Evolving brain lesions in the follow-up CT scans 12 h after traumatic brain injury

Muhammad Sohail Umerani¹,², Asad Abbas¹,³,⁴*, Saqib Kamran Bakhshi¹,⁵, Ujala Muhammad Qasim⁴, Salman Sharif⁵

¹Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
²Department of Neurosurgery, Kind Fahad Military Medical Complex, Dhahran, Saudi Arabia
³Department of Neurosurgery, Jinnah Postgraduate Medical Center, Karachi, Pakistan
⁴Department of Surgery, Ziauddin University Hospital, Karachi, Pakistan
⁵Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan

ARTICLE INFO

Article history:
Received 16 Nov 2015
Received in revised form 17 Nov 2015
Accepted 4 Dec 2015
Available online 8 Jan 2016

Keywords:
Evolving brain lesion
Progressive hemorrhagic injury
Repeat CT scan
Traumatic brain injury
Craniotomy

ABSTRACT

Objective: To establish the frequency of evolution in CT appearance from an initial scan to a subsequent scan within 12 h and the prognostic significance of such deterioration.

Methods: All patients who presented to Department of Neurosurgery, Liaquat National Hospital and Medical College with traumatic brain injury and received their CT scan within the first 4 h of injury were included in the study. Indications for repeat CT scan were: any deterioration in neurological status after the initial scan, potentially deteriorating lesion on initial scan with or without worsening neurology, worsening neurological status after the initial CT scan findings, or no neurological improvement after initial management in patients with normal CT scan with significant head injury. This compiled with the data of 107 patients.

Results: There were 67 males and 40 females. The cause of trauma of the 70% patients was road traffic accident. In 11 patients, the lesion evolved towards resorption while 32 patients had no significant changes in the subsequent CT scan. Sixty four patients showed an increase in the size of the lesion and 65.6% of them were required surgical intervention subsequently.

Conclusions: In case where the initial CT scan performed within 4 h of significant head injury was not correlated with the patient’s neurology, it should be repeated within 12 h.

1. Introduction

Traumatic brain injury (TBI) often results in enduring mental, physical and behavioral morbidity and mortality, making it one of the most disabling and distressing traumatic injuries [1,2]. Around 10 million people fall prey to it every year around the globe[3]. TBI is classified into primary lesion which results from direct effect of trauma such as hematomas or axonal injuries and secondary lesion which is a consequence of multidimensional biochemical processes, which can lead to cerebral swelling and herniation. Thus, TBI can have a progressively worsening course, which demands best medical and surgical care of cerebral oxygenation, cerebral perfusion pressure and intracranial pressure to improve patients’ recovery and prevent secondary injury[3].

The phrase “delayed intracranial haemorrhage” was coined by Doughty in 1938 and became quite well-known after the arrival of CT scan in the 1970s[4]. It is also known as progressive hemorrhagic injury (PHI) and it is now a well-recognized phenomenon with a reported occurrence ranging from 10% to 85% [5-10].

Initial quick assessment and management of acute head trauma requires a CT scan which is a standard investigation for head trauma patients and helps to take decision regarding performances of decompressive surgery or conservative monitoring [11]. There is a common practice to get a sequential CT scan done after a few hours of TBI. However, the literature is inconclusive regarding the timing of repeating the CT scan and some studies have reported against its need in the absence of neurological deterioration[12,13].

*Corresponding author: Asad Abbas, J-8, 3rd Floor, Yaqoob Terrace, Main Gunnundir Round about, Karachi, Pakistan.
Tel: +92 333 3183523
Fax: +92 213 5862940
E-mail: asad.abbas@live.com

Peer review under responsibility of Hainan Medical College.
The objectives of this study were to establish the frequency of deterioration in CT appearance from an initial scan to a subsequent scan within 12 h and the prognostic significance of such deterioration.

2. Materials and methods

This was a prospective, observational study during a period of two months (August–September 2012). It was conducted at the Neurosurgery Department of Liaquat National Hospital and Medical College which is amongst a few tertiary care hospitals in Karachi city, Pakistan. The study was also approved by Ethical Review Committee of Liaquat National Hospital and Medical College. All adult patients (aged over 15 years), presented at Accident and Emergency Department with TBI whose CT scan was done within the first 4 h of injury were included in the study. The relevant findings were recorded on a self-designed questionnaire after informed consents from the patients or their attendants in cases where patients' Glasgow coma scale (GCS) was low.

Results from the CT scan were categorized either as subarachnoid hematoma (SAH), intraparenchymal contusion (IPC), extradural hematoma (EDH) or subdural hematoma (SDH). After initial systemic evaluation and management in Accident and Emergency Department, patients were admitted for observation of any neurological deterioration.

Patients with GCS ≤ 8 were considered to have severe head injury, those with GCS of 9–12 were classified to have moderate head injury and those with GCS of 13–15 were considered to have mild head injury. A CT scan was repeated after 12 h of the initial CT scan. Indications for repeat CT scan were either deterioration in neurological status after the initial scan, potentially deteriorating lesion on initial scan with or without worsening neurology, much worse neurological status than the initial CT scan findings or no neurological improvement after initial management in patients with significant head injury. This compiled with the data of 107 patients and the CT scan outcome was categorized as an increase (PHI), a decrease (resolution) or no changes in the size of the lesion.

3. Results

Among the 107 patients in our study, 67 were males and 40 were females. The mean age of the patients was 34.88 years (Figure 1).

Seventy percent patients sustained head injury caused by road traffic accident, 17.5% experienced assault, whereas falls were the cause of TBI in 12.5% subjects. The Accident and Emergency Department arrival GCS was 13–15 in 32 (30.0%), 9–12 in 52 (48.5%) and 3–8 in 23 (21.5%) patients. All these patients had their initial brain CT scan performed within 4 h after occurrence of the event (Figures 2 and 3).

SAH was present in 31 patients, 40 patients had IPC, 22 had EDH and 14 had SDH on CT scan. They were admitted in neurosurgery wards for observation of worsening neurological status and were evaluated with a repeat CT scan after 12 h from the time of injury (Figures 4 and 5). PHI was found in 59.8% patients ($n = 64$), 10.3% patients showed resolution of their lesions ($n = 11$) and 29.9% patients showed no changes in lesion on repeat CT scan ($n = 32$).
TBI can have a progressively worsening course and an early diagnosis and timely management are critical to its treatment[17]. In such cases, CT scan is acknowledged as the investigation of choice since it rapidly and precisely recognizes intracranial hemorrhage including extra-axial hemorrhage (epidural, subdural and subarachnoid hemorrhage) as well as intra-axial hemorrhage (cortical contusion, intraparenchymal hematoma and shear injury). It also identifies the evolution of hemorrhage and indicators of secondary injury. Due to its quick results, easy availability and sensitivity to hemorrhage, CT scan is now also being used to predict patients’ outcome and mortality[3]. Most centers routinely perform CT scan in patients with moderate or severe head trauma, while debate continues for its utilization in mild head trauma[18–20].

The phenomenon of the increase in volume of post TBI lesions has been cited in literature under various terms such as traumatic intracerebral hemorrhage[7], PHI[8], or hemorrhagic progression of a contusion[21]. We used the term PHI as it encompasses all types of traumatic hemorrhagic brain lesions. Our study has shown that PHI is evident in more than 50% patients with TBI in subsequent CT scan performed 12 h after the initial incident, most often in EDH and IPC, and that 65.6% of them were consequently required decompressive surgery. In an earlier study on 37 comatose patients, Servadei et al. identified that 59.5% of their patients had demonstrated PHI on serial CT scans 12 h after admission that required surgical evacuation[22]; 31.8% of these patients had previously been operated upon and had developed a new hemorrhagic, non-continuous lesion.

In a study involving 142 patients, Oertel et al. studied progressive hemorrhagic lesions after TBI[8]. They concluded that PHI was found in 42.3% patients, most frequently occurring in those with IPC, when the initial CT scan was performed within (2.0 ± 1.6) h and follow-up CT scans were obtained after (6.9 ± 3.6) h. Most frequent progression in lesions was evident in IPC (51.0%) while 6.6% patients with PHI underwent surgery after the second CT scan.

Narayan and his associates conducted a prospective study and reported that 50% of the patients who were presented with hemorrhagic lesions 2 mL or larger, suffered augmentation of their initial lesions on follow-up CT scan done 24 h of injury[7]. They also demonstrated that larger lesions were inclined to show more increase in size with time, together with a greater possibility of clinical impact.

Another study conducted on traumatic SAH reported PHI in 58.9% subjects, most often 12–24 h after initial CT scan, with the initial scan done within approximately 1.3 h of trauma[23]. Another study conducted by Servadei et al.[24], showed CT evolution after traumatic SAH and demonstrated PHI in 66% patients. In a retrospective research, Alahmadi and his co-workers assessed patients with IPC who had been admitted in wards for observation and conservative management[25]. They noticed significant progression in 45% subjects, defining them as 30% or more increase in contusion size on CT scan; subsequent decompressive surgery was performed in 19%.

We found in our study that PHI can occur with both severe (GCS ≤ 8) as well as mild/moderate (GCS > 8) head injury; the larger the initial lesion is, the greater risk of its progression is. Sifri et al.[26], concluded that hemorrhagic progression of contusion can happen after mild head injury as well, with almost half patients showing augmentation in the initial lesion on follow-up CT scan.

Figure 5. Repeated CT brain showing progression of bilateral frontal contusion.

Among the PHI patients, 22% \((n = 14)\) experienced mild head injury, 59% \((n = 38)\) moderate head injury and 19% \((n = 12)\) severe head injury at arrival. Among those showing resolution of their lesions, 73% \((n = 8)\) had a mild head injury, 18% \((n = 2)\) had moderate head injury and 9% \((n = 1)\) had severe head injury on arrival. Nearly 31% \((n = 10)\) patients with mild head injury, 38% \((n = 12)\) patients with moderate head injury and 31% \((n = 10)\) patients with severe head injury at arrival showed no progression of lesion on repeat CT scan.

Forty five patients later on underwent surgery, and PHI was evident in 93% of them. Of these, 9 patients were those with SAH, 13 had IPC, 15 had EDH and 5 had SDH. Our study concluded that out of 107 cases, PHI was seen in 51.6% of SAH, 13 had IPC, 15 had EDH and 5 had SDH. Our study has shown that PHI is evident in more than 50% patients with TBI in subsequent CT scan performed 12 h after the initial incident, most often in EDH and IPC, and that 65.6% of them were consequently required decompressive surgery.

Figure 6. Evolution of lesion on repeat CT scan after 12 h.

4. Discussion

Over the years, TBI has been a progressively increasing cause of long-term disability and fatality particularly among adolescents and young adults[8,14–16]. With a global incidence of 106 per 100,000, it is set to exceed many other serious causes of casualty and disease[16]. The chief causes of TBI differ according to the age of patients. In children aged up to 4 years and adults over 75 years, falls are the foremost cause whereas motor vehicle accidents are the leading cause among teenagers. Other common causes include sports-related injuries, gun-shot and bomb explosion injuries and assaults[3].

TBI is classified into two broad types: primary and secondary. Primary lesion results from direct effect of trauma. These include hematomas (contusions, epidural, subdural and subarachnoid) and traumatic axonal injuries[3].

Primary complications include post-traumatic headache, cognitive impairments, depression, mood swings, memory loss, sleep disturbances, and anosmia. Secondary complications include cervical spine fractures, complications of cerebral contusions, subdural hematoma, intracerebral hemorrhage, and ischemic stroke. Secondary complications are typically preventable and can be mitigated by prompt and correct medical interventions.

5. Conclusion

In conclusion, TBI is a significant and lifelong neurologic disorder that can result in varying degrees of disability, quality of life, and mortality. The purpose of this study is to introduce the common pathophysiological mechanisms of TBI and to provide an overview of the latest diagnostic and therapeutic advances that have been made in this field. Further research is needed to fully understand the complex mechanisms underlying TBI and to develop effective prevention and treatment strategies.
Thus, we conclude that PHI is evident in more than 50% of patients with TBI within the first 12 h after injury, occurring in all types of cerebral hemorrhages but most often in EDH and IPC. We propose that when the initial CT scan is performed within 4 h of injury, and patients show either deterioration of clinical condition, poor response to management or presence of large IPC or EDH on initial CT scan, then a follow-up CT scan should be performed 12 h after the initial CT scan. This will facilitate the identification for patients warranting change in treatment plan from conservative to surgical, resulting in a potentially better outcome of such patients.

Conflict of interest statement

The authors report no conflict of interest.

References

