Molecular detection of Anaplasma species in questing ticks (ixodids) in Ethiopia

Sori Teshale1,2, Dirk Geysen3, Gobena Amen1,2, Ktega Bogale1, Pierre Dormy2, Dirk Berkvens2

1College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
2Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium
3Akililu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia

ARTICLE INFO

Objective: To identify Anaplasma spp. in questing ticks with emphasis on Anaplasma phagocytophilum (A. phagocytophilum) and Anaplasma ovis (A. ovis) in Ethiopia.

Methods: DNA extracted from 237 questing ticks (Rhipicephalus evertsi (R. evertsi) (n = 61), Rhipicephalus pulchellus (R. pulchellus) (n = 54), Rhipicephalus decoloratus (R. decoloratus) (n = 1), Amblyomma variegatum (A. variegatum) (n = 22), Amblyomma lepidum (A. lepidum) (n = 36), Amblyomma nymphs (n = 6), Amblyomma gemma (A. gemma) (n = 7) and Hyaolomma marginatum (H. marginatum) (n = 53)) were tested by PCR-RFLP assay.

Results: Overall 32 (13.33%; 95% confidence interval: 9.8%–18.3%) of the ticks were positive for Anaplasma spp. DNA. Anaplasma marginale was detected in H. marginatum and R. pulchellus. Anaplasma centrale was identified in R. evertsi, R. pulchellus and H. marginatum. A. ovis was detected in R. evertsi, Amblyomma spp. and Hyaolomma spp. A. phagocytophilum was detected only in R. pulchellus and Anaplasma sp. omatijenne was detected only in Amblyomma lepidum. Ehrlichia species were not detected in any of the tick species examined.

Conclusions: The results demonstrated the presence of several Anaplasma spp. including the zoonotic A. phagocytophilum and potentially zoonotic A. ovis. Our finding identified potential vectors of A. ovis to be further confirmed. However, an extended study is needed to identify the potential vectors of A. phagocytophilum. The variety of Anaplasma spp. indentified in this study suggests risks of anaplasmosis in animals and humans in the country.

1. Introduction

Anaplasmosis caused by Anaplasma marginale (A. marginale) is a worldwide disease of domestic ruminants, especially cattle, and has been reported in all continents causing huge loss to cattle industry[1]. The infection of domestic ruminants with Anaplasma centrale (A. centrale) and Anaplasma sp. omatijenne (A. sp. omatijenne) has been known even though these two Anaplasma spp. are considered non-pathogenic[1,2]. Rhipicephalus spp. are known to be important vectors of A. marginale throughout the world[1,3]. Other Anaplasma spp. infecting domestic ruminants such as Anaplasma phagocytophilum (A. phagocytophilum) and Anaplasma ovis (A. ovis) are either neglected or less investigated so that little is known about their epidemiology and vectors under African conditions[4,5].

According to Dulmer et al.[6], A. phagocytophilum is a recently emended species of bacteria that comprises Ehrlichia phagocytophila, Ehrlichia equi and the agent of human granulocytic anaplasmosis. It is a multihost bacterium infecting various species of wild and domestic animals and humans[7-10]. The mortality associated with A. phagocytophilum infection is low in animals, but significant economic losses associated with drop in milk yield, abortion and infertility and reduced weight gain have been observed in pastured animals[5,11]. Deaths have been also recorded in weaker animals if they are not treated[12]. The number of human cases associated with A. phagocytophilum infection has been increasing in USA, Europe, Middle East and Asia since its recognition as a human pathogen. Tick attachment, contact with infected animal blood and prenatal infection have been associated with human infections[13]. Human infections can result in severe clinical consequences with a hospitalization rate as high as 36% in USA and a mortality rate of over 26.5% in China[5].

A. ovis has been known to infect domestic and wild ruminants since 1912[14,15]. It is considered to be endemic in tropical and subtropical regions, but it is frequently reported in temperate...
regions. It has been detected in small ruminants in Europe, USA, Africa and Asia[14]. The mortality associated with the infection of *A. ovis* is not frequent, even though it causes huge financial losses to farming stock because of the reduced productivity[14,16]. It has now gained more importance as a result of observations that suggest its zoonotic importance following detection of the variant of *A. ovis* in human patients in Cyprus[17].

The vectors of *A. phagocytophilum* and *A. ovis* have been shown to vary among and within different continents and countries[5,8,17,18]. It has been also shown that *A. ovis* can be transmitted by bites of flies such as sheep ked[19]. *A. ovis* and *A. phagocytophilum* are recently identified in Ethiopia[20]. This has significant implications for farming stock because of the reduced productivity[14,16]. It has now gained more importance as a result of observations that suggest its zoonotic importance following detection of the variant of *A. ovis* in human patients in Cyprus[17].

The vectors of *Anaplasma* spp. are shown to vary among and within different continents and countries[5,8,17,18]. It has been also shown that *A. ovis* can be transmitted by bites of flies such as sheep ked[19]. *A. ovis* and *A. phagocytophilum* are recently identified in Ethiopia[20]. This has significant implications for farming stock because of the reduced productivity[14,16]. It has now gained more importance as a result of observations that suggest its zoonotic importance following detection of the variant of *A. ovis* in human patients in Cyprus[17].

### 2. Materials and methods

#### 2.1. Field sites for collection of ticks

Three sites where the occurrence of *Anaplasma* spp. including *A. phagocytophilum* and *A. ovis* was confirmed in domestic ruminants previously were purposely selected for collection of unfed ticks from the field for molecular analysis[20]. They were Bishoftu, Bako and Awash Depression. Bishoftu is the main town of Adwa’s District in the east of Shewa Zone, Central Oromia, Ethiopia. It was located at a distance of 45 km east of Addis Ababa. Bako was a district in the west of Shewa Zone of Oromia State, Ethiopia, which was located at about 225 km away from the capital. Samples from Awash Depression were collected from three different localities (Fantale, Gari and Mart). Since these three sites were closer and had similar conditions, Fantale was taken as a representative location. The area was located in the east of Shewa Zone of Oromia State, about 190 km from the east of Addis Ababa. The Awash Depression is one of the irrigated areas in the mid-v rift valley of Ethiopia. The detailed characteristics of the study sites were given in Table 1.

#### 2.2. Collection and identification of ticks

Sampling of the ticks was carried out in September and October, 2013. The ticks were unfed, actively quested and hunted. Tick collection was carried out by flagging vegetation on pastures and wooded areas bordering farms and homesteads as described by Uys et al.[21]. Most of the collections were carried out during morning hours. Some of the ticks were collected just while actively moving near kraals late in the afternoon when animals came back from pastures. The ticks were preserved in 70% ethanol and transported to the Veterinary Parasitology Laboratory of the College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu.

The identification of ticks was done based on their morphological characteristics using standard identification keys described by Walker et al.[22].

#### 2.3. Extraction of DNA from ticks

DNA was extracted from the ticks using the box extraction method as described previously[23] with modifications described previously by Teshale et al.[20].

#### 2.4. Amplification of DNA with PCR

A semi-nested PCR was used to amplify a fragment of about 925 bp of the 165 rDNA. Amplification was carried out using *Ehrlichia ruminantium* (5'-GTTACCCGAAGAAGTCC-3')[24] and *E. phagocytophilum* (5'-TTGATCGCGCGACGCA-3')[20] primers for the first round of amplification and *Ehrlichia* 16S and *E. phagocytophilum* (5'-TGCTGACTTGCACATCGCCC-3')[20] for the second round of the reaction. The reaction mix consisted of HotStartTaq Master Mix (2.5 IU of DNA polymerase, PCR buffer containing 1.5 mmol/L MgCl2 and 200 μmol/L of each deoxyribonucleotide triphosphates), 0.2 μmol/L of each primer and PCR water. The PCR reaction was carried out in a total volume of 25 μL using a programmable thermocycler (T3 thermocycler, Biometra®, Westburg, NL). The PCR procedures were described by Teshale et al.[20].

All the PCR products were visualized by gel electrophoresis in Tris-acetate-EDTA buffer (0.04 mol/L Tris, 0.4 mmol/L EDTA, pH = 7.7–8.8) using 2% agarose at 100 V for 40 min and stained with ethidium bromide. Negative samples were restested at 1/10 dilution for any possible inhibition effect. Throughout the PCR procedures, PCR mix with no DNA template was used as a negative control while DNA from an *in vitro* culture of *Ehrichia ruminantium*, *A. marginale* and *A. phagocytophilum* was used as the positive control.

#### 2.5. Restriction fragment length polymorphism (RFLP) analysis of the amplified products

The amplified products from positive samples were digested by restriction enzymes, *Mbo II*, *Hha I* and *Msp I*, to identify the species of *Anaplasma* detected as described by Teshale et al.[20]. The restriction was done in a final volume of 15 μL consisting of 4 μL DNA (PCR product) and 11 μL RFLP mix (0.3 μL per final volume of restriction enzymes, Milli-Q water and buffer for each enzyme, Biolabs, New England). Incubation was done overnight at temperatures specific for each enzyme. The restricted fragments were separated on a 2% high resolution agarose gel by electrophoresis in Tris-acetate-EDTA buffer (0.04 mol/L Tris, 0.4 mmol/L EDTA, pH = 7.7–8.8) at 100 V for 40 min and visualized under UV illumination after staining with ethidium bromide (final concentration of 0.5 μg/mL).
3. Results

A total of 237 ixodid ticks [Rhipicephalus evertsi (R. evertsi) (n = 61), Rhipicephalus pulchellus (R. pulchellus) (n = 54), Rhipicephalus decoloratus (n = 1), Amblyomma variegatum (A. variegatum) (n = 22), Amblyomma lepidum (A. lepidum) (n = 36), Amblyomma nympha (n = 6), Amblyomma gemma (n = 7) and Hyalomma marginatum (Hy. marginatum) (n = 53)] were collected from the field and analyzed for Anaplasma spp. DNA targeting 16S RNA gene. All ticks were tested by PCR and positive ones were subsequently analyzed by RFLP to identify the species of Anaplasma detected. DNA belonging to five Anaplasma spp. (A. marginale, A. centrale, A. ovis, A. sp. omatijenne and A. phagocytophilum) was identified in the ticks (Table 2).

Table 2
Results of molecular analysis of unfed ticks for Anaplasma species from selected sites in Ethiopia.

<table>
<thead>
<tr>
<th>Site</th>
<th>Tick species</th>
<th>Tested number</th>
<th>Stage</th>
<th>Positive number and species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishoftu</td>
<td>R. evertsi</td>
<td>22</td>
<td>Adult</td>
<td>1. A. centrale</td>
</tr>
<tr>
<td></td>
<td>A. variegatum</td>
<td>17</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A. lepidum</td>
<td>20</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hy. marginatum</td>
<td>44</td>
<td>Adult</td>
<td>1. A. marginale</td>
</tr>
<tr>
<td>Bako</td>
<td>R. evertsi</td>
<td>30</td>
<td>Adult</td>
<td>6. A. ovis</td>
</tr>
<tr>
<td></td>
<td>A. lepidum</td>
<td>9</td>
<td>Adult</td>
<td>1. A. ovis, 2 A. sp. omatijenne</td>
</tr>
<tr>
<td></td>
<td>Amblyomma</td>
<td>6</td>
<td>Nymph</td>
<td>4.4. ovis</td>
</tr>
<tr>
<td>Awash Depression</td>
<td>R. pulchellus</td>
<td>8</td>
<td>Adult</td>
<td>1. A. marginale, 1. A. centrale</td>
</tr>
<tr>
<td>Fantale</td>
<td>Hy. marginatum</td>
<td>7</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R. evertsi</td>
<td>1</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A. variegatum</td>
<td>1</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td>Marti</td>
<td>R. pulchellus</td>
<td>46</td>
<td>Adult</td>
<td>2. A. phagocytophilum, 4. A. centrale, 6. A. marginale</td>
</tr>
<tr>
<td></td>
<td>A. lepidum</td>
<td>6</td>
<td>Adult</td>
<td>1. A. ovis</td>
</tr>
<tr>
<td></td>
<td>R. evertsi</td>
<td>4</td>
<td>Adult</td>
<td>1. A. ovis</td>
</tr>
<tr>
<td></td>
<td>R. decorator</td>
<td>1</td>
<td>Larva</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A. variegatum</td>
<td>4</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A. gemma</td>
<td>7</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td>Gari</td>
<td>A. lepidum</td>
<td>1</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R. evertsi</td>
<td>1</td>
<td>Adult</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hy. marginatum</td>
<td>2</td>
<td>Adult</td>
<td>1. A. ovis, 1. A. centrale</td>
</tr>
</tbody>
</table>

R. decoloratus: Rhipicephalus decoloratus.

A. marginale was identified in 2.3% (95% confidence interval (CI): 0.1%–12%) of Hy. marginatum collected from Bishoftu, 12.5% (95% CI: 0.3%–2.6%) of R. pulchellus from Fantale and in 13% (95% CI: 4.9%–26.3%) of R. pulchellus from Marti. A. centrale was identified in 4.5% (95% CI: 0.1%–22.8%) of R. evertsi collected from Bishoftu, 12.5% (95% CI: 0.3%–52.6%) and 8.7% (95% CI: 2.4%–20.8%) of R. pulchellus from Fantale and Marti, respectively, and in 50% (95% CI: 1.3%–98.7%) of Hy. marginatum collected from Gari. Only two (22.2%; 95% CI: 2.8%–60.0%) of A. lepidum collected from Bako gave positive signals for A. sp. omatijenne.

The DNA of A. phagocytophilum was detected only in 4.3% (95% CI: 0.5%–12.7%) of R. pulchellus collected from Marti whereas no other ticks were found to contain DNA belonging to this pathogen. The DNA of A. ovis was identified in 20% (95% CI: 7.7%–38.6%) of R. evertsi, 11.1% (95% CI: 0.3%–48.2%) of A. lepidum and 66.7% (95% CI: 22.3%–95.7%) of Amblyomma nympha collected from Bako. All together A. ovis was identified in 24.4% (95% CI: 12.9%–39.5%) of the ticks collected from Bako. Among ticks collected and tested from Marti, A. ovis was detected in 25% (95% CI: 0.6%–80.6%) of R. evertsi and 16.7% (95% CI: 0.4%–64.1%) of A. lepidum specimens. It was detected in 50% (95% CI: 1.3%–98.7%) of Hy. marginatum collected from Gari. No ticks collected from Bishoftu contained DNA of A. ovis. Ehrlichia spp. were not identified in any of the ticks tested.

4. Discussion

Anaplasmosis has been well recognized in many countries of the world resulting in enormous economic losses in ruminant industry despite infrequent mortalities[1,8,17]. Variants of Anaplasma species have also been associated with human illness[3,17,25]. The occurrence of zoonotic Anaplasma spp. such as A. ovis and A. phagocytophilum was recently reported in domestic ruminants in Ethiopia[20]. However, no study has been carried out on unfed ticks in Ethiopia. To the best of our knowledge, this is the first report of the occurrence of Anaplasma spp. in unfed ticks collected from the field in the country. Knowledge of the ticks involved in the transmission of Anaplasma spp. is required for better understanding of anaplasmosis. Identification of Anaplasma spp. is the first step in the identification of tick vectors. In this study, we screened unfed ixodid ticks for the DNA of Anaplasma spp. focusing on A. ovis and A. phagocytophilum in Ethiopia.

In this study, unfed Rhipicephalus spp., Hyalomma spp. and Amblyomma spp. were found positive for A. ovis DNA. This suggests that these ticks could be involved in the transmission of A. ovis. The occurrence of A. ovis infections in resident small ruminant population was confirmed recently[20]. Now the presence of A. ovis in unfed tick population in the country is proved. The vector role of ticks that belong to the genus Hyalomma has already been documented elsewhere[26], in which unfed Hyalomma spp. were found to be infected with A. ovis. Rhipicephalus spp. (R. evertsi and R. pulchellus) have been also shown to be competent vectors of Anaplasma spp. Zhou et al.[11] showed that R. evertsi was proved to be competent vector of A. marginale. Therefore, the detection of DNA of A. ovis in unfed Hyalomma spp. and Rhipicephalus spp. in this study is in agreement with the previous reports made elsewhere in the world. In this study, A. ovis was also detected in two A. lepidum and four Amblyomma nympha. Amblyomma spp. are mostly recognized for their role in the transmission of Ehrlichia spp. and Theileria mutans[27]. Yang et al.[11] have previously documented that Amblyomma spp. are vectors of A. ovis in Asia. The detection of A. ovis DNA in adults and nymphs that did not attach to animals suggests the possible involvement of Amblyomma spp. in the transmission of this bacterium. The actual role of the tick species found positive with A. ovis DNA in this study in the transmission of the agent to resident ruminants needs to be further confirmed by experimental studies. However, our results showed that A. ovis could be transmitted by several genera and species of ticks including Amblyomma spp. This is supported by earlier findings reported elsewhere showing that A. ovis is transmitted by many tick species and several biting flies[19].

Two DNA specimens from R. pulchellus gave positive results for A. phagocytophilum. This tick species was collected only from Awash Depression and its surrounding, which has typical semi-arid climate. Previous studies also showed that this tick species is found to the east of Rift Valley, which has drier weather. The occurrence of the infection with A. phagocytophilum was confirmed in ruminants in wetter and humid areas such as Bako where R. pulchellus are
not found[20]. This suggests the involvement of other tick species in the transmission of this rickettsia. An extended study covering a larger area, more tick species and quantity is needed to identify the potential vectors of *A. phagocytophila* in the country.

In conclusion the findings of this study underline the potential role of *A. ovis* among ruminants in Ethiopia. This is useful finding for small ruminant sector and could be considered during genetic improvement and translocation programs. The risks of human infections could also be highlighted as ecotourism and outdoor activities are growing in the country. Therefore, our findings could be used as preliminary information for the public health authorities. Further investigations are warranted in order to identify the vectors associated with the transmission of these *Anaplasma* spp. and elucidate the pathogenic role of *A. ovis* and *A. phagocytophila* in human and animal health in the country.

**Conflict of interest statement**

We declare that we have no conflict of interest.

**References**


