SYNTHESIS AND CHARACTERIZATION OF NEW CHALCONES OF 4-FLUORO-3-METHYL ACETOPHENONE

Dr. Asha Deepti C**1, Muralidharan V*1, John Mani Philips N1, Ch. B Parveenadavi2
Dept. of pharmaceutical chemistry, GITAM Institute of Pharmacy, GITAM University, Visakhapatnam.
Dept. of pharmaceutical chemistry, Shadan college of Pharmacy, Hyderabad.

**Corresponding author:
Dr. Asha Deepti C,
Dept. of pharmaceutical chemistry,
GITAM Institute of Pharmacy, GITAM University,
Visakhapatnam.
deepti_choppala@yahoo.co.in

Received: 24 December 2016 Accepted: 20 January 2017 Published: 11 February 2017

Abstract:
In the present investigation it has been considered worthwhile to synthesize some new chalcones from 4-fluoro-3-methyl-acetophenone and different aromatic aldehydes by Claisen-Schmidt condensation. The synthesized compounds were characterized by means of Chemical analysis, IR and 1H NMR spectroscopic data.

Key words: Flavonoids, Chalcone, IR and 1H NMR spectroscopy.

Please cite this article in press as Ashadeepti C et al. Synthesis and Characterization of New Chalcones of 4-Fluoro-3-Methyl Acetophenone, Indo Am. J. P. Sci, 2017; 4(01).
INTRODUCTION:
The natural compounds are generally divided into various classes on the basis of their molecular structures including chalcones, flavones, flavanones and anthocyanidins. Flavonoids have several pharmacological benefits (e.g. anticancer, anti-inflammatory, anti-allergic, etc.) and are considered as effective antioxidants, metal chelators and free radical scavengers. Natural and synthetic flavonoids are therefore of considerable interest in the development of novel therapeutic agents for various diseases and are generally believed to be non-toxic compounds since they are widely distributed in the human diet. Chalcones (trans-1,3-diaryl-2-propen-1-ones), which belong to the flavanoid family are precursors of open chain flavonoids and isoflavonoids, and are abundant in edible plants. They are also key precursors in the synthesis of many biologically important heterocycles such as benzothiazepine, pyrazolines, 1,4-diketones, and flavones.

Chemistry of chalcones:
Chalcones are α,β-unsaturated ketones consisting of two aromatic rings with substituents. They contain the keto-ethylenic group (-CO-CH=CH-). These are coloured compounds because of the presence of the chromophore (-CO-CH=CH-). Two aromatic rings are interconnetected by a highly electrophonic three carbon α, β unsaturated carbonyl system that assumes linear or nearly planar structure. Chalcones possess conjugated double bonds and a completely delocalized π-electron system on both benzene rings. Chalcones exist as either E or Z isomers. E isomer is the most stable form. Modification of chalcone structures by substitution with a prenyl side chain also affects their biological activities. Prenylation as protein post-translational modification results in higher protein lipophilicity and targets the modified protein to cell membrane.

EXPERIMENT:
All the reagents and chemicals used were of laboratory grade. Completion of the reaction was monitored by thin layer chromatography (TLC) using E-Merk 0.25 mm silica gel plates. Visualization was accomplished with UV light (256nm). All the solvents were distilled and dried using appropriate drying agents before use. Melting points were determined on ANALAB melting point apparatus and were uncorrected. All the 1H NMR spectra were recorded in DMSO-d6 solvent. Chemical shifts are reported on AVANCE 300 MHz and INNOVA 500 MHz relative to TMS internal standard on the δ (ppm)-scale. The IR spectra were recorded on SCHIMADZU FT-IR SPECTROPHOTOMETER by using 1% Potassium bromide discs.

Procedure for Synthesis of chalcones of 4-fluoro-3-methyl acetophenone:
A mixture of 4-flouro-3-methyl acetophenone (0.01 mol) and aromatic aldehydes(0.01 mol) was stirred in ethanol (30ml) and then aqueous potassium hydroxide (40%) was added to it dropwise with constant stirring. The mixture was kept overnight at room temperature and then poured into crushed ice. It was acidify with 1:1 dilute hydrochloric acid and water till a precipitate is obtained, then it was filtered. The so obtained compound was identified and where ever necessary compound was recrystallized and the pure compound was also obtained by separating with the help of column chromatography.
RESULTS AND DISCUSSION:

<table>
<thead>
<tr>
<th>NAME OF THE COMPOUND</th>
<th>R=</th>
<th>MELTING POINT</th>
<th>%YIELD</th>
<th>ELEMENTAL ANALYSIS(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>Cl</td>
<td>160°C</td>
<td>79</td>
<td>C-69.95, H-4.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-6.92, Cl-12.92,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O-5.82</td>
</tr>
<tr>
<td>A₂</td>
<td>N</td>
<td>170°C</td>
<td>85</td>
<td>C-67.36, H-4.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-6.66, N-4.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O-16.83</td>
</tr>
<tr>
<td>A₃</td>
<td>Br</td>
<td>150°C</td>
<td>92</td>
<td>C-60.21, H-3.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-5.91, Br-25.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O-5.01</td>
</tr>
<tr>
<td>A₄</td>
<td>O</td>
<td>200°C</td>
<td>73</td>
<td>C-71.99, H-5.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-6.33, O-15.98</td>
</tr>
</tbody>
</table>

Interpreted \(^1\)HNMR & IR spectra data of synthesized compound:

(2E)-3(2-Chlorophenyl)-1-(4-fluoro-3-methylphenyl)prop-2-en-1-one (A₁)

(2E)-1-(4-fluoro-3-methylphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (A₂)

(2E)-3(3-bromophenyl)-1-(4-fluoro-3-methylphenyl)prop-2-en-1-one (A₃)

(2E)-3(3,4-dimethoxyphenyl)-1-(4-fluoro-3-methylphenyl)prop-2-en-1-one (A₄)

\(^1\)HNMR(DMSO)(δppm) C₆H₅: 2.358, C=0: 3.953, CH-F: 3.932, CH-O-R: 3.60, Ar-H: 7.868, 7.855, 7.848. -C=C-: 7.757, 7.758, 7.736. IR -CH-

CONCLUSION:
The synthesized compounds were characterized by TLC, melting point, IR spectroscopy, elemental analysis and NMR spectroscopy. The result obtained from this study confirmed that the product has formed. Henceforth viewing these characteristic properties more compounds can be synthesized and subjected to evaluation of pharmacological activity. These chalcone derivatives may have variety of biological activities viz’ anti-inflammatory analgesic antibacterial, leishmanicidal, anticancer activity, etc and may be a pave way for the synthesis and characterization of some new chalcone derivatives.

Acknowledgement:
The authors are thankful to UGC (New Delhi, India) for providing financial assistance to GITAM Institute of Pharmacy, GITAM University Visakhapatnam, A.P. India.

REFERENCES: