Effect of age and gender on some blood biochemical parameters of apparently healthy small ruminants from Southern Punjab in Pakistan

Shumaila Kiran, Anif Mahmood Bhutta, Bakhtyawar Ali Khan, Sobia Durrani, Muhammad Ali, Muhammad Ali, Furhan Iqbal

1.Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, 60800, Pakistan
2.Bhutta Clinical Laboratory, Multan, Pakistan
3.Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
4.Institute of Biotechnology, Zoology Division, Bahauddin Zakariya University, Multan, 60800, Pakistan

ARTICLE INFO

Abstract

Objective: To report and compare the hematological and serum biochemical profile of goat and sheep from Rahim Yar Khan district in Southern Punjab. Methods: One hundred and twenty blood samples (98 goat and 22 sheep) were collected and their blood glucose, hemoglobin and serum biochemical parameters, cholesterol, aspartate transaminase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were determined by using spectrophotometer. Parameters were compared between goat and sheep. Results: It was observed that glucose ($P=0.001$), LDH ($P=0.001$) and ALT ($P=0.001$) concentrations differed significantly between sheep and goats. The studied parameters were compared between buck and goats and also between young goats (less than 12 months old) and adults (more than 12 months old). It was found that age and gender did not affect these hematological and serum biochemical parameters. Conclusions: It can be concluded that sheep have overall higher values than goats for studied hematological and serum biochemical parameters.

1. Introduction

Seventy percent of population is rural in Punjab province and livestock is the major source of income. The role of livestock in rural economy may be realized from the fact that 30–35 million rural population is engaged in livestock raising, having household holdings of 2–3 cattle/buffalo and 5–6 sheep/goat per family which helps them to derive 30–40 percent of their income from it[1,2]. In semi-arid and arid areas, goat and sheep provide the main means of survival and security. In these situations, the sale of animals, milk and manure accounts for about 27.2%–30.7%, 19.7%–84.8% and 1.0%–4.5% of total farm income, respectively[3].

Blood is an important and reliable medium for assessing the health status of individual animals[4]. Variations in blood parameters of animals are due to several factors such as altitude, feeding level, age, sex, breed, diurnal and seasonal variation, temperature and physiological status of animals[5]. Hematological and serum biochemical tests are widely used for the diagnosis of serious animal diseases which can lead to economic losses in animals like reduced fur, wool and milk production[6].

As limited information is available regarding the hematological and serum biochemical profile of small ruminants in Pakistan, the aim of the present study was to provide and compare the data regarding hematology and serum biochemical profile of goat and sheep from Southern Punjab and to report the effect of age and gender, if any, on hematological and serum biochemical profile of goats.

2. Materials and methods

One hundred and twenty blood samples (98 goat and 22 sheep) were collected from randomly selected herds located in Rahim Yar Khan district. No diseased animal was intentionally included in the study. Blood was collected from the jugular vein of the animals by using disposable syringe with needle. The collected blood was immediately preserved in 10 mL Eppendorf tubes containing 100 μL of 0.5 M ethylene diamine tetraacetic acid (EDTA). Preserved blood samples were brought to Laboratory at the Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, where they were further processed.
Quantitative analysis of hematological (glucose, hemoglobin) and plasma biochemical (lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol) parameters was done by Metertek SP–8SO spectrophotometer (Korea) and by using kits manufactured by Randox LTD Laboratories (UK) following Shahnawaz et al[7], Zulfiqar et al[8] and Khan et al[9].

Statistical package Mini Tab (Version 16) was used for statistical analysis. All the values were expressed as mean ± standard deviation (SD). One way ANOVA was applied to compare various hematological (glucose and hemoglobin) and serum biochemical parameters (ALT, AST, LDH and cholesterol) between goat and sheep. These parameters were also calculated to determine the effect of age and gender on them in goat blood samples.

Table 1
Comparison of blood/serum biochemical parameters between goat and sheep samples.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Goat (n=98)</th>
<th>Sheep (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Range</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>70.6±8.6</td>
<td>49.0–91.0</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>72.0±21.0</td>
<td>40.1–127.3</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>7.9±1.0</td>
<td>5.6–9.9</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>304.2±143.0</td>
<td>152.0–1,006.0</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>123.3±21.8</td>
<td>78.0–178.0</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>77.1±74.2</td>
<td>15.0–313.0</td>
</tr>
</tbody>
</table>

***: P<0.001 compared to goat.

Table 2
Effect of gender and age on blood/serum biochemical parameters in goats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Male (n=29)</th>
<th>Female (n=49)</th>
<th>Upto 12 months (n=36)</th>
<th>More than 12 months (n=62)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Range</td>
<td>Mean ± SD</td>
<td>Range</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>76.8±6.6</td>
<td>68.0–91.0</td>
<td>68.1±8.1</td>
<td>49.0–85.0</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>70.1±26.0</td>
<td>40.2–127.3</td>
<td>73.0±11.3</td>
<td>55.5–127.3</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>8.1±1.2</td>
<td>5.6–9.9</td>
<td>7.9±0.9</td>
<td>5.6–8.9</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>281.2±79.8</td>
<td>156.0–427.0</td>
<td>313.3±161.5</td>
<td>152.0–1,006.0</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>122.0±30.6</td>
<td>78.0–178.0</td>
<td>127.5±23.5</td>
<td>78.0–178.0</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>84.3±103.6</td>
<td>16.0–313.0</td>
<td>74.5±62.5</td>
<td>20.0–306.0</td>
</tr>
</tbody>
</table>

The differences in the values of theses parameters between male and female goats, goats up to 12 months and more than 12 months are not statistically significant.

Goats (n=98) were also divided into two groups on the basis of their age in order to compare the blood parameters between young (less than one year old) and adult (more than one year old) animals. Comparison of these parameters between two age groups revealed that the differences, although present, were statistically non-significant (Table 2).

4. Discussion

Hemoglobin is the iron−containing oxygen−transporting protein in the red blood cells of vertebrates. The deficiency of hemoglobin in the red blood cells decreases blood oxygen−carrying capacity leading to symptoms of anemia[10]. Blood hemoglobin level was slightly higher in sheeps (8.1±1.6) than goat (7.9±1.0) but the difference was not statistically significant (P=0.36). Similar observations were reported by Ramprabhu et al[4] and Devendran et al[11] who have reported higher hemoglobin values in Coimbatore sheep (9.5±0.36 g/dL) than in Kanni goat (8.45±0.03 g/dL). Jawasreh et al[12] have reported higher hemoglobin concentration in Awassi sheep (10.4±0.2 g/dL) than our reported values but several factors including animal strains, gender, geographical distribution, parasitic infection and health conditions can affect the hemoglobin levels[4]. Hemoglobin values were almost the same for bucks (8.1±1.2 g/dL) and goats (7.8±1.0 g/dL). Similar observation was reported by Egbe−Nwiyi et al[13]. There was also no effect of age on hemoglobin values in the present study. This finding is in agreement with Piccione et al[14] and Perez et al[15].

The value of blood glucose (mg/dL) was higher in case of goat (70.6±8.6) than that of sheep (63.0±14.0) and the difference was statistically significant. Ramprabhu et al[4] have reported lower blood glucose values in Kanni goat (47.00±0.53 mg/dL) while Perez et al[15] reported higher blood glucose concentration in wild goat (126.1±66.0 mg/dL) than the values reported in the present study. The difference in glucose concentration is because of levels of nutrition and the metabolic activity of individual animal[12].

ALT is an enzyme found in the highest amount in liver and

3. Results

Blood and serum parameters, including glucose, hemoglobin, cholesterol, ALT, AST, and LDH, in sheep and goat blood samples were measured. The comparison of these hematological and serum biochemical parameters of sheep and goats was given in Table 1. Glucose concentrations highly significantly (P<0.001) varied between sheep and goats with goats having higher blood glucose level than sheep. LDH and ALT levels between sheep and goats also showed statistically significant differences. Comparison of all other parameters between these small ruminants revealed statistically non-significant differences (Table 1).

Goat samples were divided, on the basis of their gender, into two groups and blood parameters were compared between buck and goats. The values of various parameters were different between them but the differences did not reach the statistical significance (Table 2).
typically used to detect liver injury\[16\], ALT values for goat were higher (77.1±74.2 U/L) than those of sheep (30.4±18.0 U/L) and the difference was highly statistically significant. Our values are higher than those reported by Daramola et al[17] (8.9±0.9 U/L) for goats. Lower ALT values, than one we presented, were reported by Miloslav et al[18] in west African sheep (10.0±1.1 U/L) while studies reported by Mostaghi et al[19] in wild sheep (29.15±3.20 U/L) and by Perez et al[15] in wild goat (48.4±52.3 U/L) demonstrated higher/or comparable ALT concentration to the present study indicating a great variation in ALT levels among different small ruminants having different geographical distribution.

AST is an enzyme abundantly found in liver and heart muscles and plays an important role in amino acid metabolism[20]. There was no significant difference in AST levels among goats (123.3±21.8 U/L) and sheep (103.2±28.0 U/L) during the present study. AST values have been reported in sheep and goats by several other studies with variable levels indicating that this enzyme concentration varies with the species and strains of small ruminants. Daramola et al[17] reported (20.9±1.2 U/L) of AST in west African dwarf goat which is lower than those reported by us, while Perez et al[15] have reported (235.3±212.4 U/L) AST in wild goats which are significantly higher than our reported values.

Cholesterol concentration (mg/dL) was higher in case of sheep (98.5±14.8) than in goat (72.0±21.0) but the difference was not statistically significant. Similar high cholesterol in sheep was reported by Devendra et al[11] in Coimbatore sheep (81.81±5.17) and Jawasreh et al[12] for Awassi sheep (87.00±3.40). Comparable results in goat are reported by Ramprabhu et al[4] (59.50±1.30) in KannI goats and by Perez et al[15] in wild goat (53.00±21.80).

LDH is an enzyme that catalyzes conversion of lactate into pyruvate which is an important step in energy production in cell. Increased activity of LDH is probably due to vascular thrombosis, hemorrhage and tissue breakdown especially in liver and kidney of infected animals[21]. The value of LDH is higher in case of sheep (583.8±83.6) than those of goats (304.2±143.0) and this difference is statistically highly significant (P<0.001). Similar observation was made by Mostaghi et al[19] in wild sheep. There was no effect of age or gender on serum LDH levels and these results are in agreement with Perez et al[15].

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

This project was financed by the Directorate of Research and External Linkages, Bahauddin Zakariya University, Multan (Pakistan). Authors would like to thank all the veterinarians for their kind help during sample collection.

References

