Ovarian nematode (Nematoda: *Philometra* sp.) infestation on *Pseudorhombus triocellatus* (Paralichthydiidae)

Periyasamy Selvakumar*, Ayyaru Gopalakrishnan, Alagarsamy Sakhthivel, Palanivel Bharathirajan

Center of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India

ABSTRACT

Objective: To study the occurrence, description and prevalence of the *Philometra* sp. infestation in ovaries of *Pseudorhombus triocellatus* from two different landing centers in Tamil Nadu of southeast coast of India for a period of two years from January 2012 to December 2014.

Methods: The samples were collected from Parangipettai and Nagapattinam in the southeast coast of India. The prevalence and mean intensity of nematode infection and description were investigated.

Results: Based on light microscopical examination, this species differs from other *Philometra* spp. in morphological and biometrical measurements by type of the infected fish family and by the ecological distribution. The maximum prevalence (71.7%) of parasitic infestation was observed during summer 2014 in Parangipettai. The higher mean intensity was recorded during post-monsoon 2013 in Nagapattinam. The results of the ANOVA showed that there was no significant variation found prevalence and mean intensity of parasitic infestations between the stations. But there was a significant variation found between the season in the both the station.

Conclusions: This is the first report of *Philometra* sp. in the ovary of *Pseudorhombus triocellatus*. On the basis of nematode infestation may cause serious damage to ovary by slurping the blood, causing atrophy of developing ova, fibrosis, increasing granulocytes and hemorrhages, thus harmfully affect the fish reproduction and indirectly affect the fisher men communities.

1. Introduction

Fish organizes a main component of diet for the people of Southeast India, particularly in Tamilnadu. Fishing is the main economic important for the people residing in Parangipettai and Nagapattinam. The order of the flatfishes: Pleuronectiformes (Heterosomata) includes a number of valuable food fishes, marketed as plaice, sole, flounder halibut and turbots[1]. The parasites are highly valuable to marine fishes. Nahhas and Sey[2] has been reported on parasites fauna of marine mammals, sea birds and fish, few reported in Persian Gulf from Pleuronectiformes species and single parasite species reported from *Brachinsus orientalis* in Iran[3]. Gonad-infecting species of *Philometra* Costa, (1845) (Philometridae, Dracunculoidea) are widely distributed in marine fishes of the Atlantic, Indian and Pacific Oceans, occasionally also occurring in brackish water fishes[4]. Yet, *Philometra rajani* was measured a substitute of *Philometra lateolabracis* (*P. lateolabracis*), and *Philometra pellucida* reported in fishes from Southern India. From the Indian Ocean region, *Philometra pellucida* Jagerskiold, *P. lateolabracis* Yamaguti, *Philometra rajani* Mukherjee, *Philometra cephalus* Ramachandran, and *Philometra neolateolabracis* Rajyalakshmi. have been reported from various fishes belonging to different families[5]. Previously, *Philometra terapontis* (Nematoda: Philometridae) have been reported from *Terapon jarbua* ovaries from the eastern coast of India[6]. An additional ten *Philometra* parasite infections have been reported in various marine fishes from off New Caledonia, South Pacific and also *Philometra* sp. may severe damage into fish ovaries and it can affect the reproduction[7]. The fauna of *Philometra* sp. parasite in marine fishes of the Indian Ocean, remains little known[8-12]. Few reports only expressed the prevalence and mean intensity of the philometrids infestation on the marine fishes[13-15].

During the anthology, this is the first report of *Philometra* sp. (nematode) infestation in *Pseudorhombus triocellatus* (*P. triocellatus*) ovaries. This study was to inspect the occurrence, description and prevalence of a nematode infestation in the ovaries of the *P. triocellatus*.

*Corresponding author: Periyasamy Selvakumar, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
Tel: +91 9876619908
E-mail: selvaorigin@gmail.com

Foundation Project: Supported by the Department of Biotechnology, Government of India, New Delhi (Grant No. BT/PR14992/SPD/11/1132/2010).

The journal implements double-blind peer review practiced by specially invited international editorial board members.
2. Materials and methods

2.1. Sample collection

The normal and infected fish samples were collected from commercial catches landed at 2 different locations (Parangipettai (11°30' N, 79°46' E) and Nagapattinam (10°45' N, 79°50' E) in the southeast coast of India, during January 2012 to December 2014.

2.2. Parasitological examination

Infected ovaries were dissected out from infected fishes and examined the ovary under stereo and light microscope for the presence of oocytes and nematodes. Nematode were removed from the ovary and measured length and width of the body. Nematode were identified the internal structure using under the light microscope (40×, Magnues MLX-DX) and line diagram done by camera lucida attachment.

3. Results

3.1. Location of worm

Nematode (Philometra sp.) was infested in the ovary of female fish P. triocellatus (Aulopiformes: Sciaenidae, Figure 1A), the fish size was ranged between 80 and 130 mm (total length). The majority of gravid female’s worms were found in the ovaries of infected fish. Nematode were found in the center of ova. Approximately 6 worms were observed in the single ovary (Figure 1B).

![Image](image1.png)

Figure 1. A: P. triocellatus infested by Philometra sp.; B: Ovaries infested with Philometra sp.

3.2. Description of the worm

Philometra sp. of ovarian nematode was infested on host fish of three spotted flounders P. triocellatus (Aulopiformes: Sciaenidae, Figure 1A), the fish size was ranged between 80 and 130 mm (total length). The majority of gravid female’s worms were found in the ovaries of infected fish. Nematode were found in the center of ova. Approximately 6 worms were observed in the single ovary (Figure 1B).

![Image](image2.png)

Figure 2. Light microscope view showing Philometra sp. from P. triocellatus. A and B: Anterior end of gravid female; C, D, E and F: Posterior end of the gravid female; Arrow: Oral aperture; Head arrow: Oesophagus; Thickened arrow: Intestine.

![Image](image3.png)

Figure 3. A: Philometra sp. from P. triocellatus, anterior end of gravid female, lateral view; B: Cephalic end of largest gravid female, lateral and apical views; C: Cephalic end of female, lateral view; D: Posterior end of largest gravid female, lateral view.
3.3. Prevalence and mean intensity

The maximum (71.7%) prevalence of Nematode infestation was observed during summer 2014 in Parangipettai. Whereas minimum (9%) was during the monsoon 2013 in Nagapattinam. The higher mean intensity of Nematode infestation was recorded during post monsoon 2013 in Nagapattinam, whereas lower was during summer 2014 in Parangipettai (Figure 4). The results of the ANOVA showed that there was no significant variation found in prevalence ($P = 0.442$) and mean intensity ($P = 0.442$) of Nematode infestations between the stations. But there was a significant variation found between the season in the both station (Parangipettai; $P = 0.133$) and (Nagapattinam; $P = 0.092$) respectively during the year and the same trend was found in the mean intensity (Parangipettai; $P = 0.171$) and (Nagapattinam; $P = 0.648$) (Table 1).

4. Discussion

Philometra sp. (Philometridae), has been described from ovary of the *P. triocellatus* in the present study. Rodrigues and Saraiva\[16\] reported finding of *P. lateolabracis* in the Javan flounder *Pseudorhombus javanicus* (Paralichthyidae) from Palawan, Philippines. Present *Philometra* sp. exposed length of the female 159–275 mm. Oral aperture circular small, inside mouth formed with three flat oesophageal lobes; surrounded by narrow ring of distinctly elevated cuticle. However, present specimen exposed different morphology, which are characteristic of many other *Philometra* spp. In Indian waters, little published information is available in the west coast of India, in the east coast, our team has recently discovered a new species which is new to science namely, *Philometra terapontis*[6]. Philometrids (Nematoda) have been described from various marine perciform fishes of southeast coast of India; like *Sphyraena jello*, *Gerres filamentosus*, *Otolithes ruber*, *Johnius belangerii* and *Eleutheronema tetradactylum*[10] and also been described *Philometra indica* from the ovary of *Epinephelus merra*, *Philometra tropica* from the *Epinephelus bleekeri* and *Philometra* sp. from the *Epinephelus erythrus*. Moravec and Manoharan\[11\] also reported *Philometra* spp. from the ovaries of *Epinephelus malabaricus* from southeast coast of India. Moravec and Manoharan\[12\] has been reported *Philometra* sp. described from marine fishes of *Lutjanus argentimaculatus* and *Lutjanus fulvus* in the Bay of Bengal, India.

In the present report, prevalence of the infestation by *Philometra* sp. according to Selvakumar *et al.*,\[13-15\] was examined. The present study revealed that there was a significant variation found in the prevalence of *Philometra* infestation between the seasons, but no significant variation between the stations. Among the season, the higher *Philometra* infestation was found during the post monsoon, it may due to the higher nutrient drainage from the land at the end of the monsoon season and optimum temperature between to season monsoon and summer. Many researchers insisted on the importance of temperature as one of the factor controlling the parasitic infestation\[17-20\]. Moravec and Manoharan\[10\] have been

Table 1

<table>
<thead>
<tr>
<th>Items</th>
<th>Nagapattinam</th>
<th>Parangipettai</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum of squares</td>
<td>df</td>
</tr>
<tr>
<td>Prevalence Between groups</td>
<td>1868.000</td>
<td>3</td>
</tr>
<tr>
<td>Within groups</td>
<td>562.000</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>2430.000</td>
<td>7</td>
</tr>
<tr>
<td>Mean intensity Between groups</td>
<td>11.667</td>
<td>3</td>
</tr>
<tr>
<td>Within groups</td>
<td>25.889</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>37.556</td>
<td>7</td>
</tr>
</tbody>
</table>
reported on prevalence and mean intensity in *Philometra sphyraenae* in *Sphyraena jello*, *Philometra gerrei* in *Gerres filamentosus*, *Philometra oolitii* in *Otolithes ruber* and *Philometra* sp. in *Johnius belengerii* was 69% and 9, 91% and 11, 47% and 6, 48% and 8 were recorded respectively. The result of the present study clearly showed that the prevalence and intensity of infection is higher in post monsoon compare with earlier reports. The previous report by Moravec et al.[21] showed that prevalence and intensity of *Philometra genypteri* in *Genypterus chilensis* was 11% and 14 respectively. Moravec and Justine[22] also reported the prevalence and intensity of *Philometra brevicollis* in *Lutjanus vitta* was 34% and 14 specimens per fish. The result of the present study clearly showed that the prevalence and mean intensity of infestation is moderate to compare to the previous reports and it may conclude that the temperature play a major role in *Philometra* infestation in the study area and reduction of the fish population.

This is the first representative report of the presence of *Philometra* sp. in *P. triocellatus*. Among the season, the higher *Philometra* infestation was found during the post monsoon. On the basis of *Philometra* sp. infection may cause serious damage to ovary by slurring the blood, causing atrophy of developing ova, fibrosis, increasing granulocytes and hemorrhages. Thus harmfully affect the reproduction of *P. triocellatus*.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

Authors are thankful to Dean and Director, CAS in Marine Biology, Faculty of Marine Sciences, and Annamalai University for providing the facility and encouragement during this study period. This work was financially supported by Department of Biotechnology, Government of India, New Delhi (Grant No. BT/PR14992/SPD/11/1332/2010). We are also thankful to the fisherman woman and man of southeast coast for the supply of host fishes both on landing and in the market.

References

