitonin, the aglycone digitoxigenin and five cardiac glycosides were evaluated for cytotoxicity using primary cultures of tumor cells from patients and a human cell line panel (representing different cytotoxic drug-resistance patterns). Of these compounds, proscillaridin A was the most potent (IC₅₀: 6.4–76 nM), followed by digitoxin, and then ouabain, digoxin, lanatoside C, digitoxigenin and digitonin. Correlation analysis of the log IC₅₀ values for the cell lines in the panel showed that compound cytotoxicity was only slightly influenced by resistance mechanisms that
involved P-glycoprotein, topoisomerase II, multidrug resistance-associated protein and glutathione-mediated drug resistance. Digitoxin and digoxin expressed selective toxicity against solid tumor cells, while proscillaridin A expressed no selective toxicity against either solid or hematological tumor cells [57]. The cytotoxic activity of 15 cardenolide glycosides isolated from Digitalis purpurea seeds was evaluated against HL-60 leukemia cells. 4 compounds showed potent cytotoxicity against HL-60 cells with IC$_{50}$ values of 0.060, 0.069, 0.038, and 0.034 µM. Three of these compounds also exhibited potent cytotoxic activity against HepG2 human liver cancer cells with IC$_{50}$ values of 0.38, 0.79, and 0.71 µM. An investigation of the structure-activity relationship showed that the cytotoxic activity was reduced by the introduction of a hydroxy group at C-16 of the digitoxigenin aglycone, methylation of the C-3' hydroxy group at the fucopyranosyl moiety, and acetylation of the C-3' hydroxy group at the digitoxopyranosyl moiety [58].

The steroidal cardiac Na$^+$/K$^-$ ATPase inhibitors were potent anti-cancer compounds in multiple cell lines from different tumor panels including multidrug resistant cells. Of many synthetic steroidal cardiac, the most potent compound identified was 3-[(R)-3-pyrrolidinyl]oxime derivative, it showed outstanding potencies (as measured by GI$_{50}$, TGI) of 0.79, and 0.71 µM. An investigation of the structure-activity relationship showed that the cytotoxic activity was reduced by the introduction of a hydroxy group at C-16 of the digitoxigenin aglycone, methylation of the C-3' hydroxy group at the fucopyranosyl moiety, and acetylation of the C-3' hydroxy group at the digitoxopyranosyl moiety [58].

Numerous other studies have confirmed the antiproliferative and apoptotic effects of cardiac glycosides in several cancer cell lines, including prostate, melanoma, pancreatic, leukemia, neuroblastoma, and tumors of urinary and respiratory systems [57, 60-76]. Many epidemiological studies revealed that breast cancer tissue samples from congestive heart failure patients treated with cardiac glycoside therapy showed more benign characteristics and need less mastectomy than samples taken from patients who were not used cardiac glycosides [77]. Mortality rate in patients treated with cardiac glycoside therapy was also less than that in patients who were not used cardiac glycosides [78].

Regarding the mechanisms of anticancer effects of cardiac glycosides, it appeared that digoxin induced cell cycle arrest in G2/M phase via down-regulation of cyclin B1, cdc2 and surviving and increased the intracellular Ca$^{2+}$ concentration and inhibited DNA topoisomerases I and II. Oleandrin attenuated NF-kB, JNK and AP-1 activation. Bufalin induced cell cycle arrest in G2/M phase via up-regulation of p21 WAF1 and p53 and the down-regulation of cyclin D, and inhibited DNA topoisomerases I and II. Proscillaridin A, inhibited DNA topoisomerases I and II and increased intracellular Ca$^{2+}$ [70, 79-87].

Inhibition of IL-8:

Oleandrin, a cardiac glycoside potentially inhibited IL-8, formyl peptide (FMLP), EGF-, or nerve growth factor (NGF)-, but not IL-1- or TNF-induced NF-kappaB activation in macrophages. Oleandrin inhibited IL-8-, but not TNF-induced NF-kappaB-dependent genes expression. Oleandrin inhibited the binding of IL-8, EGF, or NGF, but not IL-1 or TNF. It decreased almost 79% IL-8 binding without altering affinity towards IL-8 receptors and this inhibition of IL-8 binding was observed in isolated membrane. The IL-8, anti-IL-8Rs antibodies, or protease inhibitors were unable to protect oleandrin-mediated inhibition of IL-8 binding. Phospholipids significantly protected oleandrin-mediated inhibition of IL-8 binding thereby restoring IL-8-induced NF-kappaB activation. Oleandrin altered the membrane fluidity as detected by microviscosity parameter and a decrease in diphenylhexatriene, a lipid binding fluorophore binding in a dose-dependent manner. The authors concluded that oleandrin inhibits IL-8-mediated biological responses in diverse cell types by modulating IL-8Rs through altering membrane fluidity and microviscosity. Accordingly, oleandrin might help to regulate IL-8-mediated biological responses involved in inflammation, angiogenesis, tumorogenesis, metastasis, and neovascularization [88].

Digitoxin, at sub nM concentrations, can suppress hypersecretion of IL-8 from cultured cystic fibrosis (CF) lung epithelial cells. Certain other cardiac glycosides were also active but with much less potency. The specific mechanism of digitoxin action was included blocking phosphorylation of the inhibitor of NF-kappa B (I kappa B alpha). I kappa B alpha phosphorylation was a required step in the activation of the NF-kappa B signaling pathway and the subsequent expression of IL-8. Digitoxin also possessed effects on global gene expression in CF cells [89].

Hepato-, neuro- and cardio- protective effects:

Four different glycosides (acteoside, purpureaside A, calceolarioside B and plantainoside D) isolated from the leaves of *Digitalis purpurea* were studied for their abilities to induce glutathione S-transferase (GST) and their protective efficiencies against aflatoxin B1-induced cytotoxicity in H4IE cells. Of these four glycosides, acteoside significantly
inhibited the cytotoxicity induced by aflatoxin B1 (AFB1) and also selectively increased GSTalpha protein levels. Reporter gene analysis using an antioxidant response element (ARE) containing construct and subcellular fractionation assays, revealed that GST alpha induction by acetoside might be associated with Nrf2/ARE activation [48].

The protective effects of ouabain against ischemia-reperfusion injury, through activation of the Na⁺/K⁺-ATPase/c-Src receptor complex, was studied. In Langendorff-perfused rat hearts, a short (4 min) administration of ouabain 10 μM followed by an 8-minute washout before 30 min of global ischemia and reperfusion, improved cardiac function, decreased lactate dehydrogenase release and reduced infarct size by 40%. Western blot analysis revealed that ouabain activated the cardioprotective phospholipase C gamma1/protein kinase C epsilon (PKCepsilon TIP) pathway. Pre-treatment of the hearts with the Src kinase family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) blocked not only ouabain-induced activation of PLC-gamma1/PKCepsilon pathway, but also cardiac protection. The protection was also blocked by a PKCepsilon translocation inhibitor peptide (PKCepsilon TIP) [91].

Antidiabetic effect:
Digitonin, a saponin from the seeds of Digitalis purpurea, improved the glucose tolerance and possessed beneficial effects on serum lipids by improve antioxidant activity in rats [92].

Antioxidant effect:
The scavenging activity of alcoholic extract of Digitalis purpurea was measured using DPPH and the total antioxidant capacity of Digitalis purpurea was measured by phosphomolybdate using ascorbic acid as the standard. Digitalis purpurea 1mg/ml showed 94.25% DPPH scavenging activity and 92.28% total anti-oxidant activity [93].

Insecticidal effect:
Studying of insecticidal activity of alcoholic extract of Digitalis purpurea against T. castaneum revealed that the percentage mortality of T. castaneum was 60%, at 100 mg/2 ml of alcoholic extract of Digitalis purpurea [93].

Adverse effects and toxicity:
Digitalis is a toxic plant. At low serum drug concentrations, digitalis was well tolerated. However, it characterized by a very narrow therapeutic index, and digitalis toxicity was one of the most common adverse drug reactions leading to hospitalization. Anorexia, nausea, and vomiting may be initial indicators of toxicity, they occurred due to a direct action of digitalis on the CTZ. Patients may also experience blurred vision, yellowish vision (xanthopsia), and various cardiac arrhythmias. Diarrhoea may be noted, as may abdominal discomfort, or pain. Headache, malaise and drowsiness were common symptoms, neuralgic pain may be the earliest most severe, or the sole symptom, digitalis delirium, may occur with confusion, disorientation, aphasia and mental clouding. Toxicity can often be managed by discontinuing digitalis, determining serum potassium levels, and, if indicated, replenishing potassium. Decreased levels of serum potassium (hypokalemia) predispose a patient to digitalis toxicity, since digitalis normally competes with potassium for the same binding site on the Na⁺/K⁺-ATPase pump. However, the single most frequent cause of intoxication was the concurrent administration of thiazide or loop diuretics that cause hypokalaemia. Severe toxicity resulting in ventricular tachycardia may required administration of antiarrhythmic drugs and the use of antibodies to digoxin (digoxin immune Fab), which bind and inactivate the drug. With the use of a lower serum drug concentration in heart failure, toxic levels were infrequent. Digoxin was a substrate of P-gp, and inhibitors of P-gp, such as clarithromycin, verapamil, and amiodarone, can significantly increase digoxin levels, necessitating a reduced dose of digoxin. Digoxin should also be used with caution with other drugs that slow AV conduction, such as β-blockers, verapamil, and diltiazem [50, 55].

CONCLUSION:
The current review discussed the chemical constituents and pharmacological effects of Digitalis lanata and Digitalis purpurea as an important medicinal plants with wide range of medicinal uses.

REFERENCES:
http://www.iosrphr.org/papers/v6i8V1/G068015275.pdf
34. Al-Snafi AE. Medical importance of Datura fastuosa (syn: Datura metel) and Datura stramonium - A review. IOSR Journal of Pharmacy 2017; 7(2):43-58.

37. The plant list, a working list of all plant species, *Digitalis lanata*, http://www.thepflist.org/tpl1.1/record/kew-2768027

38. The plant list, a working list of all plant species, *Digitalis purpurea*, http://www.thepflist.org/tpl/record/kew-2768087

Cardiac glycosides provide neuroprotection against ischemic stroke: discovery by a brain slice-based compound screening platform. Proc Natl Acad Sci USA 2006; 103(27): 10461-10466.

