Larvicidal and repellent potential of *Moringa oleifera* against malarial vector, *Anopheles stephensi* Liston (Insecta: Diptera: Culicidae)

Prabhu K¹, Murugan K², Nareshkumar A², Ramasubramanian N², Bragadeeswaran S¹

¹Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, India
²Division of Entomology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India

ARTICLE INFO

Objective: To evaluate the larvicidal and pupicidal potential of the methanolic extracts from *Moringa oleifera* (*M. oleifera*) plant seeds against malarial vector *Anopheles stephensi* (*A. stephensi*) mosquitoes at different concentrations (20, 40, 60, 80 and 100 ppm). Methods: *M. oleifera* was collected from the area of around Bharathiar University, Coimbatore. The dried plant materials were powdered by an electrical blender. From each sample, 100 g of the plant material were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. The extracts were evaporated to dryness in rotary vacuum evaporator to yield 122 mg and 110 mg of dark greenish material (residue) from *Arecaceae amara* and *Ocimum basilicum*, respectively. One gram of each plant residue was dissolved separately in 100 mL of acetone (stock solution) from which different concentrations, i.e., 20, 40, 60, 80 and 100 ppm were prepared. Results: Larvicidal activity of *M. oleifera* exhibited in the first to fourth instar larvae of the *A. stephensi*, and the LC₅₀ and LC₉₀ values were 57.79 ppm and 125.93 ppm for the first instar, 63.90 ppm and 133.07 ppm for the second instar, respectively. During the pupal stage the methanolic extract of *M. oleifera* showed that the LC₅₀ and LC₉₀ values were 67.77 ppm and 141.00 ppm, respectively. Conclusions: The present study indicates that the phytochemicals derived from *M. oleifera* seeds extracts are effective mosquito vector control agents and the plant extracts may be used for further integrated pest management programs.

1. Introduction

Vector-borne diseases, such as malaria, filariasis, dengue and hemorrhagic fever (DHF), are still major public health problems in the Southeast Asian countries because of their tropical or subtropical climate. Also owing to poor drainage system, especially during rainy seasons, the presence of many fish ponds, irrigation ditches and the rice fields provide abundant mosquito breeding places. Malaria and other vector-borne diseases contribute to the major disease burden in India.

Repeated use of synthetic insecticides for mosquito control has disrupted natural biological control systems and led to resurgences in mosquito populations. It has also resulted in the development of resistance¹¹, undesirable effects on non–target organisms, and fostered environmental and human health concern that initiates a search for alternative control measures². Plants are considered as a rich source of bioactive chemicals and they may be an alternative source of mosquito control agents³. Plant products have been used by traditionally human communities in many parts of the world against the vectors and species of insects. The phytochemicals derived from plant sources can act as larvicides, insect growth regulators, repellents and ovipositional attractants and have deterrent activities observed by many researchers⁴. Repellents have an important place in protecting man from the bites in insect pests. An effective repellent will be useful in reducing man vector contact and in interrupting disease transmission. A repellent compound should be toxic, non–irritating and long lasting. Amides, imides, esters and other polyfunctional compounds are known to be good repellents⁵. Plants could be an alternative source for mosquito repellents because they constitute a potential source of bioactive chemicals

124

© 2011 by the Asian Pacific Journal of Tropical Biomedicine. All rights reserved.

Keywords:
* Moringa oleifera
* Anopheles stephensi
* Insecticide
* Larvicide
* Pupicide
* Malaria
* Phytochemical
* Mosquito vector control
* Plant extract
* Larvicidal activity

Document heading
doi:10.1016/S2221-1691(11)60009-9

Available online 1 April 2011
Accepted 16 March 2011
Received in revised form 27 February 2011
Received 19 February 2011

ARTICLE INFO

Abstract

Objective: To evaluate the larvicidal and pupicidal potential of the methanolic extracts from *Moringa oleifera* (*M. oleifera*) plant seeds against malarial vector *Anopheles stephensi* (*A. stephensi*) mosquitoes at different concentrations (20, 40, 60, 80 and 100 ppm). Methods: *M. oleifera* was collected from the area of around Bharathiar University, Coimbatore. The dried plant materials were powdered by an electrical blender. From each sample, 100 g of the plant material were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. The extracts were evaporated to dryness in rotary vacuum evaporator to yield 122 mg and 110 mg of dark greenish material (residue) from *Arecaceae amara* and *Ocimum basilicum*, respectively. One gram of each plant residue was dissolved separately in 100 mL of acetone (stock solution) from which different concentrations, i.e., 20, 40, 60, 80 and 100 ppm were prepared. Results: Larvicidal activity of *M. oleifera* exhibited in the first to fourth instar larvae of the *A. stephensi*, and the LC₅₀ and LC₉₀ values were 57.79 ppm and 125.93 ppm for the first instar, 63.90 ppm and 133.07 ppm for the second instar, respectively. During the pupal stage the methanolic extract of *M. oleifera* showed that the LC₅₀ and LC₉₀ values were 67.77 ppm and 141.00 ppm, respectively. Conclusions: The present study indicates that the phytochemicals derived from *M. oleifera* seeds extracts are effective mosquito vector control agents and the plant extracts may be used for further integrated pest management programs.
and typically are free from harmful effects6. Because of this, much interest has been focused on plant extracts, or plant essential oils as potential mosquito repellent agents7,8 and studied the interactive effect of botanicals (Neem, Pongamia) and Leucas aspera, Bacillus sphaericus against the larvae of Culex quinquefasciatus.

Moringa oleifera (M. oleifera) is the most widely cultivated species of a monogenic family—*Moringaceae*, native to the sub–Himalayan tracts of India. This rapidly–growing tree (also known as the horseradish tree, drumstick tree, benzolive tree, kelor, marango, mlonge, moonga, mulangay, nebeday, saijhan, sajna or Ben oil tree), was utilized by the ancient Romans, Greeks and Egyptians, and it is now widely cultivated and has become naturalized in many locations in the tropics. All parts of the *Moringa* tree are edible and have long been consumed by humans. In the West, one of the best known uses of *Moringa* is to flocculate contaminants and purify drinking water with its powdered seeds9-11. This tree has in recent times been advocated as an outstanding indigenous source of highly digestible protein, Ca, Fe, Vitamin C, and carotenoids suitable for utilization in many of the so-called “developing” regions of the world where undernourishment is a major concern. In the present study an attempt was made to evaluate the toxicity of *M. oleifera* on malarial vector, *Anopheles stephensi* (An. stephensi).

2. Materials and methods

2.1. Plant collection and preparation of plant extract

The plant *M. oleifera* was collected from the area around Bharathiar University, Coimbatore. The dried plant materials were powdered by an electrical blender. From each sample, 100 g of the plant materials were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. The plant extracts were evaporated to dryness in rotary vacuum evaporator to yield 122 mg and 110 mg of dark greenish material (residue) from *Arcang amara* and *Ocimum basilicum*, respectively. One gram of each plant residue was dissolved separately in 100 mL of acetone (stock solution) from which different concentrations, i.e., 20, 40, 60, 80 and 100 ppm were prepared.

2.2. Test for larvicidal activity12

An. stephensi was used to test the larvicidal and pupicidal activity of *M. oleifera*. It was maintained at (27±2) °C, (75%–85%) RH, under 14 L: 10D photoperiod cycles. The larvae were fed with dog biscuits and yeast at 3:1 ratio. Twenty–five I, II, III and IV instar larvae and pupae of *An. stephensi* were kept in 500 mL glass beaker containing 249 mL of dechlorinated water and 1.0 mL of desired plant extract concentration. Three replicates for each concentration were set up. A control was set up with 1.0 mL of acetone in 249 mL of dechlorinated water. The control mortality was corrected by Abbott’s formula13 and LC\textsubscript{50}, LC\textsubscript{90}, regression equation, and 95% confidence limit of lower confidence limit (LCL) and upper confidence limit (UCL) were calculated by using probit analysis14.

2.3. Pupicidal activity

A laboratory colony of mosquito pupae was used for pupicidal activity. Ten freshly emerged pupae were introduced into each testing cup (sterilized plastic drinking cup of 150 mL capacity), which contained 100 mL of dechlorinated tap water. A measured volume of stock solution was added to obtain the desired concentrations. Experiments were carried out with a series of five–seven concentrations, 20%, 40%, 60%, 80%, and 100%, respectively, each with a total number of 100 pupae for each concentration. The LC\textsubscript{50} and LC\textsubscript{90} were determined by a probit analysis program14. Control mortality was accounted by the formula of Abbott12.

2.4. Repellent activity

Repellent activity of plant compounds was tested with human volunteers. For the repellent activity of plant extracts percentage protection in relation to dose method was adopted7,12. Three to four days old blood starved female adult mosquitoes (100) were kept in a net cage. The arms of the tested person were cleaned with isopropanol. After air–drying the arm only 25 cm2 of the dorsal side of the skin on each arm was exposed, the remaining area being covered by rubber gloves.

The plant extract was dissolved in isopropanol and the alcohol served as control. The plant extract at 0.5, 1.0 and 2.0 mg/cm2 concentrations was applied. The control and treated arms were introduced simultaneously into the cage. The number of bites was counted over 5 min every 60 min, from 20:00 to 6:00. The experiment was conducted five times. The percentage protection was calculated by using the following formula.

\[
\text{% Protection} = \frac{\text{Number of bites received by control arm} - \text{Number of bites received by treated arm}}{\text{Number of bites received by control arm}} \times 100
\]

\(T = \text{the number of mosquitoes collected from treated areas.}\)

2.5. Smoke toxicity test

M. olifera seed extract was used for smoke toxicity assay. The mosquito coils were prepared following the method of Saini et al15 with minor modification by using 4 g of coconut shell, charcoal powder as burning material. All the three was thoroughly mixed with distilled water to form a semisolid paste. Mosquito coils (0.6 cm thickness) were prepared manually and shade dried. The control coils were prepared without the plant ingredient.
The experiments were conducted in a glass chamber of 140 cm \times 120 cm \times 60 cm. A window of 60 cm \times 30 cm was situated at mid bottom of one side of the chamber. Hundred of three or four days’ old blood starved adult female mosquitoes, fed with sucrose solution, were released into the chamber. A belly shaven pigeon was kept tied inside the cage in immobilized condition. The experimental chamber was tightly closed. The experiment was repeated five times on separate days, including control mosquitoes of the same age groups. The data were pooled and average values were subsequently used for calculations. Controls were maintained in two sets. One set was run with coil lacking the active ingredient of plant powder (control I), the other was a commercial coil (Mortein coil) which was used for positive control to compare the effectiveness of plant coils. After the experiment over fed and unfed (active and dead) mosquitoes were counted.

The results of larvicidal potentiality of the plant extracts. Statistical analysis of the experimental data was performed using the computer software SPSS 14 version and MS EXCEL 2003 to find the LC$_{50}$, regression equations ($Y = $ mortality; $X = $ concentrations) and regression coefficient values.

3. Results

The results of larvicidal and pupicidal activity of *M. oleifera* were presented in Figure 1. The plant extract exhibited larvicidal activities on different instars (I, II, III and IV) and pupa of *An. stephensi*. The LC$_{50}$ and LC$_{90}$ values of *M. oleifera* for I instar larvae were 57.79 ppm and 125.93 ppm, II instar 63.90 ppm and 133.07 ppm, III instar 72.45 ppm and 139.82 ppm, IV instar 78.93 ppm and 143.20 ppm, respectively. The LC$_{50}$ and LC$_{90}$ values of *M. oleifera* for pupa were 67.77 ppm and 141.00 ppm. The regression equation values of *M. oleifera* for I instar larvae were $Y = -1.087 + 0.018 81X$, II instar $Y = 0-1.184 07 + 0.018 53X$, III instar $Y = -1.378 29 + 0.019 02X$ and IV instar $Y = -1.574 0 + 0.019 94X$, respectively. The regression equation values of pupae were $Y = -1.186 04 + 0.017 50X$. The LC$_{50}$ and LC$_{90}$ values of pupae were 6.792%, 5.449% and 16.925%, 15.474%. Among the different larval stages, the I instar larvae were more susceptible than the other instar larvae. The plant extract showed considerable larval and pupal mortality. The Chi-square values were significant at $P<0.05$ level (Table 1).

![Figure 1. Larval and pupal toxicity effect of M. oleifera on malarial vector, An. stephensi Liston.](image)

*Significance at 0.05% level ($P>0.05$).

Table 2 showed the repellent activity of *M. oleifera* against *An. stephensi* and it was does dependent. Repellency was increased after the does increased. For example 90.41% repellency was noted at 100% concentration and 23.28% repellency was reduced after the treatment of 20% concentration. The repellent activity was carried out in the evening from 5.00 –10.00 pm. The repellency was low at 20% concentration whereas it has been increased at 100% concentration. An average production was at 60% concentration which could make 58.90% production against *An. stephensi*.

2.6. Field trial

For the field trial study, mosquito breeding sites were at the endemic districts of Tamil Nadu. The field trials were conducted by using required concentration of plant extracts and bacterial pesticide in different breeding habitat, such as overhead tank, cement tank and cement container. Selection of the localities was decided on the basis of the breeding potential and operational convenience. Field application of the plant extracts and bacterial pesticides was done with the help of a knapsack sprayer (or) hand sprayer. Biopesticide was sprayed uniformly on the surface of the water in each habitat. The mean larval density was calculated on the basis of 5 dips per each habitat. Prior to the experiment the surface area of the breeding habitat was measured along with the pre–spray density of larvae. 24 h after the treatment the post–spray density of larvae was recorded. Successive observations were made at an interval of one day. The percentage reduction was calculated by the following formula$^{[2]}$.

$$\text{% reduction}=100 - \left(\frac{C_1}{T_1} \times \frac{T_2}{C_2}\right)$$

Where, C_1 and T_1 are pre–treatment density and T_2 and C_2 are the post–treatment density of larvae per dip in the control and treated habitats, respectively.

2.7. Statistical analysis

The mortality observed (ppm) was corrected using Abbott's formula during the observation of the larvicidal potentiality of the plant extracts. Statistical analysis of the experimental data was performed using the computer software SPSS 14 version and MS EXCEL 2003 to find the LC$_{50}$, regression equations ($Y = $ mortality; $X = $ concentrations) and regression coefficient values.
Table 1
LC50 and LC90 of larval and pupal toxicity effect of *M. oleifera* on malarial vector, *An. stephensi* Liston.

<table>
<thead>
<tr>
<th>Larval and pupal stage</th>
<th>LC50 and LC90 (ppm)</th>
<th>Regression equation</th>
<th>95% Confidence limit</th>
<th>Chi-square value (χ^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>57.79 (125.93)</td>
<td>Y = -1.087 01 + 0.018 81X</td>
<td>51.38 (112.49) 64.02 (146.47)</td>
<td>1.51*</td>
</tr>
<tr>
<td>II</td>
<td>63.90 (133.07)</td>
<td>Y = -1.184 07 + 0.018 53X</td>
<td>57.64 (118.45) 70.54 (155.67)</td>
<td>1.60*</td>
</tr>
<tr>
<td>III</td>
<td>72.45 (139.82)</td>
<td>Y = -1.378 29 + 0.019 02X</td>
<td>66.28 (124.51) 79.72 (163.45)</td>
<td>0.24*</td>
</tr>
<tr>
<td>IV</td>
<td>78.93 (143.20)</td>
<td>Y = -1.574 00 + 0.019 94X</td>
<td>72.67 (127.88) 86.72 (166.64)</td>
<td>2.27*</td>
</tr>
<tr>
<td>Pupa</td>
<td>67.77 (141.00)</td>
<td>Y = -1.186 04 + 0.017 50X</td>
<td>61.19 (124.42) 75.14 (167.43)</td>
<td>3.06*</td>
</tr>
</tbody>
</table>

*Significance at $P < 0.05$ level.

Table 2
Repellent activity of *M. oleifera* (methanol extract) on malarial vector *An. stephensi* Liston.

<table>
<thead>
<tr>
<th>Repellent activity observation</th>
<th>Number of mosquito fed</th>
<th>Control</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fed mosquitoes</td>
<td>24</td>
<td>17</td>
<td>15</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unfed mosquitoes</td>
<td>31</td>
<td>26</td>
<td>20</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>55</td>
<td>43</td>
<td>35</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Unfed over control</td>
<td>43.83</td>
<td>58.90</td>
<td>76.71</td>
<td>90.41</td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Smoke toxicity effect of *M. oleifera* leaf, seed and oil on *An. stephensi*.

<table>
<thead>
<tr>
<th>M. oleifera</th>
<th>No. of mosquitoes tested</th>
<th>Fed mosquitoes</th>
<th>Unfed mosquitoes</th>
<th>Total</th>
<th>% Unfed over control I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>100</td>
<td>24ab</td>
<td>43h</td>
<td>67b</td>
<td>58ab</td>
</tr>
<tr>
<td>Seed</td>
<td>100</td>
<td>23h</td>
<td>35h</td>
<td>58ab</td>
<td>64h</td>
</tr>
<tr>
<td>Control I</td>
<td>100</td>
<td>82c</td>
<td>0c</td>
<td>82c</td>
<td></td>
</tr>
<tr>
<td>Control II</td>
<td>100</td>
<td>14c</td>
<td>26ab</td>
<td>86c</td>
<td>68c</td>
</tr>
</tbody>
</table>

Within column means followed by the same letter(s) are not significantly different at 5% level by DMRT; Control 1 = Negative control – blank without plant material; Control 2 = Positive control – Mortein coil.

Table 4
Field evaluation of the *M. oleifera* (methanolic extract) seed extract on malarial vector, *An. stephensi*.

<table>
<thead>
<tr>
<th>No</th>
<th>Larval density</th>
<th>Before treatment</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>80.0±4.04a</td>
<td>31.0±0.84a</td>
<td>20.0±1.67a</td>
<td>9.3±0.97a</td>
<td>69.8%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>68.0±1.69a</td>
<td>26.3±1.27a</td>
<td>13.0±0.83b</td>
<td>5.6±0.46a</td>
<td>78.9%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>57.6±2.07b</td>
<td>17.3±0.94b</td>
<td>10.3±0.41c</td>
<td>4.3±0.45b</td>
<td>89.8%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>44.0±2.11c</td>
<td>12.0±2.11c</td>
<td>5.3±0.45d</td>
<td>5.3±0.92b</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>32.3±2.09c</td>
<td>8.3±1.25c</td>
<td>3.0±0.85c</td>
<td>1.6±0.45b</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>26.6±2.42d</td>
<td>3.6±1.25d</td>
<td>2.3±1.25d</td>
<td>0.3±0.45c</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>285</td>
<td>86</td>
<td>60</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>47.5</td>
<td>14.3</td>
<td>10</td>
<td>4.8</td>
<td></td>
</tr>
</tbody>
</table>

Within column means followed by the same letter(s) are significantly at 0.05% level by DMRT.
Table 3 provided the results of smoke toxicity effect of *M. oleifera* on biting activity of *An. stephensi*. Two grams of plant ingredients from *M. oleifera* plant were used for smoke toxicity. The control was maintained without plant ingredients. It acts as negative control. The commercially available (Mortein) mosquito coil was used as positive control.

One hundred of 4 –3 days starved *An. stephensi* mosquitoes were used. After the treatment of the plant, the fed and unfed mosquitoes were counted. There were 24 fed and 76 unfed mosquitoes were counted. Among the two parts tested against biting of adult, there was more increased mortality after the smoke emerged from the coil made up of seed than other parts. The production given by the smoke from the *M. oleifera* leaves and seeds was respectively 58% and 64%. Comparisons with other plant showed that its efficacy was very high, but the combined effect of each plant showed good smoke toxicitic effect on *An. stephensi*.

Table 4 showd the field trial after using *M. oleifera* seed extracts against malarial vector, *An. stephensi*. The field study was conducted in mosquito breeding site, such as overhead water tank and water storage places. Field trial was conducted by using the *M. oleifera* seed extract against malarial vector, *An. stephensi* (overhead tank) sprayed by using knapsack sprayer. Bioefficacy of plant extract was noted based on the lethal concentration of plants. The LC₅₀ value was double for *M. oleifera* sprayed individually at different breeding sites of malarial vector. The percentage of larval reduction was noticed in 24 h, 48 h and 72 h at the breeding sites. After treatment with *M. oleifera* extract, the larval reduction was 73.9%, 84.8% and 94.2% at 24 h, 48 h and 72 h, respectively on malarial vector *An. stephensi*.

4. Discussion

Many researches have been conducted on plant derived chemicals which are non–toxic to man and domestic animals and serve as useful basis for the development of safer and more selective mosquito insecticides[16]. As compared with other herbal extracts, *M. oleifera* seed extract also acts as larvicidal and pupicidal agent and studies have been reported on water–extracted *M. oleifera* seeds (WEMOS) against *Aedes aegypti* larvae, and methanol–extracted *M. oleifera* roots against *Culex quinquemfasciatus* and *Aedes Albopictus*. Results obtained after the treatment of *M. oleifera* against *An. stephensi* were encouraging. The obtained larval and pupal mortality may be due to the active chemical compounds present in *M. oleifera*. Quercetin and kaempferol are flavonoids, compounds of phenolic hydroxyl groups of *M. oleifera* with antioxidant action of potential therapeutic uses[17].

Since *An. stephensi* breeds in drinking water tank many of plant extracts are subject to risk factors in mosquito control. The plant extracts which are highly toxic against the *An. stephensi* are also toxic to human beings. In the present study *M. oleifera* seed extract shows good effect on *An. stephensi* and it is also non–toxic to human beings. Many previous studies proved that the extract of *M. oleifera* is a water purifying agent. *M. oleifera* seeds can be used as a natural coagulant (primary coagulant) in household water treatment as well as in the community water treatment systems[18]. Hence, it can be considered that the seed extract of *M. oleifera* is not only a mosquitoicidal agent, but also a water treatment agent. The present study also revealed that the seed extracts of *M. oleifera* have a promising larvicidal efficacy. Plants are rich sources of bioactive organic chemicals and offer an advantage over synthetic pesticides as the plants are less toxic, less prone to development of resistance, and easily biodegradable. The seed extract of *M. oleifera* will play an important role in the control of mosquitoes.

Repellents are used as personal protection methods against biting arthropods with the major aim of avoiding nuisance[19]. Insect repellents are considered useful alternatives where other control measures are neither practical nor possible. Repellents properly utilized are an inexpensive means of reducing or preventing a wide range of vector[20].

Many plant extracts and essential oils manifest repellent activity against different mosquito species[10]. The biological activity of the plant extracts might be due to a variety of compounds in *Solanum tribolum* plant, including phenolics, terpinoids and alkaloids. These compounds may jointly or independently contribute to causing oviposition deterrent and skin repellent activity against *An. stephensi*[21].

The present findings have important implications in the practical control of mosquito larvae in the polluted aquatic ecosystem. The plants studied are available in large quantities. These extracts are easy to handle, inexpensive and safe natural products for mosquito control[10]. The extracts of murungai (Local Tamil Name) seed can also be used for water purification[22]. In view of residue problems in the environment and the development of insect resistance to synthetic insecticides like DDT and other chlorinated hydrocarbons, the recent trend is to explore plants to obtain extracts that are safe for non target animals and do not pose any residue problem but are still able to suppress pest populations. Though several compounds of plant origin have been reported as larvicides[23–32], there is a wide scope for the discovery of more effective plant products[33]. Further research undoubtedly will lead to improved formulations with enhanced activity which may eventually become environmentally acceptable and replace objectionable conventional insecticides for mosquito control. It may be concluded that the nature possesses numerous medicinal plants, which may be useful for control of vector borne diseases.

Conflict of interest statement
We declare that we have no conflict of interest.

Acknowledgements

Authors are thankful to Prof. G. Vanithakumari, Head of the Department, Department of Zoology, Bharathiar University for giving facilities and encouragement during the study period.

References