
Revista de Sistemas de Informação da FSMA
n. 16 (2015) pp. 52-70

http://www.fsma.edu.br/si/sistemas.html

52

Abstract — In Distributed Software Development, the adoption

of globally distributed software development teams reduces cost
and development time. In order to meet such benefits, it is
important to find teams with specific technical background,
required for implementing software components and modules that
constitute software products. In such a context, it is a key aspect
to contrast technical background of development teams against
specified technical requirements for implementing the software
project, making it possible to select the most skilled teams to
develop each software component and module. Hence, this paper
proposes, implements and evaluates an application ontology to
support selection processes of distributed development teams,
which are technically skilled to implement software modules in
distributed software projects. As main contribution, experimental
results show that the proposed ontology represents and formalizes
an extremely complex problem in a systematic and structured
way, allowing its direct or customized adoption in selection
processes of globally distributed development teams.

Index Terms — Ontology, Distributed Software Development,
Knowledge Representation and Inference, Selection Process.

I. INTRODUCTION

N the last decades, Software Engineering has been
searching for methods, techniques, processes and tools to

increase productivity and improve the quality of product
development proportionally to the fast evolution of the
hardware industry. With this goal in mind, several software
development approaches have been proposed by academia and
industry. An emphasis is due for the Distributed Software
Development (DSD) approach, which favors the adoption of
globally distributed software teams to develop components or
modules of the software products, decreasing the development
cost and/or time due to the hiring of cheaper workers in
different locations, allowing for a fast team formation as well
as the adoption of the 24 hours development strategy (follow-
the-sun) [1][2]. Besides, DSD makes it viable to find qualified
workers and domain specialists in third-party teams or even in
subsidiary or branch teams in companies with global presence

[3][4][5].
 Consequently, in order to get the benefits of DSD, we
should identify development teams with specific skills and
technical knowledge required for the development of several
software components and modules that compose the software
product. In this context, it is of utmost importance to compare
the skills and technical knowledge of the candidate
development teams against the technical requirements
specified for the implementation of the software project in
order to become possible to identify those that are more
qualified to develop each one of the software components and
modules.

Nevertheless, considering the geographic dispersion
involved in distributed software development projects, it may
become difficult for the project manager to perform the
evaluation of the technical skills of the candidate development
teams, because, in most cases, the project manager does not
develop any full-body activities with the teams, having neither
direct personal contact nor drinking fountain talks [6]. Hence,
it may be difficult for the project manager to get precise and
up to date information on the skills and technical knowledge of
the members of the remotest teams, given that the formal
communication mechanisms based on documents or data
repository do not react in such a fast way as the informal
communication mechanisms.

Besides, even in the cases where the project manager knows
a bit about the skills and abilities of the candidate teams, in
large software projects the task of selecting teams may still be
very complex and subject to evaluation errors, because
different candidate teams may adopt different and ambiguous
vocabulary and incompatible methods to evaluate and identify
their abilities and knowledge.

In this scenario, in order to help project managers select and
allocate teams, a recommendation framework [7] was
developed by the members of the Compose research lab,
affiliated to the Informatics Center at Federal University of
Paraíba. As can be seen in Figure 1, this framework is made of
three recommendation phases: (i) recommending software
modules; (ii) recommending qualified teams; and
(iii) recommending team allocation.

I

An ontology for the recommendation of
technically qualified teams in
distributed software projects

Larissa Barbosa, Gledson Elias
Informatics Center– Federal University of Paraíba

larissa@compose.ufpb.br, gledson@ci.ufpb.br

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

53

Recommending
team allocation

Recommending
software modules

Architectural evaluation

Non-technical evaluation

Mapping of
Teams x Modules

Recommending
qualified teams

Technical evaluation

Dependencies
of modules

Modules

S
o

ft
w

a
re

a
rc

h
it

e
ct

u
re

Te
a

m
s

Figure 1 – Recommendation framework

The first phase, called recommending software modules,
intends to cluster components into software modules, reducing
dependencies between modules and hence minimizing the
communication requirements between the distributed teams
that will be responsible for their implementation [8]. In this
phase, the component clustering decisions are made based on
architectural metrics that quantify the coupling between
software components based on their provided and required
interfaces.

Next, using as input the software modules and the candidate
development teams, the second phase, called recommending
qualified teams, intends to identify the technically qualified
teams to implement each software module. In order to do so,
this phase considers the technologies required to implement
the software modules, as well as the skills and technical
knowledge of each of the candidate teams related to those
technologies.

Finally, based on the technically qualified teams, the third
phase, called recommending team allocation, intends to
identify possible allocations of software modules to teams in a
way to minimize inter-team communication requirements
during the software modules implementation. In this phase,
non-technical attributes of each team are evaluated,
considering, for instance, cultural, geographic and temporal
aspects.

In the context of this recommendation framework, this paper
proposes, implements and evaluates the application ontology
called OntoDDS, whose main goal is to support the selection
of distributed development teams that are technically qualified
to implement software modules in distributed software
projects, allowing for direct or customized application in
development teams selection processes. Hence, the OntoDDS
ontology is part of the second phase of the recommendation
framework which, as mentioned, is called recommending
qualified teams.

The ontology here proposed has the following goals: (i)
characterize the required technologies to implement each
software project module; (ii) characterize the skills and
technical knowledge of the teams according to the

technologies that are required to implement the software
modules; (iii) characterize selection policies that may be used
in software project team selection processes; and (iv)
characterize the suitability of the teams to implement software
modules according to the selection policy adopted in the
software project.

As main contribution, the results of several experiments
performed instantiating the proposed ontology in three use
cases, show that the OntoDDS achieves all the goals it is
proposed to meet, modeling and formalizing in a systematic
and structured way, an extremely complex problem, that is the
selection of technically qualified distributed teams to
implement software modules in distributed software projects.

The rest of this paper is organized as follows. Section II
introduces the main concepts of ontology and defines the
development methodology adopted, and also justifies the
editing tool and specification language choice. Section III
presents and details the proposed ontology, explaining all its
concepts and relationships associated to the selection of
technically qualified distributed teams. In order to observe the
usability and applicability of the proposed ontology, Section
IV presents a use case. Next, Section V presents and discusses
the related works. Finally, Section VI presents some final
considerations, identifies limitations of OntoDDS and presents
some future works.

II. DEVELOPMENT METHODOLOGY

As defined in [9], ontology is an explicit formal description
of the concepts in a domain, the properties of each concept
that describe its characteristics and attributes together with the
restrictions over those properties.

The domain concepts are represented by elements called
classes, which can adopt the inheritance abstraction to create a
class hierarchy, in which each class inherits properties from
one or more superclasses. Classes may have instances, which
correspond to individual objects in the modeled domain. A
class has many characteristics, attributes and restrictions that
are represented by elements called properties.

Each property has a domain and a range, which can belong
to a specific type and may have a set of permitted values, from
simple types to class instances. Properties may be divided into
object properties and datatype properties. The object
properties are related to instances of one or two classes. On the
other hand, the datatype properties create a relationship
between a class instance and values of a simple type, such as
strings and numbers. Each instance may have concrete values
to its class properties.

On the subject of ontology development methodology, there
are in the literature several proposals to systematize the
construction and evolution of ontologies. Cristani and Cuel
[10] present an evaluation and classification of several of those

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

54

proposals, providing a framework that can be used to help
choose the adopted methodology, taking into consideration the
phases and their input and output artifacts. Nevertheless, in
spite of the valuable contributions, none of the methodologies
presented in the literature can be considered as the correct one.
Indeed, none of them has enough maturity and, therefore, there
is no consensus on which is the best, the more complete or
more adequate that can be widely applicable to any domain
and application need.

In this context, given the simplicity of its documentation, its
ease of use, the large number of tools and its focus in the
construction of ontologies, we chose the methodology
Ontology Development 101 [9], which defines a very simple
guide based on an iterative approach that helps ontology
designers, even those who are not experts, to create an
ontology using a specification tool such as Protégé [11].

The methodology Ontology Development 101 was
developed by researchers that work directly with the
development of ontology specification tools, such as the
Protègè tool, for instance. Hence, the many phases of the
methodology are fully supported by such tools. On the other
hand, even though it is more robust and sophisticated, the
methodology Methontology does not have as a requirement
tool support to automatize all its phases, which may make it
more difficult to adopt it in a real case, given that there is a
combination of informal descriptions and formal
concretization in ontology languages that are developed in
different phases, increasing the distance between the real
world models and the executable systems.

Besides, differently from Ontology Development 101, some
methodologies, such as Dolce, do not focus in the set of steps
that must be followed to build the ontology. Instead, they focus
only on the philosophical aspects or on the logic expressivity
issues. In other methodologies, such as Diligent, a critical
aspect is the need for several experts with different and
complementary competences, which must be involved in the
collaborative and distributed ontology development.

The methodology Ontology Development 101 is based on
seven iterative phases, as shown in Figure 2. In general,
ontology development methodologies may be applied using
the top-down or bottom-up approaches, or even a combination
of them [9]. None of those approaches is inherently better that
the others and the judgment depends on the personal view of
the ontology designers on the domain. In spite of that, in the
development of OntoDDS, we chose the top-down approach
because it favors the control of the detail level, avoiding the
excessive details present in the bottom-up approach, which can
take to more rework, effort and inconsistencies, besides
making it more difficult to identify relationships and
similarities among different concepts [12].

The phases of the adopted methodology can be explained as
follows:

O
n

to
lo

g
y

 D
e

v
e

lo
p

m
e

n
t

1
0

1

Determine the domain and scope of the ontology

Reuse existing ontologies

Enumerate important terms in the ontology

Define classes and class hierarchies

Define the properties of classes

Define facets of the properties of classes

Create instances

Figure 2 – Phases of the adopted methodology

Determine the domain and scope of the ontology. In the
proposed ontology, the domain is the representation of
distributed software development projects, and, in a more
specific way, the scope is the selection of technically qualified
teams to implement software modules. In this phase, it is also
important to raise competency questions, which must be
answered by the ontology to its users, which, in the case at
hand, are the project managers. In OntoDDS, we identify the
questions shown in Figure 3, which may be seen as the
ontology requirements.

(i) Which technologies are required to implement the software modules?

(ii) Which are the distributed development team skills in the required
technologies?

(iii) Which selection criteria may be used to identify the suitability of the teams
for the software modules implementation?

(iv) Which teams can be recommended to the project managager as technically
qualified to implement each software module?

Figura 3 – Competency questions

Reuse existing ontologies. As can be seen in Section V, the

related works show evidence of the lack of ontologies that can
be reused in the scope of OntoDDS.

Enumerate important terms in the ontology. Given the
domain and scope of OntoDDS, initially we enumerated the
main terms, including the concepts of software project,
software modules, development teams, required technologies,
selection policies, team recommendation, technological
requirements, team knowledge and skills, and team technical
suitability.

Define classes and class hierarchies. We adopted a top-
down approach for the specification of classes, beginning with
the concepts of software project, software modules that make
the software product under development and candidate teams
for the implementation of software modules. Next, we began
the modeling of the technological requirements for the
modules, allowing us to represent the required technologies to
implement each software module. Afterwards, we modeled the
development teams based on their developers. After modeling
team composition, we modeled the personal skill in several
technologies and then, the team skills in those technologies. In
the next iteration we modeled the concept of selection policies
with their selection rules. Finally, we modeled the team

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

55

recommendation to technologies and software modules.
Define the properties of classes. We performed the top-

down modeling of the classes in an iterative way, adding the
object and datatype properties for each of the classes and thus
representing composition and relationship aspects among
instances of the classes and keeping in mind that the
knowledge representation should make it possible to answer
the competency questions.

Define facets of the properties of classes. In this phase we
detailed the data types, the domains and possible values, as
well as the cardinality restrictions for each class property.
Besides, in this phase we also created the axioms for automatic
inference of properties for instances of the classes. In an
iterative way, the three previous phases create as output
artifact the ontology OntoDDS, which is detailed in
Section III.

Create instances. In this final phase, we create the
instances of the classes and afterwards, the object and datatype
properties associated to the classes. The ontology instantiation
was performed in different software projects in order to
evaluate if it satisfies the requirements defined during its
construction and, more specifically, if it is possible to answer
the competency questions. It is worth remembering that
Section IV presents details on the instantiation of the ontology
OntoDDS.

It is important to point out that the ontology development
was specified using the Protégé tool [11], which supports the
constructors of the OWL [13] specification language,
recommended by W3C.

In the literature there are several languages and tools for the
specification of ontologies. Several domain independent
languages were proposed and disseminated to represent
knowledge, including RDF, KIF, DAML+OIL and, more
recently, OWL.

RDF is a data representation language based on XML that
allows us to describe information in a structured way,
providing basic facilities to define domain vocabularies but
with expressivity limitations that make it difficult to execute
automatic reasoning. As an answer to those limitations, KIF is
a knowledge description language that is based on descriptive
logic and was designed to facilitate automatic reasoning, even
if it would become less legible to humans. Besides, the rich
expressivity of KIF makes its computational complexity very
high, turning it not viable to large scale automatic reasoning.

Seeking to improve expressivity and legibility,
DAML+OILD was proposed as a language derived from the
combination of the resources available at the languages DAML
and OIL, both based on RDF. DAML+OILD can be seen as a
thin layer over RDF, with formal semantics based on
descriptive logic, which increments the expressivity of RDF,
improving on its limitations concerning automatic reasoning.
In this line of evolution, OWL is considered as a successor
language, standardized by the W3C, which incorporates the
lessons learned in the design and application of the language

DAML+OILD, including a rich set of constructors for the
representation of knowledge in different expressivity levels.
Because it represents an evolution of the other languages in
terms of legibility, interoperability and expressivity, OWL was
chosen as the specification language for OntoDDS.

There are several tools to specify ontologies, including
OilEd, Swoop, OntoEdit and Protégé. In general, as basic
functionality, these tools allow for the creation and editing of
ontologies. As a differential, it is desirable that a tool allows
the visual manipulation of the ontology with a graphic
interface, abstracting details of the generation of the ontology,
which may be imported or exported into different specification
languages. Besides, for the evaluation and validation of
ontologies, it is required the support of logical reasoning.

Considering this set of functionalities, an evaluation of
available tools comes to the conclusion that Protégé fulfills
practically all the requirements mentioned above, which are
not always fulfilled completely by the other options [14]. More
specifically, the Protégé tool is a platform for the creation,
editing, graphic visualization and ontology validation, being
able to import and export specifications in OWL and RDF. As
a differential, it also supports different logical engines, such as
Pellet and FaCT++. Besides, it has been adopted by a large
user community that cooperates in the constant evolution of its
functionalities. Due to the exposed, we chose the Protégé tool
to model OntoDDS.

III. ONTODDS

In the context of this paper, a distributed software project is

composed of a set of software modules that can be developed
by a set of candidate teams that are globally distributed.

In order to represent the software project, its modules and
the candidate teams, as illustrated in Figure 4, the proposed
ontology adopts the classes called Projeto (Project), Modulo
(Module) and Equipe (Team), respectively1.

In Figure 4, the object property called compostoDe
(madeOf) represents the relationship between projects and
their modules, indicating that a software project is made of
several software modules. The object property temCandidata
(hasCandidate) represents the relationship between projects
and candidate teams, indicating that a software project has
many associated candidate teams that can implement its many
software modules.

In the conceptual maps, the concepts and relationships are
represented as follows: ellipsis represent the classes, rectangles
represent instances, blue arrows represent object properties,
green arrows represent datatype properties and black arrows
represent subtypes.

1

 In order to keep the ontology source code working as in its original, the

class names and all OWL code will be kept in Portuguese.

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

56

Projeto

Modulo

Equipe

Figure 4 – Projects, Modules and Teams

A software project is characterized also by the adoption of
team selection policies, which based on different criteria may
recommend different teams for each one of the modules that
need to be implemented.

The selection policies present cut points that establish a
suitability level that is the minimum for the teams to be
considered adequate to implement the software modules.

In order to represent the projects, their policies and cut
points, as shown in Figure 5, the proposed ontology has the
classes called Projeto (Project), Politica (Policy) and
PontoDeCorte (CutPoint).

In Figure 5, the object property called adotaPolitica
(adoptsPolicy) represents the relationship among projects and
selection policies, according to the specific project needs. On
the other hand, the object property temPontoDeCorte
(hasCutPoint) represents the relationship between projects and
their cut points, indicating that a software project has different
cut points for each of its possible policies using the object
property naPolitica (inPolicy).

Projeto

Politica

PontoDeCorte

naPolitica

Figure 5 – Projects, Selection Policies and Cut Points

Considering that the goal of the OntoDDS ontology is the
team selection process, two types of recommendations are
offered inside the ontology for the selection of teams that are
capable of implementing software modules.

The first type of recommendation is represented by the class
called Recomendacao (Recommendation) and is characterized
by the evaluation of candidate teams according to the software
modules and the technologies that are required to implement
them. Its goal is to identify the suitability of each team in
relation to the technologies and skills required to implement
the software modules at hand.

The second type of recommendation is represented by the
class RecomendacaoFinal (FinalRecommendation) and is
characterized by the selection of the teams that can implement
each software module based on the cut point adopted by the
software project.

In order to represent the projects and their
recommendations, as shown in Figure 6, the proposed

ontology adopts the classes called Projeto (Project),
Recomendacao (Recommendation) and RecomendacaoFinal
(FinalRecommendation).

In Figure 6, the object properties called temRecomendacao
(hasRecommendation) and temRecomendacaoFinal
(hasFinalRecommendation) represent the relationships
between projects and their respective recommendations,
showing that a software project may have several different
recommendations.

Projeto

Recomendacao

RecomendacaoFinal

Figure 6 – Projects and Recommendations

Figure 7 presents the full ontology integrating and
expanding the conceptual maps of the previous figures. It
should be noted that the classes Projeto, Modulo, Equipe,
Politica, PontoDeCorte, Recomendacao and
RecomendacaoFinal, already introduced by Figures 4, 5, and 6
now can be seen in an integrated way in Figure 7. On the other
hand, the classes Requisito, Habilidade, Tecnologia, Pessoa
and Regra represent expansions related to the conceptual maps
of Figures 4, 5, and 6, and will be presented in detail in the
next subsections.

Recomendacao

RecomendacaoFinal

Modulo Equipe

Requisito

Tecnologia

PessoaHabilidade

Politica

PontoDeCorte

Regra

Projeto

Figure 7 – Conceptual map of the OntoDDS ontology

It is important to point out that OntoDDS is described in
OWL and hence, all the classes shown in Figure 7 are defined
using the constructor owl:Class. For instance, Figure 8 shows
the definition of the classes Projeto, Modulo and Equipe.
Another point to highlight is that OntoDDS neither uses the
constructor owl:disjointWith to create disjoint classes nor the
constructor rdfs:subClassOf to create class hierarchies, except
when necessary in cardinality restrictions of the object and
datatype properties.

<owl:Class rdf:ID="Projeto“ />

<owl:Class rdf:ID=“Modulo“ />

<owl:Class rdf:ID=“Equipe“ />
Figure 8 – Class definition

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

57

In the definition of object and datatype properties, we use

the constructors owl:ObjectProperty and
owl:DatatypeProperty, with its domain and range restrictions
defined with the constructors rdfs:domain and rdfs:range.

Figure 9 shows the definition of the object property
temCandidata, which has the class Projeto as domain and the
class Equipe as range. Other types of constructors were also
used in some object and datatype properties, and will be
clearly indicated in the next subsections.

<owl:ObjectProperty rdf:ID="temCandidata">

<rdfs:domain rdf:resource="#Projeto" />

<rdfs:range rdf:resource="#Equipe" />

</owl:ObjectProperty>

Figure 9 – Definition of an object property

The next subsections explain in detail the object and
datatype properties of the classes, as well as their cardinality
restrictions and inference axioms. It is important to point out
that the subsection structure was defined considering the
competency questions that must be answered by the ontology,
as defined in Figure 3.

A. Characterization of Software Modules

The team skills and knowledge evaluation, required for the
implementation of software modules, creates the need to
represent information of the software modules, specially
related to the technical requirements for their implementation.
Therefore, the characterization of software modules must
identify the technologies required to implement each of the
software project modules, as well as the necessary skill levels.
In order to perform this module characterization, the project
manager must rely on the support of the software engineers
and architect, the responsible parties for the specification of
the software architecture.

In the ontology proposed here, the number of levels and the
terms used to describe the knowledge levels may be redefined
by the project manager, if he deems necessary. The initial
proposal defines the knowledge levels using the terms “Baixo”
(Low), “Medio” (Average) and “Alto” (High).

The characterization of the technical requirements must be
performed for each software module that will be implemented
in the software project. As we can see in Figure 10, in
OntoDDS the characterization of the technical requirements
for software modules is performed through the instances of the
classes Modulo (Module), Requisito (Requirement) and
Tecnologia (Technology), which are related through the object
properties called temRequisito (hasRequirement) and
naTecnologia (inTechnology).

Modulo Requisito Tecnologia
temRequisito naTecnologia

string

termoReq

1...* 1...*

1

Figure 10 – Modules, Requirements and Technologies

The object property temRequisito associates a specific
software module m with a requirement r, and through its
datatype property termoReq (reqTerm), flags the required
knowledge level n, whose initially proposed levels are
“Baixo” (Low), “Medio” (Average) and “Alto” (High).

Besides, the object property naTecnologia associates the
requirement r with a specific technology t. Hence, together,
these classes and properties represent the fact that the module
m has the requirement r in the technology t, with required
knowledge level n.

It is important to point out that in the definition of a class,
we can also define cardinality restrictions for the object and
datatype properties inside this class using the constructors
owl:minCardinality, owl:cardinality and owl:maxCardinality.

Figure 10 illustrates instances of the class Modulo that has
at least one associated requirement through the object property
temRequisito. Similarly, instances of the class Requisito have
at least one associated technology through the object property
naTecnologia. Besides, each instance of the class Requisito
has exactly one textual term associated through the datatype
property termoReq. Figure 11 highlights the cardinality
restriction of the object property temRequisito to the class
Modulo, indicating that each module must have at least one
associated requirement.

<owl:Class rdf:ID="Modulo">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#temRequisito" />

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Figure 11 – Cardinality restriction

B. Characterization of Development Teams

After characterizing the technical requirements for software
modules, it is necessary to gather information from the teams
on the required technologies to implement them. In OntoDDS
the skill and technical knowledge that each team possesses on
each technology must be measured and then represented by a
real number in the interval [0, 1].

For each technology, three pieces of data must be gathered:
years of experience, number of developed projects and number
of degrees. As can be seen in [15][16], in general, the years of
experience in a specific technology, as well as the degrees in
this technology (including certifications and courses) can be
used to evaluate whether an individual is an expert in a
specific technology. Weiss [17] explains that an important
factor to determine if someone is an expert in a specific
domain is his discriminating ability, which is taken as the
ability to identify subtle differences in similar contexts.
Nevertheless, this ability to discriminate can only be achieved

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

58

through observation of the events as the years go by, given that
is typically an empirical data.

Nevertheless, it is possible to infer, to a certain degree, the
discriminating ability of a person through the number of
projects he/she has previously worked on. That is, given that
the ability to discriminate is acquired through the participation
in many different projects with similar contexts, the more
someone participates in projects, the higher the probability that
he/she will have analyzed domains that have small differences,
which increases his ability to discriminate [18]. This way, we
can say that the piece of data number of developed projects
has a high correlation with the ability to discriminate and can
be used as its replacement.

Hence, information pertaining years of experience, number
of developed projects and number of degrees are used in the
OntoDDS ontology to characterize the technical attributes of
teams. It is important to point out that this information is
widely discussed in the literature pertaining to certain areas,
such as expert identification [16][17], team selection [18],
expert recommendation [19][20], human resources allocation
[21][22][23], task assignment [24] and employee recruitment
[25][26].

Figure 12 shows that in the ontology proposed the teams are
represented by individuals of the classes Equipe (Team),
Pessoa (Person) and Tecnologia (Technology), which are
related by the object properties possuiPessoa (hasPerson),
temExperiencia (hasExperience) and temProjeto (hasProject),
as well as through the datatype property called temTitulo
(hasDegree).

Equipe Pessoa Tecnologia
possuiPessoa

temExperiencia

string

temTitulo
temProjeto

1...*

*

**

Figure 12 – Teams, Persons and Technologies

The object property possuiPessoa (hasPerson) associates a
certain member m from a certain team e, which, through its
datatype property temTitulo (hasDegree) and its object
properties temExperiencia (hasExperience) and temProjeto
(hasProject), associate the member m to a specific
technology t. Hence, together, those classes and properties
represent that the team has one or more members with degrees,
projects and experiences in the many technologies that are
required in the software project at hand.

Figure 13 shows the properties temExperiencia e
temProjeto, which possess sub-properties representing
respectively, the years of experience a member m has in a
technology t, as well as the number of projects developed by
member m in a technology t.

1-3_anos_exp

3-5_anos_exp

nenhuma_exp

7-9_anos_exp

+9_anos_exp

temExperiencia

5-7_anos_exp

1-5_proj

5-10_proj 10-15_proj

nenhum_proj

15-20_proj

+20_proj

temProjeto

Figure 13 – Sub-properties for years of experience and number of projects

It is important to highlight that the sub-properties
temExperiencia and temProjeto are defined with the
constructors owl:ObjectProperty and rdfs:subPropretyOf, as
shown in Figure 14 for the sub-property nenhuma_exp
(no_experience).

<owl:ObjectProperty rdf:ID="nenhuma_exp">

<rdfs:subPropertyOf rdf:resource="#temExperiencia" />

</owl:ObjectProperty>

Figure 14 – Definition of sub-property

At this point, from the characterization of the knowledge

and skill set of the developers in all technologies, the project
manager can derive and measure empirically or
mathematically, the technical skills of each team in relation to
technologies required by software modules. It must be pointed
out, though, that in the case studies performed, the
mathematical approach developed by Santos [15] was adopted
to derive the technical skills of the teams. In this mathematical
approach, based on the forms filled by each developer about
the years of experience, number of degrees and projects in
each technology, the answers are weighted in a set of equations
that derives the level of knowledge from each developer in
each technology. Next, based on the skill level for each
member of each team in a specific technology, we can derive
mathematically the knowledge level of the whole team in that
technology.

Once derived and measured the technical skills for each
team, now it is necessary to represent them in the ontology.
Figure 15 shows in now we represent in the ontology using
classes Equipe (Team), Habilidade (Skill) and Tecnologia
(Technology), related by properties temHabilidade (hasSkill)
and naTecnologia (inTechnology). Property temHabilidade
associates a given team e to one or more skills h, which,
through its datatype property valorHab (skillValue) signalizes
the real numeric value within the interval [0, 1] that represents
the team skill. On the other hand, the property naTecnologia
associates a skill h to a specific technology t. Hence, together,
these classes, object properties and datatype properties
represent that a team e has skill h in technology t.

Equipe Tecnologia
temHabilidade naTecnologia

float [0, 1]

valorHab

string

termoHab

Habilidade
1...* 1

11

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

59

Figure 15 – Teams, Skills and Technologies

Even though the team skill level is calculated as a real

number in the interval [0, 1], the ontology also represents
technical skill as textual terms such as: “Nenhuma” (None),
“Baixa” (Low), “Media” (Average) and “Alta” (High). These
terms also represent the team technical skill in a specific
technology. Figure 15 shows that the technical skills and their
respective terms are represented as the datatype properties
valorHab (skillValue) and termoHab (skillTerm), which
represent respectively the numerical value and the textual term
that characterize the technical skill a team e has in a specific
technology t.

C. Characterization of Selection Policies

Once identified and represented the technologies required to
implement the software modules, as well as the technical skills
of each team in each of those technologies, it is necessary to
define a policy for the selection of the teams that are
technically qualified to implement the software modules.

According to the needs of the software project, different
policies may be adopted, changing the way the teams can be
selected. For instance, if a project is late, selecting the teams
more qualified to implement the modules may be the best
option, making it easier for them to perform their task in a
shorter time. Nevertheless, choosing the most qualified teams
is not always the ideal choice, given that selecting them may
cause them to waste their knowledge and also lead to higher
costs, in case their technical knowledge level is much higher
than the one required to implement the software modules.
Hence, it is important to select a policy that tries to choose
teams with technical knowledge levels as close as possible to
those required to implement the software modules, in order to
avoid knowledge waste and minimize project costs.

Hence, the definition of selection policies is determined by
the specific project needs and by the organizational context in
which the software project is immersed. Consequently, it is of
the utmost importance to allow project managers to adjust the
adopted policies or create new ones according to the needs of
different software projects.

A selection policy can be understood as a table of rules of
the type IF-THEN , which correlate the terms in the rows with
the ones in the column, defining rules that generate the desired
results, represented by the cells in their intersections. Table I
shows a possible example of selection policy. Notice that the
number of rules in a policy is equivalent to the product of the
number of rows with the number of columns.

.
Table I – Selection policy

 Module
 Required Knowledge Level
 Low Average High

T
ea m

T

ec
hn

i
ca

l
S

ki
ll

Le
ve

l None Average Low None
Low High Average Low

Average Average High Average
High Low Average High

At Table I, we can understand the rule composition with the

following example: IF Team Skill Level is “None” AND
Required Knowledge Level is “Average” THEN Suitability
Level of this team to this module is “Low”.

The proposed ontology represents the policies as individuals
of the classes Politica (Policy) and Regra (Rule), which are
related by the object property temRegra (hasRule), as can be
seen at Figure 16. Please observe that a certain policy p must
be associated with a set of rules {r 1, r2, ..., rn}, modeling each
of the cells that make up the table that represents the selection
policy at hand.

Politica Regra
temRegra

string

requeridoPorModulo
string

adequabilidade

string
conhecidoPorEquipe

1...*

1

1

1

Figure 16 – Policies and Rules

In turn, rules are modeled using the datatype properties
called requeridoPorModulo (requiredByModule),
conhecidoPorEquipe (knownByTeam) and adequabilidade
(suitability), which represent, respectively, the knowledge
level required in a specific technology t by the module m, the
technical proficiency of team e in this technology t, and,
consequently, the technical suitability of team e for the
implementation of module m concerning the technology t.

D. Characterization of the Technically Proficient Teams

Once we know the information concerning the technologies
that are required to implement the software modules, as well as
the team skill levels on these technologies, it is important to
apply the selection policy to discover the technical suitability
of each team to implement each module.

The proposed ontology represents the technical suitability of
the teams as recommendations. As discussed above, this
ontology has two kinds of recommendations, represented by
the classes Recomendacao (Recommendation) and
RecomendacaoFinal (FinalRecommendation).

Recommendation of Teams to Required Technologies

The conceptual map illustrated in Figure 17 shows in detail
the characterization of the class Recomendacao. Considering a
team e, a software module m and a technology t required to
implement it, the purpose of a recommendation is to identify
which rule r of the selection policy p must be chosen.

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

60

Politica
recomendaPolitica

Equipe

Modulo

recomendaEquipe

Tecnologia

recomendaRegra

recomendaTecnologia

Regra

recomendaModulo

Recomendacao

Projeto

1
1

1
1

1

Figure 17 – Recommendation of teams to technologies

In order to represent this relationship between the
recommendation, the adopted selection policy, the evaluated
team, the software module under scrutiny, the considered
technology and the instantiated selection rule, each instance of
the class Recomendacao has a set of object properties, which
is: recomendaPolitica (recommendsPolicy), recomendaEquipe
(recommendsTeam), recomendaModulo
(recommendsModule), recomendaTecnologia (recommends
Technology) and recomendaRegra (recommendsRule).
Together, these object properties represent, respectively, the
selection policy adopted in the software project, the
development team under evaluation, the software module
under scrutiny, the technology required to implement it and,
finally, the rule of the selection policy that must be considered.

It is important to point out that the object properties whose
domain is the class Recomendacao are represented as
functional properties using the constructor
owl:FunctionalProperty, as illustrated in Figure 18 for the
object property recomendaRegra. Together, these properties
signalize that each recommendation must be associated to a
single policy, team, module, technology and rule.

<owl:FunctionalProperty rdf:ID="recomendaRegra">

<rdfs:domain rdf:resource="#Recomendacao" />

<rdfs:range rdf:resource="#Regra" />

</owl:FunctionalProperty>

Figure 18 – Functional property

It should be noted that the object properties

recomendaPolitica, recomendaEquipe, recomendaModulo and
recomendaTecnologia can be derived from information
already stored in the ontology, that is, the characterization of
the modules and the required technologies; the
characterization of teams and their knowledge level on each
required technology; the characterization of the selection
policy adopted in this specific software project. For instance,
to infer the property recomendaEquipe (recommendsTeam),
we only need a query to OntoDDS to identify all the candidate
teams associated with this project and, next, instantiate a new
recommendation and associate it to each candidate team
through the property recomendaEquipe. The other properties
are inferred in a similar way and, at the end, we have a
recommendation for each combination of policy, team, module
and technology.

On the other hand, the object property recomendaRegra
must be inferred based on the selection policy adopted,

considering the development team under evaluation, the
software module that needs to be implemented and the
associated technology. At this point, the rule inference
indicated for each recommendation is performed by the axiom
represented in Figure 19. In order to infer the selection policy
rule, we need to identify: (i) the selection policy po adopted by
project pr; (ii) the knowledge level vreq required by module m
at technology t; and (iii) the skill level vh of team e at
technology t.

Projeto(?pr), Politica(?po), Regra(?r),
adotaPolitica(?pr, ?po), temRegra(?po, ?r),

Modulo(?m), Requisito(?req), Tecnologia(?t),
temRequisito(?m, ?req), naTecnologia(?req, ?t), termoReq(?req, ?vreq),

Equipe(?e), Habilidade(?h),
temHabilidade(?e, ?h), naTecnologia(?h, ?t), termoHab(?h, ?vh),

Recomendacao(?re), temRecomendacao(?pr, ?re),
recomendaPolitica(?re, ?po), recomendaEquipe(?re, ?e),
recomendaModulo(?re, ?m), recomendaTecnologia(?re, ?t),
conhecidoPorEquipe(?r, ?vh), requeridoPorModulo(?r, ?vreq)

-> recomendaRegra(?re, ?r)

Figure 19 – Axiom for the recommendation of a selection rule

At the axiom in Figure 19, it should be noted that the policy

po adopted at project pr is inferred in a direct way, evaluating
the object property adotaPolitica(?pr, ?po), modeled in the
conceptual map previously shown in Figure 5.

In order to identify the knowledge level vreq required by
module m at technology t, the axiom evaluates some object
and datatype properties. Initially, the properties
temRequisito(?m, ?req) and naTecnologia(?req, ?t) identify a
specific requirement req, which represents the fact that module
m requires technology t.

Next, considering the requirement req, the datatype property
termoReq(?req, ?vreq) identifies the knowledge level vreq,
required by module m at technology t.

 Now, to identify the skill level vh of team e at technology t,
the axiom also considers some object and datatype properties,
modelled in the conceptual map previously shown at Figure
15.

First of all, the object properties temHabilidade(?e, ?h) and
naTecnologia(?h, ?t) identify a specific skill h, which
represent the fact that team e has knowledge on technology t.
Hence, considering skill h, the datatype property
termoHab(?h, ?vh) identifies the skill level vh of team e at
technology t.

 At this point, knowing the adopted policy po, the
knowledge level vreq required by the module at the evaluated
technology and the skill level vh of the team at this technology,
the axiom can infer the adopted rule r, evaluating the object
property temRegra(?po, ?r) and the datatype properties
requeridoPorModulo(?r, ?vreq) and
conhecidoPorEquipe(?r, ?vh), both of which were modeled in
the conceptual map shown at Figure 16.

Finally, once we identified the rule r to be adopted, the
axiom infers the object property recomendaRegra(?re, ?r),
representing the fact that the recommendation re must adopt

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

61

rule r, which in turn represents in its datatype property
adequabilidade (suitability), the suitability level related to the
knowledge of the team at the technology under discussion
required by the software module.

Recommendation of Teams to Software Modules

Based on the development team recommendation for each
required technology it is possible to measure the suitability of
the teams for each software module. For this, the project
manager must adopt an empirical or mathematical formula to
calculate the team suitability to the modules, based on the team
suitability for each technology required by each module.

This team suitability for each software module is
represented in the ontology by the class RecomendacaoFinal
(FinalRecommendation), whose conceptual map is shown in
Figure 20. Each final recommendation is characterized by
having the object properties recomendaPolitica
(recommendsPolicy), recomendaEquipe (recommendsTeam),
recomendaModulo (recommendsModule) and the datatype
properties valorAdeq (suitabilityValue), termoAdeq
(suitabilityTerm) and adequada (adequate).

The object properties represent, respectively, the policy that
was selected in the software project, the evaluated candidate
team and the soon to be implemented module. Observe that the
object properties whose domain is the class
RecomendacaoFinal are represented as functional properties
using the constructor owl:FunctionalProperty, being specified
in a way that is similar to the example of Figure 18. Together,
these properties signalize that each final recommendation must
be associated to a single policy, team and module.

The datatype properties valorAdeq and termoAdeq
represent, respectively, the numeric value in the interval [0, 1]
and the textual term for the team suitability to the module that
will be implemented. This information will consolidate the
possible candidate teams that can implement the modules of a
specific software project.

Politica
recomendaPolitica

string

Equipe

Modulo

recomendaEquipe

recomendaModulo

float [0, 1]

boolean

valorAdeq

adequada

termoAdeq

Projeto

RecomendacaoFinal

temRecomendacao

1...*

1

1

1

1

1
1

Figure 20 – Recommendation of Teams to Software Modules

Please observe that we did not include the datatype property
adequada (suitable) on purpose, because it is related to the
application of the cut point which will be seen later in this
section.

Once we calculated the individual technical skill for each
development team member and the team technical ability,
these numerical suitability values are converted to fuzzy
textual terms through the application of axioms, so that it is
possible to determine the final team suitability, which can be

seen in Figures 21, 22, 23 and 24.

Projeto(?pr), RecomendacaoFinal(?rf),
temRecomendacao(?pr, ?rf),

Politica(?po), Equipe(?e), Modulo(?m),
recomendaPolitica(?rf, ?po), recomendaEquipe(?rf, ?e), recomendaModulo(?rf, ?m),
valorAdeq(?rf, ?v), greaterThanOrEqual(?v, 0.0f), lessThan(?v, 0.15f)

-> termoAdeq(?rf, "Nenhuma")

Figure 21 – Axiom for Final Suitability “Nenhuma” (None)

Projeto(?pr), RecomendacaoFinal(?rf),
temRecomendacao(?pr, ?rf),

Politica(?po), Equipe(?e), Modulo(?m),
recomendaPolitica(?rf, ?po), recomendaEquipe(?rf, ?e), recomendaModulo(?rf, ?m),
valorAdeq(?rf, ?v), greaterThanOrEqual(?v, 0.15f), lessThan(?v, 0.45f)

-> termoAdeq(?rf, “Baixa")

Figure 22 – Axiom for Final Suitability “Baixa” (Low)

Projeto(?pr), RecomendacaoFinal(?rf),
temRecomendacao(?pr, ?rf),

Politica(?po), Equipe(?e), Modulo(?m),
recomendaPolitica(?rf, ?po), recomendaEquipe(?rf, ?e), recomendaModulo(?rf, ?m),
valorAdeq(?rf, ?v), greaterThanOrEqual(?v, 0.45f), lessThan(?v, 0.75f)

-> termoAdeq(?rf, "Media")

Figure 23 – Axiom for Final Suitability “Media” (Average)

Projeto(?pr), RecomendacaoFinal(?rf),
temRecomendacao(?pr, ?rf),

Politica(?po), Equipe(?e), Modulo(?m),
recomendaPolitica(?rf, ?po), recomendaEquipe(?rf, ?e), recomendaModulo(?rf, ?m),
valorAdeq(?rf, ?v), greaterThanOrEqual(?v, 0.75f), lessThan(?v, 1.00f)

-> termoAdeq(?rf, “Alta")

Figure 24 – Axiom for Final Suitability “Alta” (High)

Observe that in Figure 20, the object properties called
recomendaPolitica (recommendsPolicy), recomendaEquipe
(recommendsTeam) and recomendaModulo (recommends
Module) can be derived from information already stored in the
ontology, related to the characterization of modules, teams and
selection policies. At this point, the inference of textual
suitability term referring to the numerical value can be
automatically performed by the axioms. In order to infer the
suitability term, we need to identify: (i) the policy po adopted
by the project pr; (ii) the numerical value of the suitability rf
of team e to module m.

For example, in the axiom of Figure 21, please observe that
the textual term for suitability is inferred in a direct way
evaluating the property valorAdeq(?rf, ?v), modeled in the
conceptual map illustrated in Figure 20.

In order to identify the textual term for suitability of team e
to module m based on policy po, the axiom evaluates some
object and datatype properties modeled in the conceptual map
of Figure 20. Initially, the object properties called
recomendaPolitica(?rf, ?po), recomendaEquipe(?rf, ?e) and
recomendaModulo(?rf, ?m) identify a final recommendation rf
associated to a specific policy po, a specific team e, and a
specific module m. Next, the datatype property
valorAdeq(?rf, ?v) identifies the numerical value of suitability
v of team e to implement module m using policy po. Finally,

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

62

considering the numerical suitability value v, the axiom infers
the textual term for suitability of the final recommendation rf.
For that, the axiom performs a comparative analysis among the
numerical value to suitability v and the intervals defined for
each of the textual terms. For example, in the axiom of Figure
21, the textual term is “Nenhuma” (None). For a team to have
this textual term, it is necessary that the suitability is higher
than or equal to 0 and less than 0,15.

The axioms for the next suitability terms (“Baixa” ,
“Media” and “Alta”), can be seen in Figures 22, 23 and 24,
respectively, according to the limits defined for the numeric
intervals of the textual terms.

Application of the Cut Point

With the goal of filtering out the teams that might have a
low suitability, a cut point defined by the project manager
must be used. This step consists simply in eliminating those
teams that do not reach the cut point. For that, we must update
the instances of the class RecomendacaoFinal
(FinalRecommendation), setting the value of its datatype
property called adequada (suitable) as illustrated in Figure 20.
It is important to point out that the update of the property
adequada is made automatically through an ontology axiom,
as will be detailed below in this section.

Figure 5 shows that in the OntoDDS ontology, each project
has its own selection policy and its own cut point, represented
by the relationship among classes Projeto, Politica and
PontoDeCorte, through the object properties adotaPolitica
(adoptsPolicy), temPontoDeCorte (hasCutPoint) and
naPolitica (inPolicy). Please notice that in order to be possible
to adopt different cut points for different selection policies, it
was necessary to define a relationship between individuals of
the classes PontoDeCorte and Politica, through the object
property naPolitica, as is better illustrated by Figure 25.

Projeto PontoDeCorte Politica
temPontoDeCorte naPolitica

float [0, 1]
pontoDeCorte

* 1

1

adotaPolitica

1...*

Figure 25 – Detailed view of Ponto de Corte (Cut Point)

The object property temPontodeCorte (hasCutPoint)
associates a project p to a specific cut point pc, which through
its datatype property pontoDeCorte (cutPoint) stores a real
numeric value n in the interval [0, 1], stipulated by the project
manager to determine if a specific team is able to implement a
specific software module. On the other hand, the object
property naPolitica (inPolicy) associates the cut point pc to a
specific policy po. Hence, together, those classes and
properties represent the fact that the project p has the cut point
pc with value n in the policy po.

It is important to point out that the object property
naPolitica is represented as a functional property using the

constructor owl:FunctionalProperty, in a way that is similar to
the one shown in Figure 18.

The object properties temPontoDeCorte and naPolitica and
the datatype property pontoDeCorte may be derived directly
from information already stored in the ontology on the project
characterization and its adopted selection policy. At this point
the suitability value inference as a function of the cut point is
made by the axiom represented in Figure 26. In order to infer
whether the team suitability is acceptable in relation to the cut
point, we need to identify the following: (i) the policy po
adopted by the project pr; (ii) the numeric value of the
suitability va of team e in module m; and (iii) the numeric
value of the cut point vpc adopted by the policy po.

Projeto(?pr), PontoDeCorte(?pc), Politica(?po),
temPontoDeCorte(?pr, ?pc), naPolitica(?pc, ?po), pontoDeCorte(?pc, ?vpc),

RecomendacaoFinal(?rf),
temRecomendacao(?pr, ?rf), recomendaPolitica(?rf, ?po),
valorAdeq(?rf, ?va), greaterThanOrEqual(?va, ?vpc)

-> adequada(?rf, true)

Figure 26 – Axiom for Ponto de Corte (Cut Point)

In order to identify if the numeric value of the suitability va
of a team e to implement module m is acceptable considering
the cut point pc, the axiom evaluates some object and datatype
properties modeled in the conceptual map shown in Figure 25.
Initially, the object properties temPontoDeCorte(?pr, ?pc) and
naPolitica(?pc, ?po) identify the specific cut point pc adopted
by the policy po. Next, considering the policy po, the datatype
property pontoDeCorte(?pc, ?vpc) identifies the numeric value
of the cut point vpc, required by the policy po.

At this moment, knowing the numeric value of the cut point
vpc required by the adopted policy, the axiom can evaluate
whether the team suitability numeric value va is greater than or
equal to the cut point vpc. For that, the axiom evaluates the
datatype property valorAdeq(?rf, ?va), and, finally, infers the
datatype property adequada(?rf, true), which represents that
the recommendation rf is considered adequate according to the
cut point.

IV. USE CASE

In order to evaluate the usability and applicability of the
proposed ontology, we developed three use cases based on the
project of two different software product lines. Details of the
case studies can be found in [27].

The two first cases were developed using a hypothetical
software product line in the area of electronic commerce
(e-commerce) documented in [28]. These two first use cases
were organized in two development iterations, contemplating
the phases of domain engineering and application engineering
of the product line. Next, another use case was developed
based on a real project of a middleware product line for
mobile devices called Multi-MOM [29] whose instantiation
will be briefly illustrated next in this section.

When conducting the use cases, first the OntoDDS ontology

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

63

was completely specified and validated in the Protégé tool
[11], contemplating the classes, object and datatype properties,
restrictions and axioms. Next, each use case was also
instantiated and validated in the Protégé tool, including
individuals of the several elements of the OntoDDS ontology.

The Protégé tool supports the OWL specification language
[13], recommended by W3C. Using this tool, it was possible to
create and model classes, object and datatype properties,
axioms and restrictions, as well as to create class instances.
Besides, the Protégé tool allows for queries and visualization
of the results that are automatically generated by the several
axioms in the ontology.

A. Characterization of Software Modules

Multi-MOM [29] is a middleware product line for mobile
computing that is essentially focused in the communication
functionality. Considering its component-based architecture
presented in Figure 27, we defined five software modules,
according to the phase recommending software modules [30]
of the team selection and allocation framework [7], briefly
explained in section I of this paper.

<<kernel>>

Service Manager

M1 <<kernel>>

Service Locator

M1

<<kernel>>

Message Dispatcher

M0

<<kernel>>

Message Manager Control

M0<<kernel>>

Persistence Manager

M4

<<kernel>>

TTL Monitor

M2

<<kernel>>

Message Exchanger

M3

<<variant>>

Communication Paradigms

M0

IServiceLocator

IMessageDispatcher

ICommunicationParadigm

ITTLMonitor
IPersistenceManager

IMessageManagerControl

IMessageExchanger

Figure 27 – Multi-MOM Architecture

Figure 27 shows that we identified five different modules
indicated in the small rectangles labeled with the terms M0,
M1, M2, M3 and M4. The characterization of the technologies
required by the modules was performed by the software
architect that created and designed Multi-MOM. As an
example, Figure 28 illustrates the instantiation of the OntoDDS
ontology to characterize the technologies required to
implement module M1.

Modulo Tecnologia
temRequisito naTecnologia

string
termoReq

SQL

”Baixo”
Programacao

Reflexiva

Java

”Medio”
ParadigmasDe
Comunicacao

Android

”Alto”

Requisito

Protocolos
DeRedes

M1 Req1

Req2

Req3

Figure 28 – Characterization of Module M1

Figure 28 shows that the module M1 requires the
technologies SQL and ProgramacaoReflexiva (Reflective
Programming) with knowledge level “Baixo” (low). On the
other hand, it requires a level “Medio” (average) of knowledge
on Java and ParadigmasDeComunicacao (Communication
Paradigms). Finally, it requires a level “Alto” (high) of
knowledge on the technologies Android and
ProtocolosDeRedes (Network Protocols).

B. Characterization of Development Teams

Considering the difficulty of finding real development teams
for use cases, the development team definition was performed
base on the local market and students from the Computer
Science course that answered a questionnaire contemplating all
the technologies required for the use case, according to the
modules to be implemented in their respective product lines.
This questionnaire was performed online, resulting in a set of
179 participant developers. The adopted forms and the
respective answers of developers can be found in [18].

Next, the answered questionnaires were used to characterize
the skills and technical knowledge of the 179 developers in
each technology required by the modules. Figure 29 shows an
example instantiation of the proposed ontology for the
characterization of the skills and technical knowledge in Java
of developer D1 that belongs to team E1. As can be seen,
developer D1 has from five to seven years of experience in
Java, has participated in up to five projects that adopt Java
and has the SCJA and SCJP certificates.

Equipe Tecnologia
possuiPessoa

temProjeto string
temTitulo

Java

”SCJA”

Pessoa

E1 D1

temExperiencia

”SCJP”

5-7_anos_exp

1-5_proj

Figure 29 – Characterization of Developer D1 in Java technology

Based on a set of 179 developers, we created 22 teams with

different sizes (from 2 to 18), dividing the members randomly
until we completed all teams. The final composition of the
teams was: 1 team with 2 members, 3 teams with 3 members, 5
teams with 5 members, 4 teams with 8 members, 2 teams with
9 members, 3 teams with 10 members, 3 teams with 15
members and 1 team with 18 members.

Next, based on the skills and technical knowledge of each
developer, it is possible to characterize the skills and technical
knowledge of the respective teams for each technology that
was required by the software modules. Figure 30 shows an
example of an instantiation in OntoDDS of the characterization
of team E1 in the Java technology. As can be seen,
considering the skills and technical knowledge of its
developers, team E1 has a technical skill level with value 0,61
in the Java technology, which, according to the ranges of
levels adopted, characterizes an average skill, represented by

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

64

the textual term “Medio” .

Equipe Tecnologia
temHabilidade

float [0, 1]
valorHab

Java

0,61

Habilidade

E1

naTecnologia

”Medio”

string
termoHab

H1

Figure 30 – Characterization of Team E1 in Java technology.

C. Characterization of Selection Policies

In the instantiation of the proposed ontology, we initially
specified four different selection policies, created based on the
observations and analysis presented in other works in the
literature [21][22][23][25]. The four proposed policies are:

a) Policy of equivalent qualification: selects teams that
have the technical skills close to the required to
implement the software modules;

b) Policy of most skilled teams: selects teams that have
the highest technical skills, independently of the
knowledge level required by the software modules;

c) Policy of minimum qualification: selects teams that
possess the minimum technical skills required to
implement the software modules;

d) Policy of training provision: selects teams that have
technical skills bellow the required to implement the
software modules;

For instance, considering the selection policy of equivalent

qualification, previously defined in Table I, the rule
instantiation represented by the intersection of the third row
with the second column of Table I, here called R8, is presented
in Figure 31. According to this policy, the instantiated rule is
interpreted as follows: IF Required Technical Skill is “Medio”
(Average) AND Technical Skill Level is “Medio” (Average)
THEN Suitability Level is “Alto” (High). It is important to
point out that in this use case the 12 rules of Table I were
numbered from R1 to R12, going from the left to the right and
the top to the bottom.

Política
temRegra

Regra

Qualificacao
Equivalente

string

R8

string

string

requeridoPorModulo

conhecidoPorEquipe

adequabilidade

”Medio”

”Medio”

”Alto”
Figura 31 – Characterization of Rule R8 in the Selection Policy

Table II shows that different cut points were used for each
selection policy adopted. Based on the use cases performed,
we realized that the suitability values for the teams varied
according to the adopted selection policy, which was expected
due to the fact that different policies attribute different
suitability to teams. Nevertheless, in an experiment analysis
where each use case was evaluated according to each selection
policy, we say a trend of the training provision policy to

present suitability values higher than all the other ones. On the
other hand, the minimum qualification policy tends to present
higher values than the equivalent qualification and more
skilled team policies. Finally, we also realized that the
equivalent qualification policy tends to generate higher values
than the more skilled team policy. Given this empirical
evidence, we decided to use different cut points for each
selection policy under consideration in the use cases.

Table II – Cut Points

Selection Policiy Cut Point
Equivalent Qualification 0,60
Most skilled teams 0,55
Minimum Qualification 0,70
Training Provision 0,75

Figure 32 exemplifies the instantiation of the cut points in

the ontology, showing the representation of the cut point of
value 0,60 adopted in the selection policy
QualificacaoEquivalente (Equivalent Qualification) used in
the Multi-MOM project.

Projeto Politica
temPontoDeCorte

float [0, 1]
pontoDeCorte

0,60

PontoDeCorte

Multi-MOM

naPolitica

P1
Qualificacao
Equivalente

Figure 32 – Cut point used in the QualificacaoEquivalent Policy

D. Evaluation of Team Suitability

 At this point, considering the technologies required by the
modules, the team technical skills in each technology and the
selection policy adopted in the project, we can infer the
technical suitability for each team in each technology required
by each module, according to the selection policy. Figure 33
shows an example of technical suitability inference, that of
team E1 in Java technology required by module M1, according
to the selection policy QualificacaoEquivalente.

As we can see in Figure 33, the referred suitability is
defined by the application of rule R8, whose instantiation in
the proposed ontology was shown in Figure 31. It is relevant to
point out that the selection rule inference adopted is performed
by the axiom in Figure 19.

At this point, it is possible to measure empirically or
mathematically the suitability of the teams to the software
modules. For that, in these use cases, we adopted the
mathematical approach proposed in [15] to derive the team
suitability to the modules, based on the team suitability to each
technology required by the software modules.

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

65

Politica
recomendaPolitica

Equipe

Modulo

recomendaEquipe

Tecnologia

recomendaRegra

recomendaTecnologia

Regra

recomendaModulo

Recomendacao

Projeto

Multi-MON

R8

Qualificacao
Equivalente

E1

M1

Java

Recomendacao1

Figure 33 – Technical Suitability of Team E1 to Java in Module M1

Figure 34 shows an example of the final recommendation of
team E1 to module M1, whose numeric suitability value is
0,64. If we apply the axioms of Figures 21, 22, 23 and 24, it is
possible to infer the textual terms that represent the suitability.
In Figure 34, the suitability textual term is “Medio”
(Average).

Politica

string

Equipe

Modulo

recomendaEquipe
float [0, 1]

boolean

valorAdeq

Projeto

Recomendacao
Final

temRecomendacao

Multi-MON Qualificacao
Equivalente

E1

M1
”Medio”

0,64

true

Recomendacao
Final1

Figure 34 – Recommendation of Team E1 to Module M1

Finally, based on the axiom of Figure 26, we can infer the
technically suitable teams for each software module from the
evaluation of the cut point defined in the software project to
the selection policy at hand, defining hence the possible
candidate teams for the implementation of the software project
modules. Please observe that in the datatype property
adequada (suitable), Figure 34 already includes the result of
the suitability inference of team E1 to module M1 in the policy
QualificacaoEquivalente.

In the use case of the project of the Multi-MOM product
line, after applying the cut point, among the 22 candidate
teams, we received recommendations for 5, 11, 12, 21 and 19
teams to implement modules M0, M1, M2, M3 and M4,
respectively.

Considering four selection policies defined and three use
cases developed to evaluate the usability and applicability of
the proposed ontology, each use case resulted in four
recommendations of suitability of the teams to the modules,
generating one recommendation for each selection policy.
Hence, considering all use cases, we generated 12 different
recommendations, whose details can be found in [27].

V. RELATED WORK

In this section we present and discuss three approaches
identified in the literature which are related to our work to
some extent. The three approaches considered are:
(i) OntoDiSEN [31] – an ontology to share information on
DSD projects; (ii) Burbeck’s proposal [32] – an ontology to
establish electronic contracts; and (iii) ICARE [19] – an expert
recommendation system that uses an ontology to characterize
users and specialists.

It is important to mention the difficulty to find proposals in
the literature that are directly related to the selection of
technically qualified distributed teams. Hence, in spite of the
fact that the identified approaches do not share the specific
purpose of supporting team selection in distributed software
projects, the discussed works present some aspects related to
OntoDDS because they adopt ontologies to represent
information associated with DSD environments, to support the
definition of criteria to hire electronic services and to
characterize users and experts.

In order to guide the comparison of approaches evaluated
with the OntoDDS approach here proposed, we synthesize the
main characteristics in Table III. Next, we present a brief
description of each related work, together with a comparative
discussion in relation to OntoDDS.

OntoDiSEN [31] is an application domain with the purpose

of describing concepts and contextual elements, which are
represented, stored and shared by an information
dissemination tool, allowing the communication and
cooperation among members of the geographically distributed
teams, and so, increasing their perception about actions related
to produced artifacts. In such a colaborative scenario,
OntoDiSEN is the element responsible for representing
contextual information, promoting the dissemination of the
context in a uniform and standardized way between distributed
teams.

In OntoDiSEN, the information of the skills and required
knowledge are associated with the phases of the process.
Hence, OntoDiSEN adopts a target entity with thicker
granularity in relation to OntoDDS, which associates this
information to software models, whose granularity is thinner.

In terms of the characterization of skills and knowledge
required by the project phases, OntoDiSEN allows for the
instantiation of multiple non-valued attributes. For instance,
they may represent the requirements in different technologies,
tools or processes, without quantifying those needs. In a
similar way, OntoDDS also allows the instantiation of multiple
attributes to characterize required skills and knowledge but,
differently, those needs are quantified in different levels.

Following a similar approach, in OntoDiSEN, the users’
knowledge and skills are also characterized by the instantiation
of multiple non-valued attributes, while OntoDDS represents
such information by instantiating multiple attributes to

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

66

characterize the developers’ skill and knowledge, but as valued
attributes, that is, quantified in different levels. Besides,
instead of characterizing only individuals (users, in the case of
OntoDiSEN), OntoDDS also characterizes the skills and
knowledge of development teams based on the knowledge of
their respective developers.

OntoDiSEN does not define any method or mechanism to
gather knowledge or skills that the users possess and is

demanded by the process phases, letting the project manager
decide on how to get them. OntoDDS, on the other hand,
establishes the adoption of implementation tables to represent
the technologies required to implement the software modules
and, in the case of developers, is based on forms to gather the
information related to years of experience, number of
developed projects and number of degrees.

Table III – Comparative of the related works

Proposal Target
Entity

Characterization
of the Target

Entity

Target
Resource

Characterization
of the Target

Resource

Input Data
Capture

Selection
Policy

OntoDiSEN
Process
phases

Multiple
non-valued
attributes

Users
Multiple

non-valued
user attributes

– –

Burbeck Services Multiple
valued attributes

Suppliers Multiple valued
supplier atributes

– Implicit;
Unchangeable

ICARE Users
Multiple

non-valued
keywords

Experts
Multiple

non-valued
expert attributes

–
Implicit;

Unchangeable

OntoDDS Software
modules

Multiple
valued attributes

Teams

Multiple valued
attributes from
developers and

teams

Tables and
forms

Explicit;
Configurable

The second approach evaluated is the Burbeck’s proposal
[32], which presents an ontology to support hiring services
whose goal is to represent information to be used during the
establishment of electronic contracts, both in a generic way, as
well as specifically in the context of DSD. The ontology
proposed by Burbeck allows the definition of non-functional
requirements of QoS (quality of service) related to electronic
services, as well as information necessary to clients and
suppliers so that it is possible to evaluate if the requirements
are satisfied. Hence, the ontology can be applied to support the
establishment of electronic contracts, and be used to represent
the concepts and relationships involved in a negotiation
between the companies participating in a possible hire during
the software development process.

Even though the purposes of OntoDDS and Buberck’s
proposal are different, we can correlate them indirectly. While
OntoDDS is used to select development teams to implement
software modules, Burbeck’s proposal is used to hire suppliers
for the execution of electronic services. Consequently, we can
consider that the target entities have similar granularity, since
software modules and electronic services can be considered as
correlates.

Considering the characterization of QoS attributes for
electronic services, Burbeck’s proposal allows for the
instantiation of multiple valued attributes which are quantified
in different levels. Hence, in this aspect, it can be considered
similar to OntoDDS, which also allows the instantiation of
multiple valued attributes to characterize different levels of

skill and technical knowledge required to implement software
modules.

In an equally comparable way, in Burbeck’s proposal the
QoS attributes assured by the suppliers are characterized by
the instantiation of multiple valued attributes which are
quantified in different levels. From the point of view of
OntoDDS, there is the analogous fact that the knowledge and
skills of developers and the teams to which they belong are
also instantiated in multiple valued attributes, representing
their skill levels in the respective technologies, methods,
processes or application domains.

In a similar way to OntoDiSEN, Burbeck’s proposal does
not define any mechanism or method to gather QoS attributes
that are required by services and assured by suppliers, leaving
it to the project manager the task of defining the way to obtain
them. As previous discussed, OntoDDS behaves differently,
adopting implementation tables and forms to represent the
required technologies and the knowledge and skills of
developers and teams.

The third approach evaluated is ICARE (Intelligent Context
Awareness for Recommending Experts) [19], an expert
recommendation system for specific domains, characterized by
keywords supplied by users and taking into consideration the
current context of users and experts. Notice that to
characterize users and experts, as well as the contextual
information and relationships among keywords and subjects of
interest, ICARE adopts a domain ontology that allows for the

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

67

inference of personalized recommendations of different
experts for different users in several subjects of interest.

It can be seen that in ICARE the purpose is not team
selection. Nevertheless, we can indirectly correlate the skills
and knowledge required by the software modules in OntoDDS
with the subjects and domains of interest of the users in
ICARE. Hence, in both cases, the goal is to model the needs of
their target entities, which are software modules in OntoDDS
and users in ICARE.

When dealing with the needs of users in terms of subjects
and domains of interest, ICARE allows the users to inform
multiple non-valued keywords, hence not adopting any type of
quantification of the importance of each informed keyword.
Thus, in relation to OntoDDS, ICARE can be considered less
sophisticated or realistic, given that OntoDDS allows for the
instantiation of multiple valued attributes which characterize
the different skill and knowledge levels required by software
modules.

In an analogous way, ICARE also characterizes the technical
knowledge of the experts through the instantiation of multiple
non-valued attributes and hence, does not consider the
difference in the knowledge level of those experts. On the
other hand, in OntoDDS, the knowledge and skill of the
developers and their teams are considered by the instantiation
of multiple valued attributes, which allows for the
consideration of differences in the knowledge levels of these
developers and their respective teams.

ICARE shares the same deficiencies with OntoDiSEN and
Burbeck’s proposal in the sense that it does not define any
mechanism or method to capture the technical knowledge of
experts, leaving to the project manager the responsibility of
defining a way to gather them. OntoDDS is different, for it
establishes implementation tables and forms to represent the
required technologies and the knowledge and skills for the
developers.

Finally, we realize that OntoDiSEN does not require and
hence does not represent the concept of selection policy, for it
has not the purpose of selecting any kind of target resource,
but the sharing of contextual information in DSD projects. In a
different way, both in the hiring of suppliers in Burbeck’s
proposal as well as in the recommendation of experts in
ICARE, a selection policy concept is necessary. Nevertheless,
in both proposals the selection policy is implicit and
unchangeable in the ontological model, probably represented
as rules to the inference model. Differently from both, we have
the more explicit and configurable model of OntoDDS, in
which different selection policies can be defined in the
ontology by the project manager and their selection rules will
be treated automatically and transparently by the ontology
axioms in the inference engine.

VI. FINAL CONSIDERATIONS

In this paper we presented an application ontology to
support the selection of technically qualified distributed teams
for the implementation of software modules in software
projects.

The proposed ontology is part of a recommendation
framework [7] whose main goal is to support project managers
in the process of allocating distributed teams to
implementation tasks of software modules in software product
line projects.

The OntoDDS ontology has four concept blocks that are
related and that allow to perform the characterization of the
following elements in a software project: (i) required
technologies to implement software modules; (ii) skills and
technical knowledge of the development teams in the
technologies required by the software modules; (iii) selection
policies; and (iv) technical suitability of the development
teams to the software modules.

Please observe that the four concept blocks represent the
concretization of each of the competency questions for the
proposed ontology, which were mentioned in Figure 3 of
Section II. Hence, it can be noticed that the OntoDDS
ontology performs all the goals it is proposed to.

The main contribution of this work, adopting the strategy
divide and conquer, is the model and formalization in a
systematic and structured way of an extremely complex
problem, which is the selection of technically qualified
distributed teams for the implementation of software modules
in distributed software projects.

The general structure of OntoDDS is shown in the
conceptual map of Figure 7, where all the problem is modeled
using only 12 classes, related by 23 object properties and 11
datatype properties, which, when instantiated, can systematize
the decision making process of the project manager, especially
when observed through the point of view of the high
complexity of the problem, which is clear when this problem is
dealt with in an ad hoc way. Besides, the proposed ontology
facilitates the communication between the project manager and
the team members, because it establishes a common
vocabulary between all the stakeholders in the selection
process.

An instantiation of OntoDDS for a distributed software
project may require a considerable effort for the creation of the
instances and their datatype and object properties, and
consequently is prone to error which may cause a waste of
time. For instance, considering the use case of Multi-MOM,
presented in Section IV, whose architectural project was
grouped into 5 software modules with requirements in 7
different technologies, and was evaluated to the suitability of
22 teams with 4 different selection policies, the number of
class instances (3,267), object properties (19,150) and
datatype properties (1,982) is staggering, requiring a
remarkable effort to manipulate them inside the Protégé tool.

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

68

Nevertheless, OntoDDS offer an additional tool, its six
axioms that allow for the automatic inference of an object
property and two datatype properties. In the use case of
Multi-MOM, the axioms infer 2,376 object properties and 880
datatype properties, representing a coverage of about 12.5% of
the object properties and 44.4% of the datatype properties.

It is also important to point out that in spite of the high
number of instances and their respective object and datatype
properties, the proposed ontology has potential to be reused in
many different scenarios. For instance, once a given software
project is instantiated, with its software modules, required
technologies, candidate teams and adopted selection policy,
the evaluation of another selection policy may easily reuse all
the instances and object and datatype properties related to the
software modules, required technologies and candidate teams.
In a most significant way, if we devise a data base of previous
software projects, including most technologies usually
required to implement software modules, a large number of
candidate teams and the main selection policies adopted, the
evaluation of a new software project may also reuse all the
instances and datatype and object properties related to the
technologies, teams and selection policies.

Even considering the reuse potential of the proposed
ontology, it is still required a considerable effort during the
manual instantiation to identify and manipulate the instances
and their object and datatype properties that may be reused
and those that need to be created.

In order to decrease this effort, the instantiation of the
ontology could be performed programmatically, exploring the
API of the Protégé tool, avoiding errors and saving time. Just
as an illustration to the extremely positive impact of the
programmatic approach, consider an application where the
user signalizes in a specific set of tables: the software modules,
required technologies to implement them, the candidate teams
and their members. In such an application, it could almost all
be created in an automatic and transparent way, including all
instances and object and datatype properties.

Considering the discussed points, we can synthesize the
following direct benefits or additional contributions of the
adoption of OntoDDS to the problem of team selection:

i. Better understanding of the problem domain;
ii. Easier communication among the stakeholders in the

team selection process, given that a common vocabulary
is defined;

iii. Formalization of the concepts and relationships
associated with the team selection process;

iv. Possibility of performing inferences on the domain when
backed by tools with support to inference engines;

v. Reuse of the information on modules, teams,
technologies and selection policies in different scenarios
and software projects.

In spite of the relevant benefits and contributions, some
limitations were observed in the use cases and mentioned in
the previous discussion. The limitations are the following:

i. Not adopting the Protégé API tool to manipulate the
ontology database in a programmatic way with Java;

ii. Use cases not performed with real developer teams from
the software industry;

iii. Adoption of fuzzy terms without using fuzzy logic in the
decision making process.

First, without using the API of the Protégé tool, the creation
of classes, instances, and object and datatype properties was
performed in a completely manual way, being prone to errors
and causing waste of time.

Second, the development teams considered in the use case
are fictitious teams based on local software developers and
students from Computer Science courses, which do not
provide for a real validation of the proposed ontology, even
though they may make possible to evaluate its usability and
applicability.

Finally, even though the requirements, skills and suitability
are represented by fuzzy terms, the decision making process
modeled in the selection policies does not fully contemplate
the fuzzyfication, inference and defuzzyfication steps of the
fuzzy logic, which are based on fuzzy sets and pertinence
functions.

Given those limitations, we identified some future works,
among them we include the following:

i. Adoption of the Protégé API tool with the goal of
manipulating the ontology database in a programmatic
way, using, for instance, the framework Jena [33];

ii. Validation of the ontology in a real project with globally
distributed development teams;

iii. Evaluation of the logical complexity of the ontology;
iv. Full modeling of the decision making process using

fuzzy logic in selection policies.

ACKNOWLEDGEMENT

This work was supported by the Nation Institute of Science
and Technology for Software Engineering (INES –
www.ines.org.br) and funded by the CNPq, process number
573964/2008-4.

REFERENCES

[1] R. Martignoni, Global sourcing of software development: a review of
tools and services, 4th International Conference on Global Software
Engineering (ICGSE 2009), pp. 303-308, 2009.

[2] E. Carmel, Y. Dubinsky, and A. Espinosa, Follow the sun software
development: new perspectives, conceptual foundation, and exploratory
field study, 42nd Hawaii International Conference on System Sciences
(HICSS 2009), 2009.

[3] J. Herbsleb, and D. Moitra, Global software development, IEEE
Software, pp. 16-20, March-April 2001.

[4] P. Ovaska, M. Rossi, and P. Marttiin, Architecture as a coordination
tool in multi-site software development, Software Process Improvement
and Practice, vol. 8, no. 4, pp. 233–247, October-December 2003.

[5] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, Global software
development in practice: lessons learned, Software Process Improvement
and Practice, vol. 8, no. 4, pp. 267–281, October-December 2003.

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. 52-70

69

[6] A. Mockus, and J. Herbsleb, Challenges of global software
development, 7th International Symposium on Software Metrics, 2001.

[7] T. A. B. Pereira, V. S. Santos, B. L. Ribeiro, and G. Elias, A
recommendation framework for allocating global software teams in
software product line projects, 2nd International Workshop on
Recommendation Systems for Software Engineering, 2010.

[8] T. Burity, and G. Elias, A quantitative, evidence-based approach for
recommending software modules, 30th Annual ACM Symposium on
Applied Computing (SAC 2015), pp. 1449-1456, 2015.

[9] N. F. Noy, and D. L. McGuinness, Ontology Development 101: a guide
to creating your first ontology, Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05, March 2001.

[10] M. Cristani, and R. Cuel, A survey on ontology creation methodologies,
International Journal on Semantic Web and Information Systems, vol. 1,
no. 2, pp. 48-68, April-June 2005.

[11] Protégé, available in http://protege.stanford.edu, last access 09/08/2015.

[12] M. Uschold and M. Gruninger, Ontologies: principles, methods and
applications, Knowledge Engineering Review, vol. 11, no. 2, June 1996.

[13] OWL Web Ontology Language Guide, available in
http://www.w3.org/TR/owl-guide, last access 09/08/2015.

[14] S. C. Buraga, L. Cojocaru, and O. C. Nichifor, Survey on web ontology
editing tools, Transactions on Automatic Control and Computer
Science, pp. 1-6, 2006.

[15] V. Santos, An approach for recommending modules in distributed
development projects of software product lines (in portuguese).
V Workshop on Distributed Software Development (WDDS 2010),
2010.

[16] J. Shanteau, D. J. Weissb, R. P. Thomasa, and J. C. Poundsc,
Performance-based assessment of expertise: how to decide if someone is
an expert or not. European Journal of Operational Research, v. 136, pp.
253-263, 2002.

[17] D. J. Weiss, J. Shanteau, P. Harries, People who judge people, Journal
of Behavioral Decision Making, vol. 19, p. 441-454, 2006.

[18] V. S. Santos, An approach for selection of technically qualified teams
during the implementation of software projects (in portuguese), Master
Dissertation, Federal University of Paraíba, 2014.

[19] H. Petry, ICARE: a context-aware expert recommendation system (in
portuguese), Master Dissertation, Federal University of Pernambuco,
2007.

[20] H. Kagdi, M. Hammad, J. I. Maletic, Who can help me with this source
code change?, IEEE International Conference on Software Maintenance,
Beijing, 2008.

[21] A. S. Barreto, Staffing a software project support: a constraint
satisfaction based approach (in portuguese), Master Dissertation,
Federal University of Rio de Janeiro, COPPE, 2005.

[22] M. A. Silva, WebAPSEE-Planner: support to people instantiation in
software projects through policies (in portuguese), Master Dissertation,
Federal University of Pará, 2007.

[23] D. A. Callegari, L. Foliatti, R. M. Bastos, MRES – a tool for resource
selection in software projects through a fuzzy, multi-criteria approach
(in portuguese), Brazilian Symposium on Software Engineering (SBES),
Tools Session, 2009.

[24] J. Duggan, J. Byrne, G. Lyons, A task allocation optimizer for software
construction, IEEE Computer Society Press, vol. 21, 2004.

[25] J. Collofello et al., A system dynamics software process simulator for
staffing policies decision support, 31st Annual Hawaii International
Conference on System Sciences, 1998.

[26] N. A. Ruskova, Decision support system for human resources appraisal
and selection, 1st International IEEE Symposium "Intelligent Systems",
2002.

[27] L. Barbosa, An ontological approach for recommending qualified teams
in software projects (in portuguese), Master Dissertation, Federal
University of Paraíba, 2014.

[28] H. Gomaa, Designing software product lines with UML: from use cases
to pattern-based software architectures, Addison Wesley, Object-
Oriented Technology Series, 2004.

[29] Y. M. Bezerra, Multi-MOM: a multi-paradigm, extensible and message-
oriented middleware for mobile computing (in portuguese), Master
Dissertation, Federal University of Paraíba, 2010.

[30] T. Burity, An approach for recommending modules in distributed
development projects of software product lines (in portuguese), Master
Dissertation, Federal University of Paraíba, 2011.

[31] A. P. Chaves, DiSEN-CSE: a context-awareness model for
disseminating information in a distributed software development
environment (in portuguese), Master Dissertation, State University of
Maringá, 2011.

[32] S. Burbeck, The tao of e-business services: the evolution of web
applications into service-oriented components with web services, IBM
Software Group, 2000.

[33] Apache Jena, available in http://jena.apache.org, last access 04/06/2015.

Barbosa, L.; Elias, G. / Revista de Sistemas de Informação da FSMA n. 16 (2015) pp. ??-??

