Phyto-vesicles: conduit between conventional and novel drug delivery system

Nidhi Mishra, Narayan P Yadav*, Jaya Gopal Meher, Priyam Sinha

Herbal Medicinal Product Department, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015 India

ARTICLE INFO

Article history:
Received 11 June 2012
Received in revised form 5 July 2012
Accepted 3 August 2012
Available online 28 December 2012

Keywords:
Phyto-vesicles
Targeting
Drug delivery system
Parenchymal cell

ABSTRACT

Objective: To discuss the preparation, characterization, targeting and formulation aspect of phospholipids based drug delivery system i.e. Phyto-vesicles. Methods: The methods of phyto-vesicles preparation on R & D scale and different analytical techniques to characterize them have been discussed. Result: Phyto-vesicles are the advanced form of herbal drug delivery systems as its structure includes water soluble head and two fat soluble tails which act as an effective emulsifier. Conclusion: It is concluded that phytovesicular delivery system has improved pharmacokinetic and pharmacodynamic parameter as compared to conventional system Therefore, phyto-vesicles are called as conduit between conventional and novel drug delivery system.

1. Introduction

The method by which a drug is delivered can have a significant effect on its efficacy. Some drugs like Ginseng and Rosemary have an optimum concentration range within which maximum benefit is derived and concentrations above or below this range can be toxic or produce no therapeutic benefit at all. On the other hand, very slow progress in the efficacy of the treatment of severe diseases has suggested a growing need for a multidisciplinary approach to the delivery of therapeutics to targets in tissues. Keeping in view the above facts new ideas on controlling the pharmacokinetics, pharmacodynamics, non-specific toxicity, immunogenicity, biorecognition and efficacy of drugs were generated. These new strategies, often called drug delivery systems (DDS) are based on interdisciplinary approaches that combine polymer science, pharmaceutics, biomaterials and molecular biology. An ideal drug delivery system possesses two elements (i) ability to target (ii) to control the drug release. Targeting will ensure high efficiency of the drug and reduce the side effects especially when dealing with drugs that are presumed to kill cancer cells but can also kill healthy cells when delivered to them. The prevention of side effects is achieved by controlled release of drug[1]. Therefore, different types of delivery system are used for variety of synthetic drugs, phytomolecules and herbal extracts to ensure better bioavailability and targeted delivery. Some of these delivery system are Cubosomes, Colloidosomes, Ethosomes, Aquasomes, Niosomes, Liposomes and Nanoparticles. Cubosomes are bicontinuous cubic phases consisting of two separate, continuous but nonintersecting hydrophilic regions divided by a lipid layer that is contorted into a periodic minimal surface with zero average curvature. Colloidosomes are solid microcapsules formed by the self assembly of colloidal particles at the interface of emulsion droplets. They are hollow, elastic shells whose permeability and elasticity can be precisely controlled. Ethosomes are noninvasive delivery carriers that enable drugs to reach the deep skin layers and/or the systemic circulation. It contains phospholipids, alcohol in relatively high concentration and water. Aquasomes are spherical particles used for drug and antigen delivery. The particle core is composed of non crystalline calcium phosphate or ceramic diamond and is covered by a polyhydroxyl oligomeric film. Colloidal dispersion of drugs covalently bound to a lipid and may exists as ultrafine
vesicular, micellar or hexagonal aggregates, depending on the chemical structure of the drug–lipid. Liposomes (Table 1) are small artificial vesicles of spherical shape that can be produced from natural non toxic phospholipids and cholesterol. Because of their size, hydrophobic and hydrophilic character as well as biocompatibility, liposomes are promising systems for drug delivery. A niosome is non-ionic surfactant formed mostly by cholesterol incorporation as an excipient. They are structurally similar to liposome in having a bilayer, however, the materials used to prepare niosomes make them more stable and thus niosomes offer many more advantages over liposomes.[2-3]. Nanoparticles having diameter of 10–1 000 nm are drug loaded particles which can be embedded or dissolved in nanoparticles prepared by taking natural polymer or synthetic chemicals as the carriers. Comparison of these delivery systems is given in Table 2.

Over the past century, phytochemical and phytopharmaceutical sciences established the composition, biological activities and health promoting benefits of numerous plant products. But many phytomedicines like epigallocatechin obtained from green tea leaves, grape procyanidins, silybin obtained from silymarin are limited in their effectiveness because they are poorly absorbed when taken by mouth either due to their large molecular size, which cannot absorb by passive diffusion or due to their poor lipid solubility limiting their ability to pass across the lipid rich biological membranes resulting to poor bioavailability. To overcome this complexity with certain other clinically useful nutrients substantially improves the bioavailability. The nutrients so helpful for enhancing the absorption are the phospholipids. Phospholipids are complex molecules employed as natural digestive aids and as carrier for both fat miscible and water miscible nutrients.[4-8].

Advantages of phospholipids based carrier systems in comparison to other delivery systems are (i) these systems show enhanced permeation of drug through skin for transdermal and dermal delivery, (ii) these are platform for the delivery of large and diverse group of drugs (peptides, protein molecules), (iii) their composition is safe and the components are approved for pharmaceutical and cosmetic use, (iv) Low risk profile- the toxicological profiles of the phospholipids are well documented in the scientific literature, (v) high market attractiveness for products with proprietary technology, (vi) Relatively simple to manufacture with no complicated technical investments required for production of Ethosomes & (vii) the vesicular system is passive, non–invasive and is available for immediate commercialization.

Phyto–vesicles often known as herbosomes developed to incorporate standardized plant extracts or water soluble constituents into phospholipids (such as Phosphotidylcholine (PC) derived from soy bean, Phosphotidylserine) to produce lipid compatible molecular complexes, called as phyto–vesicles and significantly improve their absorption and bioavailability. PC is not merely a passive “carrier” for the bioactive flavonoids of the Phyto–vesicle but is itself a bioactive nutrient with documented clinical efficacy for liver diseases such as alcoholic hepatic steatosis; drug induced liver damage and hepatitis. To appreciate the uniqueness of Phyto–vesicles it is necessary to differentiate them from liposomes. The main difference between Phyto–vesicles and liposomes is that in liposomes the active principle is dissolved in the medium contained in the cavity or in the layers of the membranes whereas in the Phyto–vesicles it is an integral part of the membrane, being the molecule anchored through chemical bonds to the polar head of the phospholipids. The unit phyto–vesicle is a molecular–level association involving as few as two molecules (one PC plus one polyphenol). The unit liposome is an aggregate of hundreds of phospholipids molecules into a spherule, within which other molecules are compartmentalized but not specifically bonded. Whereas, the liposome concept remains unproven as an oral delivery vehicle, the phyto–vesicle is known to dramatically enhance oral delivery.[12-13]. Various Phyto–vesicles herbal formulations are given in Table 3. Phyto–vesicles of selected plant drugs would make the drugs better bioavailable, dramatically enhance bioavailability due to their complex with phospholipids, ensure faster drug delivery and improve absorption in intestinal tract. Phyto–vesicles permeates the non–lipophilic membrane and absorbed better in intestinal lumen. Phyto–vesicles would be given in small quantity and desired result can be achieved. Therefore it has been proved that the Phyto–vesicles technology is a breakthrough model for (i) marked enhancement of bioavailability (ii) significantly greater clinical benefit (iii) assured delivery to the tissues (particularly liver tissues)[8-11]

2. Material and method

2.1. Chemicals

All the chemicals used were of analytical grade and were obtained from Hi–Media Laboratories Pvt. Ltd, Mumbai

2.2. Method of preparation

Most of the bioactive constituents of herbal drugs are water soluble molecules. However, water soluble phytoconstituent like many flavonoids are poorly absorbed e.g. Ginkgo biloba (G. biloba) and silymarin (i) either due to their multiple–ring large size molecules which can not be absorbed by simple diffusion, or (ii) due to their poor miscibility with oils and other lipids, severely limiting their ability to pass across the lipid–rich outer membranes of the enterocytes of the small intestine. Water–soluble phytoconstituent molecules (mainly polyphenol) can be converted into lipid–compatible molecular complexes, which are called Phyto–vesicles. Mareno and Lampertico (1991), Jiang et al (2001), reported the methods of Phyto–vesicle preparation[14-27] on R & D scale as discussed below:
2.2.1. Method 1

PC + Drug (1:1)

Place in 100 mL RBF containing aprotic solvent (Dichloromethane)

Reflux for 3 h

Concentrate the solvent up to 5–10 mL

Add 30 mL of polar solvent

Precipitation

Filter and store in vacuum desiccators

2.2.2. Method 2

PC + Drug (1:1)

Place in 100 mL RBF containing anhydrous Alcohol

Evaporate ethanol under vacuum at 40 °C

Place dried residues in desiccators for overnight

Crush in mortar and sieve with 100 mesh sieve

Phyto-vesicles

Transfer into a glass bottle and store at room temperature

Selection of preparation methods depends upon the following factors: (i) particle size requirement, (ii) Drug–carrier compatibility, (iii) Reproducibility of the release profile and the method of preparation, (iv) stability issues & (v) no toxic product associated with the final products

3. Properties of Phyto–vesicles

3.1. Physicochemical

On the basis of spectroscopic data it has been shown that the main phospholipids substrate interaction is due to the formation of hydrogen bonds between polar heads of phospholipids (Phosphate and ammonium group) and the polar functionalities of the substrate. When treated with water the Phyto–vesicles assumes a micellar shape. The structure of Phyto–vesicles depicts that the active principle is anchored to the polar head of phospholipids which becomes an integral part of the membrane. The formation of hydrogen bonds can be deduced from the comparison of 1H–NMR and 13C–NMR spectra of the complex with those of the spectra of pure component\[28\].

![Figure 1](image.png)

Figure 1. Targeting of drug to parenchymal cells (hepatocytes) of liver using ligand – 1 PC head – 2–Phyto–vesicles 3– Ligand molecule, 4– PC tail, 5– Water soluble drug, 6– Receptor, 7–parenchymal cell.

3.2. Biological

Phyto-vesicles are the advanced form of delivery system

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Active ingredients</th>
<th>Applications of liposome formulations</th>
<th>Biological activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercetin liposomes</td>
<td>Quercetin</td>
<td>Reduced dose, enhance penetration in blood brain barrier</td>
<td>Antioxidant; Anticancer</td>
</tr>
<tr>
<td>Liposomes encapsulated silymarin</td>
<td>Silymarin</td>
<td>Improve bioavailability</td>
<td>Hepatoprotective</td>
</tr>
<tr>
<td>Liposoma artemisia Arborescens</td>
<td>Artemisia Arborescens Essential oil</td>
<td>Targeting of essential oils to cells, enhance penetration into, cytoplasmatic barrier</td>
<td>Antiviral</td>
</tr>
<tr>
<td>Ampelopsin liposome</td>
<td>Ampelopsin</td>
<td>Increase efficiency</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Paclitaxel liposome</td>
<td>Paclitaxel</td>
<td>High entrapment efficiency and ph sensitive</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Curcumin liposome</td>
<td>Curcumin</td>
<td>Long–circulating with high entrapment efficiency</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Garlicin liposome</td>
<td>Garlicin</td>
<td>Increase efficiency</td>
<td>Lungs</td>
</tr>
<tr>
<td>Flavonoids liposomes</td>
<td>Quercetin and rutin</td>
<td>Binding of flavonoids with Hb is enhanced</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Usnic acid liposome with β-CD</td>
<td>Usnic acid</td>
<td>Increase solubility and localization with prolonged release profile</td>
<td>Antimycobacterial</td>
</tr>
<tr>
<td>Wogonin liposome</td>
<td>Wogonin</td>
<td>Sustained release effect</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Colchicine liposomes</td>
<td>Colchicine</td>
<td>Liposome Enhance skin accumulation, prolong drug release and improve site specificity</td>
<td>Antigout</td>
</tr>
<tr>
<td>Catechins liposomes</td>
<td>Catechins</td>
<td>Increased permeation through skin</td>
<td>Antioxidant and Chemo preventive</td>
</tr>
<tr>
<td>Breviscapine liposomes</td>
<td>Breviscapin</td>
<td>Sustained delivery of breviscapine</td>
<td>Cardiovascular Diseases</td>
</tr>
</tbody>
</table>
for herbal products which have better bioavailability than the conventional herbal extracts. The increased bioavailability has been demonstrated by pharmacokinetic studies or by pharmacodynamic tests in experimental animals and human subjects. Some of the examples of increased bioavailability are given below: (i) Leucoselect® Phyto-vesicles when complexed with soy phospholipids results in markedly improved bioavailability of procyanidins which have cardiovascular activity as well as antioxidant activity, (ii) Gingkoselect® Phyto-vesicles shows improved bioavailability of reduce cerebral performance, (iii) SILPHOS® prevents the liver damage & (iv) Greenselect® Phyto-vesicles improved their low and erratic oral bioavailability. Therefore we can say that Phyto-vesicles are conduit between conventional and novel delivery system.[29].

3.3. Pharmacokinetic profile of Phyto-vesicles

The Phyto-vesicles formulation increases the absorption of active ingredients when topically applied on the skin, and improves systemic bioavailability when administered orally. In water medium, it will assume a micellar shape, forming a liposome–like structure. Pharmacokinetic studies in rats, dogs and in humans have shown increased

Table 2
Comparison of physical parameters of different drug delivery systems.

<table>
<thead>
<tr>
<th>Delivery system</th>
<th>Size and shape</th>
<th>Stability</th>
<th>Geometry</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubosomes</td>
<td>Discrete, sub-micron, nanostructure particles</td>
<td>Thermodynamically stable</td>
<td>Bicontinuous cubic phases consisting of two separate, continuous but nonintersecting hydrophilic regions divided by lipid layer with zero average of curvature.</td>
<td>Exotic delivery vehicles in personal care and consumer products</td>
</tr>
<tr>
<td>Colloidosomes</td>
<td>Micrometers to millimeters and generally non-spherical in shape</td>
<td>Mechanically stable</td>
<td>Multiple compartments are generated using water–in–oil–in–water double emulsions with controlled morphology as templates</td>
<td>Promising vehicles for macromolecular delivery in pharmaceutical, cosmetics, and food industries</td>
</tr>
<tr>
<td>Ethosomes</td>
<td>Tens of nanometer to microns and spherical</td>
<td>Stable at 4° C</td>
<td>–</td>
<td>Promising carrier for transdermal delivery of drug</td>
</tr>
<tr>
<td>Aquasomes</td>
<td>Range from 60–120 nm and spherical in shape</td>
<td>Maximum stable for 30 days the brushite is unstable and converts to hydroxyapatite upon prolong storage</td>
<td>Comprised of a solid phase nanocrystalline core coated with oligomeric film to which the drug moieties or biologically active molecule are adsorbed with or without modification</td>
<td>Successful carrier system For bioactive molecules like peptide, protein, hormones, antigens and genes to specific sites. Enzyme activity and sensitivity towards molecular conformation made aquasome as a novel carrier for enzymes like dnas and pigment/dyes</td>
</tr>
<tr>
<td>Niosomes</td>
<td>Round in shape and size range was found to be 1.54 – 2.64 µm</td>
<td>Optimum storage condition for niosomes was found to be 4</td>
<td>The vesicle holds hydrophilic drugs within the space enclosed in the vesicle, while hydrophobic drugs are embedded within the bilayer itself</td>
<td>Potentially applicable to many pharmacological agents for their action against various diseases including cancer and leishmaniasis.</td>
</tr>
<tr>
<td>Liposomes</td>
<td>Range from 20 nm to 1000 nm and generally spherical in shape</td>
<td>An increase in physical stability of liposomes can be achieved by increasing amount of charge on liposomes</td>
<td>Vesicles having concentric bilayers of lipids filled with water and typically carrier for hydrophilic drugs</td>
<td>Topical applications of drugs, such as corticosteroids, antifungal, local anesthetics and retinoid; encapsulated in liposomes result in increased concentrations of the agents in the epidermis and dermis compared to conventional formulations. On the other hand, the systemic concentrations of these drugs (plasma, liver and spleen) are reduced compared to the controls. These results prove that liposomes are suitable vehicles for a selective drug delivery in the skin</td>
</tr>
<tr>
<td>Nanoparticles</td>
<td>Range from 20 nm to 1000 nm and shape varies according to nanospheres, nanocapsules etc</td>
<td>Very stable dispersions of oil in water, these emulsions are stabilized by a negative zeta potential which prevents droplet coalescence upon random collisions of particles</td>
<td>Single layered cell and filled with oil and typically carrier for lipophilic substance</td>
<td>Tumor targeting, for oral delivery of peptides and proteins, targeting of nanoparticles to epithelial cells in the GI tract using ligands, for gene delivery, drug delivery into the brain</td>
</tr>
<tr>
<td>Phyto-vesicles</td>
<td>Small in size and spherical in shape</td>
<td>–</td>
<td>Vesicles comprises of choline head of the phosphatidylcholine molecule binds to the drug while the lipid soluble phosphatidyl portion comprising the body and tail which then envelopes the choline bound material.</td>
<td>Cardio–protective, Hepatoprotective, Immuno nomodulator, Antioxidant, Anticancer etc</td>
</tr>
</tbody>
</table>
bioavailability of Siliphos than Silybin extract[30,31]. In a comparative study in humans, analyzing the absorption of curcumin Phyto-vesicle (Meriva) and curcumin the overall curcuminoid absorption was about 29-fold higher for Meriva compared to the unformulated curcuminoid mixture. The anti-inflammatory and anti-oedemogenous effects of the Glycyrrhetinic acid were assessed in the experimental model of Croton oil-induced oedema reduction. At the same dose (0.16 μM), the action of the 18β-Glycyrrhetinic Acid Phyto-vesicles was found to be greater and to last longer than that of 18β-glycyrrhetic acid alone. Similar is the case with GinkgoSelect® Phyto-vesicle and Greenselect® Phyto-vesicle. This means that the complex with the Phyto-vesicle not only increases the active ingredient tolerability and absorption, but also improves its efficacy[32].

5. Possible formulations of Phyto-vesicles

Four types of formulations are possible for Phyto-vesicles namely (i) Soft gelatin capsules–Phyto-vesicles complex can be dispersed in oily vehicles to obtain suspension to be filled in soft gelatin capsule, e.g. Hawthorn Phyto-vesicle which helps to strengthen the heart and cardiovascular system and may be beneficial for angina, irregular heartbeat, hypertension, coronary heart disease, congestive heart failure, (ii) Hard gelatin capsules involve direct volumetric filling process, e.g. Panax ginseng Phyto-vesicle™ which promotes adaptogenic function & resistance to stress, Grape Seed Phyto-vesicle™ provide

4. Targeting of Phyto-vesicles

Targeting of drug to certain site or to certain organ is a very challenging job as it not only involves the targeting of drug to a certain site but also necessary to retain it for the desired duration so as to elicited the desired pharmacological response. However, Phyto-vesicles facilitates the liver targeting (Figure 1) by increasing the solubility in the bile salts. Also targeting can be achieved by attaching ligand in such a manner that it should be presented in its right orientation for binding to the target receptors e.g. Monoclonal antibodies must bind to the drug carrier with their Fc part, so that their antigen binding site (Fab) is free to interact with the antigenic targets on cells [33-35].

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Active Ingredients</th>
<th>Applications of nanostructure formulations</th>
<th>Biological activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginkgo biloba Phyto-vesicle</td>
<td>Flavonoids</td>
<td>Flavonoids of GBP stabilize the ROS</td>
<td>Cardio-protective, antioxidant activity</td>
</tr>
<tr>
<td>Ginkgo select Phyto-vesicle</td>
<td>Flavonoids</td>
<td>Inhibits lipid peroxidation (LPO), stabilize the ROS</td>
<td>Hepatoprotective, antioxidant activity</td>
</tr>
<tr>
<td>Silybin phyto-vesicle</td>
<td>Flavonoids</td>
<td>Absorption of silybin phyto-vesicle from silybin is approximately seven times greater</td>
<td>Hepatoprotective, antioxidant for liver and skin</td>
</tr>
<tr>
<td>Ginseng phyto-vesicle</td>
<td>Ginsenosides</td>
<td>Increase absorption</td>
<td>Immunomodulator green tea phyto-vesicle</td>
</tr>
<tr>
<td>Epigallocatechin</td>
<td>Increase absorption Nutraceutical,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grape seed phyto-vesicle</td>
<td>Procyanidins</td>
<td>The blood TRAP a Total Radical–trapping Antioxidant Parameter, were significantly elevated over the control</td>
<td>Systemic antioxidant</td>
</tr>
<tr>
<td>Cardio-protective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawthorn Phyto-vesicle</td>
<td>Flavonoids</td>
<td>Increase therapeutic efficacy and absorption</td>
<td>Cardio-protective and antihypertensive</td>
</tr>
<tr>
<td>Curcumin Phyto-vesicles</td>
<td>Curcumin</td>
<td>Exerted better therapeutic efficacy</td>
<td>Antioxidant, anticancer</td>
</tr>
<tr>
<td>Phyto-vesicles</td>
<td>Naringenin</td>
<td>Prolonged duration of action</td>
<td>Antioxidant activity</td>
</tr>
<tr>
<td>18β-glycyrrhetinic acid</td>
<td>18β-glycyrrhetinic acid from licorice rhizome</td>
<td>Prolonged duration of action and provide soothing effect</td>
<td>Soothing</td>
</tr>
<tr>
<td>Crataegus Phyto-vesicle</td>
<td>Triterpenes</td>
<td>Healing by forming scar tissue</td>
<td>Cicatrizing, trophodermic</td>
</tr>
<tr>
<td>PA2 Phyto-vesicle</td>
<td>Proanthocyanidin A2 from horse chestnut bark</td>
<td>Prolonged duration of action</td>
<td>Anti-wrinkles, UV protectant</td>
</tr>
<tr>
<td>Sericoside Phyto-vesicle</td>
<td>Sericoside from Terminalia sericea bark root</td>
<td>Prolonged duration of action</td>
<td>Anti-wrinkles</td>
</tr>
<tr>
<td>Visnalex</td>
<td>Visnadin from Amni visnaga umbel</td>
<td>Increased coronary blood flow</td>
<td>Vasokinetic</td>
</tr>
<tr>
<td>Oleaselecttm phyto-vesicle</td>
<td>Olive oil polyphenols.</td>
<td>Prolonged duration of action</td>
<td>Anti oxidant, anti inflammatory</td>
</tr>
<tr>
<td>Echinacea Phyto-vesicle</td>
<td>Echinacosides</td>
<td>Adjusting the immune response to the desired level</td>
<td>Immunomodulant</td>
</tr>
<tr>
<td>Bilberry Phyto-vesicles</td>
<td>Extract of bilberry which provides anthocyanosides</td>
<td>Reduce abnormal blood vessel permeability,</td>
<td>Potent antioxidants</td>
</tr>
<tr>
<td>Palmetto Phyto-vesicles</td>
<td>Fatty acids, alcohols and sterols</td>
<td>Prolonged duration of action</td>
<td>Prostate enlargement</td>
</tr>
</tbody>
</table>
natural Antioxidant Protection, Green Tea Phyto-vesicles have powerful antioxidant effects, preserving cell health to improve longevity, health and well-being and Ginkgoselect Phyto-vesicle improves memory, brain function, cerebral and peripheral circulation, oxygenation, and blood flow (iii) Tablet–Phyto-vesicles complex should be diluted with 60–70% of excipients to optimize its technological properties and to obtain tablet with appropriate technological and biopharmaceutical characteristics, e.g. Centella asiatica leaf Phyto-vesicles involves in treatment of vein and skin disorders (iv) Topical dosage form—the ideal process to incorporate the Phyto-vesicles complex in emulsion is to disperse the phospholipids complex in a small amount of the lipidic phase and add it to the already created emulsion at low temperature (<40 °C)\(^{[28,29]}\) e.g. Glycyr rhetic acid Phyto-vesicle have anti-inflammatory, anti-irritant, anti-puffiness, especially effective for eye area, soothing to irritated skin.

6. Characterization of Phyto-vesicles

6.1. Shape

The vesicle shape can be easily visualized by scanning electron microscopy (SEM) micrographs for surface analysis and/or transmission electron microscopy (TEM) for sections analysis.

6.2. Size

The vesicle size and zeta potential of the formulation can be measured with the Zeta meter. The size of the Phyto-vesicles is influenced by the composition of the formulation. The size of the vesicles increase with increasing the phospholipids concentration.

6.3. Entrapment efficiency

After preparing Phyto-vesicles, entrapped drug is separated by dialysis, centrifugation, or gel filtration and resultant solution is analyzed by appropriate assay method for the entrapped drug.

\[\text{Entrapment efficiency (EF)} = \left(\frac{\text{Amount entrapped}}{\text{total amount}} \right) \times 100 \]

6.4. Drug–carrier interaction

Any physical interaction such as change in melting point is analyzed by DSC (Differential scanning calorimeter) whereas any chemical interaction such as formation of hydrogen bond is analyzed by various spectroscopic technique such as Fourier transform Infra–red (FT-IR), \(^1H\)-NMR and \(^13C\)-NMR.

6.5. Transition temperature

Determined by using Differential scanning calorimeter (DSC) which gives sharp peak for pure extract and broader peak for Phyto-vesicles which further confirms the interaction between extract and carrier molecule.

6.6. In–vivo release

A method of in–vivo drug release rate study includes the use of dialysis tubing. A dialysis sac is washed and soaked in distilled water. The vesicle suspension is pipette into a bag made up of the tubing and sealed. The bag containing the vesicles is placed in 200 mL of buffer solution in a 250 mL beaker with constant shaking at 25 °C or 37 °C. At various time intervals, the buffer is analyzed for the drug content by an appropriate assay method that can also be studied with Franz diffusion cell\(^{[36-42]}\).

7. Conclusion

From the above discussion it may be concluded that Phytovesicular delivery system has improved pharmacokinetic and pharmacodynamic parameter as compared to conventional system which is advantageous not only in cosmetics preparations but also in various acute and chronic diseases related to liver, heart, brain and kidney.

Conflict of interest statement

We declare that we have no conflict of interest statement.

Acknowledgement

The authors are thankful to CSIR, New Delhi for providing financial assistant (grant no. 111102/2K10/1) and CSIR–CIMAP, Lucknow for extending laboratory facilities.

References

