Improving Productivity by Implementing Lean Manufacturing

Shubham Mittal¹, Vikas Hooda², Pardeep Rohilla³, Abhishek Pratap Singh⁴, Rajesh Goel⁵

¹, ², ³, ⁴ Dept. Of Mechanical Engineering, THE NORTHCAP UNIVERSITY, Sector-23A, GURGAON -122017
⁵ Deputy General Manager, SIGMA ELECTRIC MANUFACTURING CORPORATION, JAIPUR -302013
shubham.mittal347@gmail.com, +919999299396

Abstract—The Lean manufacturing process refers to wipe out or minimize the seven deadly wastes by keeping the production flow maximized. It is a management tool for making a schematic production process with the lean initiatives through the recorded orderly information and investigation led further. It is a procedure for planning the enhancements suggested including the cost, outline, process improvements and so on. The target of this study is to create a value stream map for an automobile company of anti-vibrations solutions. This specific tool allows the organization to focus upon their current lead time, stock levels and cycle times to find out the ratio of value added process to the total lead time of the product line being investigated. The initial step is to generate a current state map to analyze the production flow and to evaluate the company’s current cycle times, process interchanges, and equipment capacity of machine. The essential objective is to eliminate the wastes by first identifying the ones which do not add any value for the final product in the production.

Keywords—Lean manufacturing, value stream map, production cost, PPIC, seven deadly wastes, productivity, inventory control, process mapping.

INTRODUCTION

Lean manufacturing is a concept to abolish waste in production department of an Organization. The aim of manufacturing firm is to continually increase productivity by maximum utilization of their resources in operations. The objective is customer satisfaction with absolute product, quantity, quality and value in lesser time. For getting the profitable production, a conspicuous approach is required to minimize the wastes in production. The seven wastes targeted by the Lean Manufacturing Philosophy are: motion, overproduction, over-processing, inventory, defects, waiting and transportation [1]. Part of lean manufacturing is checking the operations only for the parts, processes or components which add to price instead of value [2]. Carefully observed all the production steps during manufacturing and add only those which improve the value of the product and other could be assigned to an outsourcing company so that the staff can focus only on the value-added operations of its core business. Taiichi Ohno and Shigeo Shingo framed a new, disciplined as well as a process-oriented system which is today called as “Toyota Production System (TPS)” or “Lean Manufacturing” [3]. They developed a system that upgrade the productivity at Toyota in between 1945 and 1970.

A stream map can be used to document on the current production lead time, inventory levels and cycle times in order to create a vision of an ideal value flow between the various departments and processes [4]. A Lean 3P (production, preparation, process) method was design a new endoscopy unit, which shows that 3P is an effective tool on developing the designs as per requirements of multiple stakeholders. The accuracy and efficiency process system can be improved at same time, by ensuring lean production [5]. A Kanban system works effectively in multinational organization and to identify factors hindering small and medium enterprises (SME) from implementing Kanban [6]. A lean route map is implementing in organization for lean manufacturing system [7]. A green manufacturing can be applied in all manufacturing sectors that minimize waste & pollution and ultimately enable the economic progress and contribute in conserving the resources [8]. The multi-dimensional concept, unavailability benchmark and uncertainty, which arises from the human judgments for the measurement of degree of leanness, is discussed by [9]. The objective of lean manufacturing is to manufacture a product exactly what the customer wants, it can be achieved by minimizing all non-value added activities in production [10].

The key principle of Lean is misspend “muda” the underlying driver of operational inefficiency [11]. Organizations should identify the waste from customer point of view and then regulate how to eliminate it. These waste increasing the product costs and adds no or just a zero value to manufacturing process [12]. The Process improvement is exact way for improvements of results as any organization.
An accurate inspection is required of work flows from one person or workstation to the next corresponding person or workstation. From a lean aspect, the first thing to create a value stream map following the indirect pathway of matter through the process [13].

PROBLEM IDENTIFICATION

The production management team of manufacturing firm is focusing on value-added activities to enhance their business productivity. Amid study it has been observed that they neglect the significance effect of non value added activities “wastes”. There is a remarkable statistical effect on production cost by evacuating the seven wastes through lean manufacturing. The mapping with all value-added activities can help in focusing on every root cause in an on-going process. This paper focused on the application of Lean manufacturing in process engineering and Global Production System (GPS) department for productivity improvement.

OBJECTIVES

The fundamental objective of the present work is to research the current situation of wastes elimination in the manufacturing firm and its vital role to reduce the production cost. It is required to create a value stream map in terms of value and non value activities, cycle time, marketing, PPIC (Product Planning & Inventory Control), manpower requirements, purchase process flow and other departments. The ultimate target is to improve productivity by lean manufacturing.

METHODOLOGY

Lean manufacturing is a philosophy to shorten the time line between customer requests and fulfillment by eliminating the wastes (Figure 1); these can be achieved by mapping the value and non value activities. The process mapping at different stages in the production department for AV1370 with all the process is shown in Figure 2. According to the customer requirements, the activities which are generally adding value are forging, rolling, quenching and which do not adds values are transportation, inspection, motion are depicted in a stream map (Figure 3) for part VSM_SPCL_M14X9.

BUSINESS AS USUAL

- **CUSTOMER ORDER**
- **WASTE**
- **PRODUCT SHIPMENT**

LEAN MANUFACTURING

- **CUSTOMER ORDER**
- **PRODUCT SHIPMENT**

Figure 1: Reducing time by introducing lean manufacturing
Figure 2: High level process mapping for AV 1730

Figure 3: Value stream mapping for VSM_SPCL_M14X9
MARKETING PROCESS FLOW

Marketing process alludes the strategies or procedures that are created to ensure the customer has a positive and noteworthy experience when buying or utilizing the product or service. The marketing process flow is as shown in Figure 4 with the scheduling and planning as per customer requirements.

Figure 4: Marketing process flow including scheduling and planning

PRODUCT PLANNING AND INVENTORY CONTROL

This procedure (Figure 5) indicates how the product planning flows along with inventory control process by keeping in mind to minimize the inventory cost and expand the use of assets, material and procedure.

Figure 5: Flow of Product Planning & Inventory Control
PURCHASE PROCESS FLOW

The method starts with a demand or prerequisites which could be for a physical part (inventory) or a service. It starts after receiving the requirements of raw materials from PPIC and later following the delivery of planned schedule and consignment flow as demonstrated in Figure 6.

MARKETING AND PPIC PURCHASE

In this, the lead time is computed per piece of various activities such as Raw Material (RM), Marketing (MKT), PPIC Purchase involved as illustrated in Table 1.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Total Days</th>
<th>Total Hours</th>
<th>Total Seconds</th>
<th>UOM</th>
<th>Wt - MT Nov 10</th>
<th>Seconds / Wt(Kg)</th>
<th>Product Wt (Kg)</th>
<th>Lead Time (Seconds) per Pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing</td>
<td>4</td>
<td>92</td>
<td>331200</td>
<td>Sale Wt</td>
<td>608.100</td>
<td>0.54</td>
<td>0.0141</td>
<td>0.008</td>
</tr>
<tr>
<td>PPIC</td>
<td>5</td>
<td>115</td>
<td>414000</td>
<td>Final Deposit</td>
<td>771.011</td>
<td>0.54</td>
<td>0.0141</td>
<td>0.008</td>
</tr>
<tr>
<td>RM Purchase</td>
<td>10</td>
<td>230</td>
<td>828000</td>
<td>RM Purchase</td>
<td>974.163</td>
<td>0.85</td>
<td>0.0141</td>
<td>0.012</td>
</tr>
<tr>
<td>Supplier (RM)</td>
<td>28</td>
<td>644</td>
<td>2318400</td>
<td>RM Batch Process</td>
<td>475.000</td>
<td>4.88</td>
<td>0.0141</td>
<td>0.069</td>
</tr>
<tr>
<td>Transportation (RM Supplier)</td>
<td>1</td>
<td>23</td>
<td>82800</td>
<td>Supplier to RM Processing Vendor</td>
<td>16.000</td>
<td>5.18</td>
<td>0.0141</td>
<td>0.073</td>
</tr>
<tr>
<td>RM Processing Vendor (Option-I)</td>
<td>3</td>
<td>69</td>
<td>248400</td>
<td>RM Processing (Annealing + Drawn)</td>
<td>5.000</td>
<td>49.68</td>
<td>0.0141</td>
<td>0.700</td>
</tr>
<tr>
<td>RM Processing Vendor (Option-II)</td>
<td>0.5</td>
<td>11.5</td>
<td>414000</td>
<td>RM Processing (Drawn)</td>
<td>5.000</td>
<td>8.28</td>
<td>0.0141</td>
<td>0.117</td>
</tr>
<tr>
<td>Transportation (RM Processing Vendor)</td>
<td>0.5</td>
<td>11.5</td>
<td>414000</td>
<td>RM Processing Vendor to Factory</td>
<td>10.000</td>
<td>4.14</td>
<td>0.0141</td>
<td>0.058</td>
</tr>
<tr>
<td>Transportation (Factory to Warehouse)</td>
<td>1</td>
<td>23</td>
<td>82800</td>
<td>Factory to Warehouse</td>
<td>4.000</td>
<td>20.70</td>
<td>0.0141</td>
<td>0.292</td>
</tr>
<tr>
<td>Transportation (Warehouse to Customer)</td>
<td>1</td>
<td>23</td>
<td>82800</td>
<td>Warehouse to Customer</td>
<td>4.000</td>
<td>20.70</td>
<td>0.0141</td>
<td>0.292</td>
</tr>
</tbody>
</table>

Figure 6: Process flow of Purchasing Department

Table 1: Lead time calculation per piece for Purchase, Marketing, PPIC, RM
RESULTS

In this section, the summary sheet of SPCL_M14X 1.5X 9.5 SOFT NCRPT 6589 is exhibited (Table 2) in which different activities are recorded with various departments. Amid study, the present value is noted down and target esteem which is to be accomplished is composed (Figure 7). The Target value is reduced as compared to present value. The most noteworthy decrease in target value can be seen in inventory days for computer numerical control (CNC) machine i.e. from 7 days to 1 day which at last, profited in on-time delivery of the product. The production was increased along with the decrease in waiting time which is basically an elimination of one of the seven kinds of wastes. The production is increased along with the decrease in waiting time which is essentially an elimination of one of the seven kinds of wastes. The cost benefit analysis is carried out and number of resources is seen according to the prerequisite. The contribution of single project with total time is carried out. The total cost benefit is most extreme (INR 1,186,025) for manufacturing processes which are increasing the value to the product such as forging, punching, quenching, chrome plating and so forth (Figure 8). The base money saving advantage is accomplished by marketing department which is around INR 11,107. The benefit is seen for all the undersigned projects whether it will increase production or decrease cycle time, waiting time etc. So, overall value stream mapping is done which clearly depicts all the value-added and non-value added activities along with the individual cycle times so that benefits and maximum utilization of resources can be accomplished.

Table 2: Project Summary sheet including the benefits, project time, resources utilized
CONCLUSION

Principle reason for this paper is to create a value stream map and recognize the contribution of waste in a specific undertaking which is influencing the lead time. After a specific assessment (Table 3), the production is increased due to decrease in downtime (forging) and decrease in cycle time (punching and chrome plating). The decrease in waiting time after the manufacturing operations is achieved with increase in batch size. The target value is diminished when compared with present value in inventory days for CNC machine which benefitted on-time delivery of the product (Figure 7). The total cost benefit is INR 1,186,025 for manufacturing processes.

REFERENCES:

