AN ANATOMO-IMAGISTIC STUDY OF INTERSPHENOIDAL SINUS SEPTUM

T. S. Guga Priya, N. Vinay Kumar, Arun T. Guru, S. D. NalinaKumari

Introduction: Asymmetrically divided sphenoid sinuses exhibits a variety of variation in the formation of inter sinus septum. Previously reported range of incidence of single midline inter-sphenoid sinus septum is from 18.2% to 95%. Many studies have reported differing incidences of laterally placed septum, accessory septa, multiple septa, transverse septa and no septum in the sphenoid sinuses. Termination of inter-sphenoid septum either into internal carotid canal or into optic canal had also been shown in many studies with possibilities of high risk complications related to such termination of septum. Only limited data is available in Indian ethnicity about the variations in presentation of inter-sphenoid sinus septum compounded by the relative high frequency of occurrence of endoscopic trans sphenoid microsurgeries. Hence, this study was done to observe variations occurring in septum of sphenoid sinuses.

Materials and Methods: A retrospective CT analysis of images obtained from 114 patients diagnosed with sinusitis during a specific study period was done by two independent observers. The age of the patients ranged from 16-60 years of both sexes. Patients with history of prior sinus or sphenoid surgery, facial trauma, obscured sphenoid sinus pathology were excluded.

Results: Single inter sphenoid sinus septum was seen in 83.3%. Out of this Midline, right deviation, left deviation were observed in 11.4%, 33.9% and 21.9% respectively. In 16.7% images, accessory/multiple septum were noticed. While, absent inter sphenoid septum and transverse septum were noted each in 0.8% of images studied. The termination of inter sinus septum to internal carotid canal occurred in 27.3% and into optic canal in 48% of all images studied.

Conclusion: This study concluded that the variation in presentation of inter-sphenoid septum and its termination at internal carotid artery canal or optic canal need to be pre operatively evaluated by surgeons for considering risk of septal resection during Trans sphenoid endoscopic surgeries.

Key Words: Sphenoid sinus, Septum, Inter-sphenoid septum, Trans sphenoid endoscopic.

Address for Correspondence: Dr. N. Vinay Kumar, Associate Professor, Department of Anatomy, Government Medical College, East Yakkar, Palakkad-678013, Kerala, India.
E-Mail: vinaydr1981@gmail.com

Access this Article online

Quick Response code

Web site: International Journal of Anatomy and Research
ISSN 2321-4287
www.ijmhr.org/ijar.htm

DOI: 10.16965/ijar.2016.133

Received: 03 Feb 2016
Accepted: 18 Feb 2016
Peer Review: 05 Feb 2016
Published (O): 29 Feb 2016
Revised: 15 Feb 2016
Published (P): 29 Feb 2016
INTRODUCTION
The complex sphenoid bone that forms a segment of skull base contains within it a pair of sinuses divided by a bony septum. There occurs pneumatisation of these sinuses asymmetrically between 3-15 years of postnatal life [1-3]. This asymmetrical pneumatisation has been claimed to be the reason for shifting away of inter- sphenoid sinus septum from midline position [4].

A single inter sinus septum in sphenoid sinus had been reported by many studies with a wide variation of incidence of 18.2-95% (5-33). Meanwhile, many literatures have noted inter- sphenoid septum that is of midline with either right or left deviation [7-12, 26,27,31,34]. Complete or incomplete accessory / multiple septum in the sphenoid sinuses had also been reported with differing percentage of incidences [9,20,26,27,28,30,31,32]. Also, studies have shown absence of inter sinus septum [9,20,26,27,28,31,33], while a couple of studies have contradicting reports of transverse or a horizontal septum in sphenoid sinus [31,35].

The optic canal or the internal carotid artery canal have been indicated as the common site of termination of the laterally deviated single septum or one among the multiple para median septum [4,15,18,20,22,26,27,28,29,31,33]. This inter-sphenoid septum with such a spectrum of variations have been considered as an anatomical landmark in trans sphenoid microsurgeries [15,19,20,21]. But, a recent study questioned the rationale of having this highly variable structure as a landmark in endoscopic skull based surgeries [36]. The variations of sphenoid sinus septum had been claimed to differ with racial differences [20] and gender differences [15, 37]. This contradicting literature claims coupled with paucity of Indian data, warranted this study about anatomical variations of inter-sphenoid septum using archived CT scan images.

MATERIALS AND METHODS
A retrospective data from the archives of Department of Radio diagnosis at our medical college hospital were collected and used in this study after Institutional Ethical clearance. Dual slice CT images from 114 cases with a diagnosis of sinusitis that were taken 3 months prior to study commencement period were analysed using RADIANT DICOM viewer. Analysis of these CT images belonging to patients aged between 16 to 60 years of both sexes obtained by Wipro GE model 5114671/2 machine were done independently by two observers. Patients with history of prior sinus or sphenoid surgery, facial trauma, obscured sphenoid sinus pathology were excluded from this study.

RESULTS

Table 1: Incidence of single, accessory, multiple and absent Inter-sphenoidal sinus septum.

<table>
<thead>
<tr>
<th>Study Author</th>
<th>Single Inter-sphenoid sinus septum (%)</th>
<th>Absent Inter-sphenoid sinus septum (%)</th>
<th>Accessory/Multiple Inter sphenoid septa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardy (1979) [5]</td>
<td>75</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Renn & Rhoton (1975) [6]</td>
<td>68</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Kinnman et al (1977) [7]</td>
<td>42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Banna & Olotola (1983) [9]</td>
<td>61</td>
<td>11.4</td>
<td>18</td>
</tr>
<tr>
<td>Solar et al (1994) [12]</td>
<td>77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kazayasi et al (2005) [17]</td>
<td>19.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Miranda et al (2009) [22]</td>
<td>23.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zeda et al (2011) [25]</td>
<td>18.5</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>Faznla et al (2012) [26]</td>
<td>88.2</td>
<td>2.7</td>
<td>4.5</td>
</tr>
<tr>
<td>Manishka et al (2014) [29]</td>
<td>27</td>
<td>13.3</td>
<td>20</td>
</tr>
<tr>
<td>Butal et al (2014) [31]</td>
<td>64.3</td>
<td>1.3</td>
<td>20.1/34</td>
</tr>
<tr>
<td>Dundar et al (2014) [33]</td>
<td>90.7</td>
<td>2.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Present study</td>
<td>83.3</td>
<td>0.8</td>
<td>16.7</td>
</tr>
</tbody>
</table>

A single inter sphenoid septum was observed in 83.3% of the images studied. Out of that, only in 11.4% showed the septum in the midline, (FIG. 1) while the rest exhibited deviation of septum either to the right or the left side. The right deviation of inter sphenoid septum was observed to be dominant with 33.9% incidence while the
left deviated septum was seen in 21.9% images (FIG. 2, 3). A horizontal septum in the sphenoid sinus was noted in a single image accounting for 0.8% (FIG. 4). Para median or lateral septum was noted in 14.5% images (FIG. 5). Multiple septum and or accessory septum were seen in 16.7% (FIG 2, 3). Absence of inter sphenoid septum was observed in 0.8% of images studied (FIG. 6). On studying the termination pattern of inter sphenoid septum into the surrounding, the septum that is complete from anterior to posterior was considered as main septum leaving the incomplete septa in images having multiple septa. It was found that the septum terminated in three different ways. The commonest pattern of termination happened to be into the optic canal which was seen in 48% (FIG. 7), followed by 27.3% into the internal carotid artery canal (FIG. 8). The less frequent method of termination was into the lateral bony wall which was noted in 13.3% of images studied.

Fig. 1: Showing Middle Sphenoidal Septum (MSS).

Fig. 2: Showing Right deviated Sphenoidal Septum (RSS) with an accessory septum (AS).

Fig. 3: Showing Left deviated Sphenoidal Septum (LSS) with two accessory septum (AS).

Fig. 4: Showing Horizontal Sphenoidal Septum (HSS).

Fig. 5: Showing Lateral Sphenoidal Septum (LSS).

Fig. 6: Showing Absent Sphenoidal Septum (ABSS).
DISCUSSION

Sphenoid sinus with surrounding vital structures like internal carotid artery, optic nerve is known to have varied pneumatization [1-3]. The inter sphenoid sinus septum had been studied extensively due to its surgical importance in Trans sphenoidal endo surgeries [15,19,20,21].

A single septum that divides the sphenoid into two cavities had been reported by a lot of studies with varying incidence (Table1) [5-33]. Studies have noticed that the single septum rarely occurs in midline, but deviated commonly to either of one side [7-12, 26,27,31,34]. Two previous studies showed right deviated septum predominantly [27,31], when compared to another study that claimed left deviation to be dominant. In the Present study, 34 cases showed right deviated septum as dominant with 43.3 % incidence (Graph: 1). Occurrence of accessory and/or multiple inter sphenoid septum varies from as low as 4.5% till 81.8% and the present study also shows a low incidence of 16.7% (Table 1). Even though the absence of inter sphenoid septum similar to this study had been reported previously [9, 20, 26, 27,28,31,33], there also exist a few studies that had never encountered absence of inter sinus septum [14, 30]. (Table1) The presence of transverse inter sphenoid sinus septum had been reported to be in 7.5% by a study [35], which is of higher incidence compared to the present study’s 0.8%. But there is another study that contradicts these findings by not visualizing any transverse septum [31].

The mode of termination of inter sphenoid septum whether single or multiple was observed to end either in the optic nerve canal or internal carotid artery canal or into the lateral wall [4,15,18,20,22,26,27,28,29,31,33] Out of these three patterns of termination the lateral wall termination seen in 13.3% in the present study was similar to incidences noted in two other studies [28,29]. Even though, the termination into internal carotid artery canal had been shown as the common and very high risk pattern in many of the studies [4,22, 25, 32], the present study claims termination into optic canal as the common mode with incidence of 48% (Graph:2). The influence of race and gender upon the
variations in the number, position and deviation, termination had been discussed by a few studies [20, 37]. By considering the study that had statistically proven the insignificance of gender in influencing the occurrence of variations in sphenoid septum, the present study has not concentrated on this gender difference during analysis [15].

A cadaveric study put forth that anatomical variations like shifting of sphenoid septum away from midline or absent septum as reason for disadvantage during trans sphenoidal approach of sellar floor surgeries [6]. While a cluster of reports consider the inter sphenoid sinus septum as a landmark during trans sphenoid endoscopic surgery where in the septum is removed to have an optimal exposure for approaching structures in and around sphenoid sinus [15, 19, 20, 21]. But a recent study questioned the practicality of keeping this highly variant structure as a landmark [36]. Inspite of opposing views, the present study considers that the presentation of the inter sphenoid septum needs to be evaluated in Indian ethnicity, pre operatively so as to avoid iatrogenic injury to vital structures during septal resection.

CONCLUSION

The spectrum of anatomical variations that are possible in number, position, deviation, termination of inter sphenoid sinus septum irrespective of gender and age differences, emphasizes the need for detailed knowledge of these features pre operatively. Also this detailed information may aid the surgeon to plan and limit the surgery intra operatively.

Conflicts of Interests: None

REFERENCES

How to cite this article: