Antioxidant properties of sequential extracts from brown seaweed, *Sargassum plagiophyllum, C. Agardh*

Veeraperumal Suresh¹, Namasivayam Senthil Kumar²,³, Pitchai Murugan³, Perumal Palani³, Ramasamy Rengasamy³, Chinnathambi Anbazhagan¹*

¹Department of Botany, Annamalai University, Annamalai Nagar, India
²Department of Botany, Ayya Nadar Janaki Ammal College, Sivakasi, India
³Centre for Advanced Studies in Botany, University of Madras, Chennai, India

1. Introduction

Brown algae possess potential antioxidant activity through its various classes of polysaccharides including, fucoidan, laminarin and alginic acid[1-3]. According to Kim et al. (2007) the sulphated polysaccharides of *Sargassum fulvellum* (Phaeophyceae), is more potent NO₂ scavenger than commercial antioxidants such as BHA and α-tocopherol. Present study is an attempt to study the antioxidant properties of different extracts of *Sargassum plagiophyllum*.

2. Material and methods

*Sargassum plagiophyllum* (fresh weight) was collected along the coast of Mandapam (Lat.09° 17’N; Long.79° 08’E), Palk Bay, Tamil Nadu, India in November 2009. After thoroughly washing with the seawater and manual sorting to remove the epiphytes, the fresh biomass was exhaustively washed first with tap water and then with distilled water. The seaweeds were then shade dried and ground to pieces of about 1 mm. Sequential extraction procedure was followed as represented in Figure 1. In vitro antioxidant activity was ascertained following the methods such as, Lipid Peroxidation[5] Hydroxyl radical peroxidation[5] DPPH Scavenging activity[7] and Superoxide Scavenging activity[8].

3. Results

Steps involved in the Sequential extraction were given in Fig. 1. Maximum extraction was observed in alkaline water extraction with about 26% and lowest yield was observed in Acetone extraction with approximately 2%. Each extract was found to possess the higher antioxidant potential than other sequential extraction products. Conclusions: In this study, it was observed that the all the four extracts have notable antioxidant property that can be potentially exploited as an important ingredient in food processing industries.
Table 1. Antioxidant effect of sequential extraction products from the brown seaweed Sargassum plagiophyllum

<table>
<thead>
<tr>
<th>Extract</th>
<th>Lipid Peroxidation (IC50mg/mL)</th>
<th>Hydroxyl radical peroxidation (IC50mg/mL)</th>
<th>DPPH Scavenging activity (IC50mg/mL)</th>
<th>Super oxide Scavenging activity (IC50mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (IC50mg/mL)</td>
<td>1.819 ± 0.2</td>
<td>0.2</td>
<td>1.05 ± 0.3</td>
<td>0.910 ± 0.1</td>
</tr>
<tr>
<td>Neutral water (IC50mg/mL)</td>
<td>3.9 ± 0.5</td>
<td>4.6 ± 0.4</td>
<td>4.8 ± 0.3</td>
<td>7.0 ± 0.2</td>
</tr>
<tr>
<td>Acidic water (IC50mg/mL)</td>
<td>4.0 ± 0.2</td>
<td>3.15 ± 0.1</td>
<td>3.33 ± 0.3</td>
<td>4.5 ± 0.2</td>
</tr>
<tr>
<td>Alkaline water (IC50mg/mL)</td>
<td>6.0 ± 0.3</td>
<td>4.8 ± 0.4</td>
<td>11.07 ± 0.2</td>
<td>7.5 ± 0.3</td>
</tr>
<tr>
<td>Ascorbic acid (IC50mg/mL)</td>
<td>-</td>
<td>0.015 ± 0.05</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 1. Schematic representation of sequential extraction from Sargassum plagiophyllum.

4. Discussion

Recently, there is a considerable interest in the food industry as well as pharmaceutical industry for the development of antioxidants from natural sources, such as marine flora and fauna. Among them, marine algae represent one of the richest sources of natural antioxidants [8,2]. The sequential extraction procedure was an efficient process to recover various products based on the differential solubility, molecular mass and charge distribution of polysaccharides from brown seaweeds. Laminarins are soluble in warm waters and therefore extracted at 80°C. Fucans were extracted with diluted hydrochloric acid, whereas alginites were extracted with sodium carbonate. Alginites form insoluble precipitates with bivalent calcium at acid pH, and are stable in solution between pH 6 and 9. Based on this, it could be presumed that the acetone extract could have pigments and secondary metabolites, acidic water extract could have fucoidan, alkaline water extract could have alginic acid and neutral water extract could have laminarin as main content of each extract 10. In the present study, all the four extracts are found to have antioxidant properties might be due the presence of fucoxanthin, secondary metabolites, fucoidan, laminarin and alginic acids. Several classes of sulphated polysaccharides have been demonstrated to show antioxidant activity too. The compounds tested included laminarin, alginic acid, fucoidan and other unidentified macromolecules present in the extracts [1,2,9].

In this study, we found that the all the four extracts as excellent antioxidants. Accordingly, the extracts can be recommended for its application as a safe antioxidant in food processing industry. Furthermore, as the isolation of these antioxidant metabolites involves a few inexpensive and easy steps, it will be of an added advantage.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are greatly thankful to University Grant Commission, New Delhi, India for providing financial assistance for this work. The authors are greatly acknowledging Department of Botany, Annamalai University, Chidambaram and Centre for Advanced Studies in Botany, University of Madras, Chennai, India.

References


