1. Introduction

Herbal medicines are the oldest remedies known to mankind. In the present scenario, the demand for herbal products is growing exponentially throughout the world and major pharmaceutical companies are currently conducting extensive research on plant materials for their potential medicinal value. In many journals, national and international, we find an increasing number of research publications based on herbal drugs. Many analysis-based studies regarding pharmacological research in India have been conducted in the past.[1]

Diabetes is a metabolic disorder characterized by hyperglycemia resulting deficiency of insulin secretion by pancreas, ineffectiveness of produced insulin, or both.[2]. It is the most important non–infective epidemic to hit the globe in the present millennium. The number of people suffering from diabetes worldwide is increasing at an alarming rate. It is predicated that about 366 million people are likely to be diabetic by the year 2030.[3]. Hyperglycemia can be handled initially with oral synthetic agents and insulin therapy. However, these synthetic agents produce some serious side effects and are relatively expensive for developing countries.[4]. The toxicity of oral antidiabetic agents differs widely in clinical manifestations, severity, and treatment.[5]. In the natural system of medicine many plants have been claimed to be useful for the treatment of diabetes mellitus. The dependence of large rural population on medicinal plants for treatment of diabetes is because of its availability and affordability.[6]. In recent years, several authors evaluated and identified the antidiabetic potential of traditionally used Indian medicinal plants using experimental animals. Although a large number of medicinal plants have been tested for their antidiabetic effects, but it remains to be investigated in several other Indian medicinal plants. The excessive oxidative stress is observed in the diabetes.[7]. So, the present study was...
conducted to evaluate antihyperglycemic and antioxidant activities of *Saraca asoca* (*S. asoca*) leaves in streptozotocin induced diabetic mice.

Ashoka is the most ancient tree of India, generally known as a “ashok briksh”, botanist known as *Saraca asoca* (Roxb.), De.wild or Saraca indica belonging to family Caesalpinaceae. The leaves of *S. asoca* are used in the treatment of diabetes but there was no significant proof for its antidiabetic efficacy. Also the plant contains many flavonoids and sterols/Triterpenoids as its main constituents, which are known bioactive principles for antidiabetic potential. Flavonoids are also known to regenerate the damaged β-cells in diabetic mice. From here it was thought worthwhile to find out the efficacy of leaves of *S. asoca* for treating diabetes.

2. Materials and methods

2.1. Collection of Plant material

The leaves of *S. asoca* were collected from the campus of Kurukshetra University, Kurukshetra in the month of October and November and were taxonomically identified and authenticated by Dr. BD Vashishta, Department of Botany, Kurukshetra University, Kurukshetra, India. The leaves were then separated, washed and shed-dried under room temperature.

2.2. Preparation of plant extracts

The plant material was powdered to coarse powder and extracted with petroleum ether (60–80°C) in Soxhlet apparatus at a temperature not exceeding 66°C. The defatted plant material was then extracted with chloroform and methanol at the same temperature. The extracts were concentrated under reduced pressure in rotary evaporator to yield a crude semi-solid mass. It was then dried and used.

2.3. Preliminary phytochemical screening

A portion of residue from each extract was subjected to phytochemical analysis to test the presence of carbohydrates, glycosides, alkaloids, flavonoids, tannins, sterols and triterpenoids in the leaves extracts.

2.4. Animals

Experiments were performed using Swiss albino male mice (25–35 g). Animals were maintained under standard environmental conditions *i.e.* ambient temperature of (22±3°C), relative humidity 30–70%, an artificial dark and light cyclechroform of 12 h each, fed with a standard pellet mice diet from Ashirwad Industries, Chandigarh, India and water was supplied *ad libitum*. The Animal Ethical Committee, Kurukshetra University reviewed the entire animal protocols prior to conducting the experiments.

2.5. Acute Toxicity Studies

Animals were fasted for 3–4 h prior to dosing. Following the period of fasting, all extracts at doses of 200, 300, 600, 1000, 1 500 and 2 000 mg/kg b.w. were administered to six groups with 6 rats each. Animals were observed individually after dosing at least once during the first 30 min. Periodically during the first 24 h, with special attention given during the first 4 h. Time of onset and length of recovery period were observed. Additional observations include change in skin and fur, eyes and mucous membranes, and also somatomotor activity and behaviour pattern. Attentions were given to observations of tremors, convulsions, salivation, diarrhoea, sleep and coma.

2.6. Treatment protocol

Diabetic animals were randomly assigned into following groups of six animals each.

- **Group I:** Normal control received distilled water.
- **Group II:** Diabetic control received vehicle (Tween 80, 5% v/v and distilled water)
- **Group III:** Diabetic mice received glibenclamide (10 mg/kg)
- **Group IV:** Diabetic mice received petroleum ether (250 mg/kg)
- **Group V:** Diabetic mice received petroleum ether (500 mg/kg)
- **Group VI:** Diabetic mice received chloroform (250 mg/kg)
- **Group VII:** Diabetic mice received chloroform (500 mg/kg)
- **Group VIII:** Diabetic mice received methanol (250 mg/kg)
- **Group IX:** Diabetic mice received methanol (500 mg/kg)

The drug solutions or vehicle were administered orally by gastric intubation once daily at 11 o’clock for 21 days. The effect of vehicle, extract and standard drug on blood glucose and body weight was determined in animals at 0, 7, 14, 21 day after oral administration.

2.7. Biochemical estimation

Blood samples were collected by cardiac puncture and retro-orbital plexus method from all animals into the EDTA sprinkled tubes and were centrifuged at 3 000 rpm for 20 min. Serum was separated and stored at ~20°C until analysis was performed. Serum samples were analyzed for cholesterol, HDL, total proteins, urea, creatinine and triglycerides using the diagnostic kit (ERBA Diagnostics Mannheim, Germany) in Autoanalyzer. LDL and VLDL were calculated using following formulae:

\[
LDL = TC - [TG/5 + HDL][21] \\
VLDL = TC - [LDL + HDL][22]
\]

2.8. Antioxidant assay

2.8.1. Evaluation method of scavenging of hydrogen peroxide (H₂O₂)

Individual dose of the streptozotocin (STZ) to be injected in overnight fasted animals was extemporaneously prepared in ice cold citrate buffer (pH 4.5). STZ (150 mg/kg) was injected intraperitoneally to the animals. Control mice received an equivalent amount of citrate buffer. Twelve day after the STZ injection, mice with fasting blood glucose levels greater than 200 mg/kg were considered diabetic and included in study.

2.5. Induction of diabetes

Individual dose of the streptozotocin (STZ) to be injected in overnight fasted animals was extemporaneously prepared in ice cold citrate buffer (pH 4.5). STZ (150 mg/kg) was injected intraperitoneally to the animals. Control mice received an equivalent amount of citrate buffer. Twelve day after the STZ injection, mice with fasting blood glucose levels greater than 200 mg/kg were considered diabetic and included in study.

2.5. Induction of diabetes

Diabetic animals were randomly assigned into following groups of six animals each.

- **Group I:** Normal control received distilled water.
- **Group II:** Diabetic control received vehicle (Tween 80, 5%, v/v and distilled water)
- **Group III:** Diabetic mice received glibenclamide (10 mg/kg)
- **Group IV:** Diabetic mice received petroleum ether (250 mg/kg)
- **Group V:** Diabetic mice received petroleum ether (500 mg/kg)
- **Group VI:** Diabetic mice received chloroform (250 mg/kg)
- **Group VII:** Diabetic mice received chloroform (500 mg/kg)
- **Group VIII:** Diabetic mice received methanol (250 mg/kg)
- **Group IX:** Diabetic mice received methanol (500 mg/kg)

The drug solutions or vehicle were administered orally by gastric intubation once daily at 11 o’clock for 21 days. The effect of vehicle, extract and standard drug on blood glucose and body weight was determined in animals at 0, 7, 14, 21 day after oral administration.
A solution of H$_2$O$_2$ (40 mM) was prepared in phosphate buffer (pH 7.4). Different concentrations (100, 300 and 500 μg/mL) of extracts were added to a H$_2$O$_2$ solution (0.6 mL, 40 mM). Absorbance of H$_2$O$_2$ at 230 nm was determined after 10 min against a blank solution containing phosphate buffer without H$_2$O$_2$[23-24]. The percentage scavenging of H$_2$O$_2$ of extract and standard compounds was calculated using the following formula:

\[
\% \text{ Scavenged}[\text{H}_2\text{O}_2] = \left[\frac{A_0 - A_1}{A_0}\right] \times 100
\]

Where A$_0$ was the absorbance of the control, and A$_1$ was the absorbance in the presence of the sample and standards.

2.8.2. Evaluation method by 1,1-diphenyl-2-picrylhydrazyl (DPPH) antioxidant assay

A stock solution of DPPH (33 mg in 1 L) was prepared in methanol and 5 mL of this stock solution was added to 1 mL of test solution at different concentrations (100, 300, 500 μg/mL). After 30 minutes, absorbance was measured at 517 nm and compared with standards (100, 300, 500 μg/mL). BHA and ascorbic acid were used as reference[25]. Scavenging activity was expressed as the percentage inhibition calculated using the following formula:

\[
\% \text{ Scavenged}[\text{DPPH}] = \left[\frac{\text{Abs. (sample)} - \text{Abs. (control)}}{\text{Abs. (control)}}\right] \times 100
\]

2.9. Histopathology

For histopathological study, animals from all groups were anaesthetized with mild ether anaesthesia and dissected. Liver, kidney and pancreas are excised out of the animal’s body and put immediately into 10% formalin solution in paraffin), sectioning (with standard microtome) and staining (using Bouin’s solution), dehydration, embedding (in paraffin), sectioning with standard microtome and staining (Haematoxylin or eosin). The slides so prepared were then examined by pathologist and the pictures were clicked with the help of a binocular microscope fixed with a camera.

2.10. Statistical analysis

The data were analyzed by one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison tests to determine level of significance. A value of $P<0.01$ was considered significant results are expressed as mean ± SEM.

3. Results

Preliminary phytochemical analysis of S. asoca leaves showed the presence of flavonoids, tannins, saponins, sterols and triterpenoids which are known bioactive principles[11, 26]. Flavonoids are also known to regenerate the damaged β-cells in diabetic mice[14, 27]. The overall study showed the LD$_{50}$ of oral toxicity of all extracts to be above 2 000 mg/kg b.w. in mice. So, the extracts are safe for long term administration. The effects of vehichloroform, Glibenclamide and all methanol, petroleum ether and chloroform extracts on blood glucose levels in normal and diabetic mice after treatment of 21 days are shown in Table 1, in which all extracts showed significant reduction ($P<0.01$). It was observed that standard drug glibenclamide lowered the blood glucose levels significantly bringing it back to normal which is an indication of the presence of some β cells, as glibenclamide is known to stimulate insulin secretion from β-cells[12]. A significant reduction in average weight was observed in STZ induced diabetic mice (Table 1). The decrease in weight in diabetes was due to continuous excretion of glucose and decrease in peripheral uptake of glucose and glycogen synthesis[28]. Increase in body weight and decrease in blood glucose might be due to improving the glycemic control mechanisms and insulin secretions from remnant pancreatic–cells in diabetic animals. Standard drug and different extracts showed dose–related reductions in the serum concentrations of TC, TG, LDL, VLDL, TG, SU and SC but caused the reverse effect on the serum concentration of HDL and TP (Table 2). Percentage anti radical activity of all extracts is summarized in Table 3. All the extracts exhibited good but varying levels of antioxidant activity in both DPPH and H$_2$O$_2$ radical scavenging assay.

Table 1

<table>
<thead>
<tr>
<th>Groups</th>
<th>Blood glucose (mg/dL)</th>
<th>Body weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
<td>Day 7</td>
</tr>
<tr>
<td>Group I</td>
<td>85.20 ± 3.200</td>
<td>83.0 ± 2.387</td>
</tr>
<tr>
<td>Group II</td>
<td>223.60 ± 12.343</td>
<td>258.60 ± 17.201</td>
</tr>
<tr>
<td>Group III</td>
<td>218.8 ± 11.968</td>
<td>155.0 ± 14.557</td>
</tr>
<tr>
<td>Group IV</td>
<td>212.60 ± 13.212</td>
<td>241.40 ± 13.801</td>
</tr>
<tr>
<td>Group V</td>
<td>222.20 ± 24.461</td>
<td>159.6 ± 15.604</td>
</tr>
<tr>
<td>Group VI</td>
<td>241.40 ± 22.713</td>
<td>275.60 ± 35.765</td>
</tr>
<tr>
<td>Group VII</td>
<td>204.8 ± 6.658</td>
<td>220.40 ± 11.021</td>
</tr>
<tr>
<td>Group VIII</td>
<td>267.20 ± 21.542</td>
<td>383.20 ± 65.136</td>
</tr>
<tr>
<td>Group IX</td>
<td>334.60 ± 45.793</td>
<td>336.60 ± 51.048</td>
</tr>
</tbody>
</table>

Group I: Normal control; Group II: Diabetic control; Group III: Standard with glibenclamide 10 mg/kg; Group IV: Petroleum ether 250 mg/kg; Group V: Petroleum ether 500 mg/kg; Group VI: Chloroform 250 mg/kg; Group VII: Chloroform 500 mg/kg; Group VIII: Methanol 250 mg/kg; Group IX: Methanol 500 mg/kg.

*P < 0.05, **P < 0.01*.

Table 2

Effect of *S. asoca* extracts on cholesterol levels. (mean ± SEM)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Cholesterol</th>
<th>TG</th>
<th>HDL</th>
<th>VLDL</th>
<th>LDL</th>
<th>Creatinine (mg/dl)</th>
<th>Urea (mg/dl)</th>
<th>Total protein (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>87.33 ± 1.35</td>
<td>96.50 ± 1.64</td>
<td>33.01 ± 0.63</td>
<td>19.30 ± 1.32</td>
<td>35.10 ± 2.85</td>
<td>0.73 ± 0.22</td>
<td>32.03 ± 1.36</td>
<td>7.00 ± 1.63</td>
</tr>
<tr>
<td>Group II</td>
<td>198.67 ± 2.55</td>
<td>172.33 ± 1.81</td>
<td>22.00 ± 1.24</td>
<td>34.40 ± 4.35</td>
<td>129.20 ± 12.3</td>
<td>1.70 ± 1.55</td>
<td>73.88 ± 2.27</td>
<td>4.00 ± 0.11</td>
</tr>
<tr>
<td>Group III</td>
<td>90.67 ± 1.42</td>
<td>91.33 ± 0.68</td>
<td>32.43 ± 3.24</td>
<td>18.24 ± 0.32</td>
<td>37.00 ± 2.43</td>
<td>0.61 ± 1.42</td>
<td>28.68 ± 1.61</td>
<td>8.33 ± 3.21</td>
</tr>
<tr>
<td>Group IV</td>
<td>153.00 ± 2.13</td>
<td>151.90 ± 1.43</td>
<td>18.90 ± 4.98</td>
<td>30.10 ± 3.46</td>
<td>102.00 ± 1.43</td>
<td>1.41 ± 0.34</td>
<td>56.00 ± 2.63</td>
<td>5.90 ± 2.98</td>
</tr>
<tr>
<td>Group V</td>
<td>144.00 ± 0.23</td>
<td>137.50 ± 0.34</td>
<td>27.10 ± 2.32</td>
<td>27.40 ± 1.47</td>
<td>89.60 ± 0.91</td>
<td>1.10 ± 0.23</td>
<td>43.54 ± 0.74</td>
<td>5.07 ± 1.62</td>
</tr>
<tr>
<td>Group VI</td>
<td>191.32 ± 3.45</td>
<td>168.80 ± 2.32</td>
<td>29.00 ± 2.76</td>
<td>33.70 ± 0.61</td>
<td>108.50 ± 1.39</td>
<td>1.52 ± 2.75</td>
<td>53.80 ± 1.02</td>
<td>6.03 ± 4.54</td>
</tr>
<tr>
<td>Group VII</td>
<td>176.00 ± 3.42</td>
<td>164.40 ± 1.91</td>
<td>21.54 ± 1.98</td>
<td>32.80 ± 0.54</td>
<td>102.32 ± 2.51</td>
<td>1.46 ± 2.02</td>
<td>51.40 ± 0.98</td>
<td>5.54 ± 3.53</td>
</tr>
<tr>
<td>Group VIII</td>
<td>129.00 ± 3.71</td>
<td>126.60 ± 0.132</td>
<td>26.30 ± 0.43</td>
<td>25.29 ± 2.91</td>
<td>77.41 ± 0.31</td>
<td>0.89 ± 1.61</td>
<td>36.60 ± 1.23</td>
<td>6.93 ± 0.69</td>
</tr>
<tr>
<td>Group IX</td>
<td>121.20 ± 0.41</td>
<td>106.20 ± 3.59</td>
<td>34.30 ± 2.72</td>
<td>21.31 ± 2.30</td>
<td>54.37 ± 0.31</td>
<td>0.63 ± 0.41</td>
<td>31.20 ± 3.67</td>
<td>7.06 ± 3.92</td>
</tr>
</tbody>
</table>

*P < 0.05, **P < 0.01

![Figure 1](image1.png)

Figure 1. Histopathological changes in Liver

A: Normal control; showing the central vein (black arrow), with radiating cords of hepatocytes (white arrow); B: Diabetic control; Diabetic liver showing the perportal fatty infiltration with focal fat necrosis; C: Petroleum ether 500 mg/kg (leaves extract), showing regeneration in portal track; D: Methanol 500 mg/kg (leaves extract), portal track showing normal features
Table 3

Antioxidant activity of *S. asoca* extracts

<table>
<thead>
<tr>
<th>Extract</th>
<th>Rate of anti-radical activity by DPPH</th>
<th>Rate of scavenging of H$_2$O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 µg</td>
<td>300 µg</td>
</tr>
<tr>
<td>BHA</td>
<td>78.3</td>
<td>83.3</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>78.2</td>
<td>86.4</td>
</tr>
<tr>
<td>Petroleum ether (250 mg/kg)</td>
<td>29.69</td>
<td>38.15</td>
</tr>
<tr>
<td>Petroleum ether (500 mg/kg)</td>
<td>32.25</td>
<td>39.37</td>
</tr>
<tr>
<td>Chloroform (250 mg/kg)</td>
<td>23.13</td>
<td>27.58</td>
</tr>
<tr>
<td>Chloroform (500 mg/kg)</td>
<td>24.24</td>
<td>42.82</td>
</tr>
<tr>
<td>Methanol (250 mg/kg)</td>
<td>59.17</td>
<td>62.5</td>
</tr>
<tr>
<td>Methanol (500 mg/kg)</td>
<td>38.48</td>
<td>51.72</td>
</tr>
</tbody>
</table>

Figure 2. Histopathological changes in kidney

In the normal liver, tissue section showed sinusoidal cards of hepatocytes with central vein and portal tracts.

A: Normal control. Showing glomeruli (black arrow), and proximal convoluted tubules B: Diabetic control: Shows tubular damage, proteinuria and haemorrhage; C. Pet ether 500 mg/kg (leaves extract). Tubules shows proteinuria and glomerular damage. D. Methanol 500 mg/kg (leaves extract) Shows glomeruli and tubules without proteinuria and haemorrhage

The major alterations in liver were distortion in the arrangement of cells around the central vein, periporal fatty infiltration with focal necrosis of hepatocytes. Petroleum ether and methanolic extracts (250 and 500 mg/kg b. w.) treated brought back the cellular arrangement around the central vein and reduced necrosis. Also it helped to bring the blood vessels to normal condition (Figure 1).

The excellent recovery of renal functions expected with treatment of petroleum ether and methanolic flowers extract of *S. asoca* can be explained by regenerative capability of the renal tubules (Figure 2). The regenerative effect of the pancreatic cells by this plant via exocrine cells of pancreas may enlighten the positive effects of these agents on the production of insulin (Figure 3).
4. Discussion

STZ produces oxygen radicals in the body, which cause pancreatic injury and could be responsible for increased blood glucose in animals[29]. The present study indicates that petroleum ether, chloroform and methanol extract of *S. asoca* leaves showed antidiabetic properties against STZ induced diabetic model and also proved to have antioxidant activity. A significant reduction (*P*< 0.01) was observed in petroleum ether (500 mg/kg) and methanol (250 and 500 mg/kg) as 28.452%, 17.845% and 42.047% respectively. Percentage scavenging of H$_2$O$_2$ by petroleum ether (500 mg/kg) and methanol (500 mg/kg) extract at 500 µg concentration was found to be 47.43 and 60.94 and percentage anti radical activity of these extract by DPPH antioxidant assay at the same concentration was found to be 46.71 and 61.84. The presence of flavonoids contents might be the possible mechanism for antidiabetic activity of this plant.

Normal healthy animals were found to be stable in their body weight whereas diabetic animals showed reduction in body weight. In the study, the reduction of body weight was diminished by extracts treatment after 14 days of treatment in a dose dependent manner.

The reduction in the level of serum cholesterol, triglycerides, LDL and VLDL cholesterol confirms the possibility that major functions of the extract are on the protection of vital tissues (kidney and liver) including the pancreas, thereby reducing the causation of diabetes in experimental animals. The portal tracts showed portal triad with portal vein, hepatic artery and bile duct, where as the diabetic mice liver tissue section showed marked structural alterations in the liver as a result of absence of insulin. The results indicated a primary and secondary effect of diabetic state on the kidney of mice.

In petroleum ether and methanolic extracts (250 and 500 mg/kg b.w.) treated diabetic kidney, the damaged capillary loops with increase in the thickness of the wall, glomeruli and tubules without proteinuria and haemorrhage. The primary effect, the diabetes factor was associated with hyperglycemia and was responsible for dilation of proximal and distal tubules in the cortex. The secondary effect, named the individual response factor, was associated with inflammatory processes[30,31]. Dieresis is a common feature associated with diabetes which may be the reason for structural changes observed with glomerulus[32]. The ultra structure of diabetic pancreas showed considerable reduction in the islet langerhans and depleted islets. In petroleum ether and methanolic extracts (250 and 500 mg b.w.) treated pancreas the cells seem to have gathered together and small preserved islets similar to the normal.
The liver damage is partially reversed by both extracts.

The present study also indicates that S. asoca can partially inhibit renal toxicity as observed from serum creatinine. All the above observations suggest that S. asoca can be a promising antidiabetic and antioxidant drug.

Petroleum ether, chloroform and methanol extract of S. asoca leaves showed antidiabetic properties 250 and 500 mg/kg, b.w. p.o. exhibited significant antidiabetic and antioxidant properties evidenced by physical, biochemical and Histopathological parameter. Further study need to be done to elucidate the mechanism of action involved in antidiabetic and antioxidant activities.

As a conclusion, it could be speculated that the observed antihyperglycemic activity of S. asoca leaves might be related to the presence of flavonoids, sterols and triterpenoids and saponins as active constituents. The present investigation has also opened an avenue for further research especially with reference to the development of potent formulation for diabetes mellitus from S. asoca leaves.

Acknowledgement

The authors are thankful to Director, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra for his kind support and valuable suggestion. The authors are also thankful Kurukshetra University, Kurukshetra for sponsoring the research project.

References

